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Abstract: This paper investigates the inverse problem of finding the time-dependent diffusion coefficient in
a quasilinear parabolic equation with the nonlocal boundary and integral overdetermination conditions. Under
some natural regularity and consistency conditions on the input data the existence, uniqueness and continuously
dependence upon the data of the solution are shown. Finally, some numerical experiments are presented.
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1 Introduction

In this paper, an inverse problem of determining of the diffusion coefficient a(¢) has been considered with extra
integral condition fol u(x, t)dx which has appeared in various applications in industry and engineering [1]. The
mathematical model of this problem is as follows:

ur =a)uxx + f(x,t,u), (x,t) € Dy :=(0,1)x(0,7T) (1)
u(x,0) = p(x), x €[0,1], 2)
u(0,1) =u(l,1), ux(1,t) =0, t €10, 7], 3)
1
E@t) = /u(x,t)dx,o <t <T, @
0

The functions ¢(x) and f(x, ¢, u) are given functions.

The problem of a coefficient identification in nonlinear parabolic equation is an interesting problem for many
scientists [2—5]. In [6] the nature of (3)-type conditions is demonstrated.

In this study, we consider the inverse problem (1)-(4) with nonlocal boundary conditions and integral overdeter-
mination condition. We prove the existence, uniqueness and continuous dependence on the data of the solution by
applying the generalized Fourier method and we construct an iteration algorithm for the numerical solution of this
problem.

The plan of this paper is as follows: In Section 2, the existence and uniqueness of the solution of inverse problem
(1)-(4) is proved by using the Fourier method and iteration method. In Section 3, the continuous dependence upon the
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data of the inverse problem is shown. In Section 4, the numerical procedure for the solution of the inverse problem
is given.

2 Existence and uniqueness of the solution of the inverse problem

We have the following assumptions on the data of the problem (1)-(4).
(A1) E(t) € C'0,T], E'(r) <0,

(A2)

(1) p(x) € CH0,1],9(0) = ¢(1), ¢’ (1) = 0, (0) = ¢" (1),

)2k =0,k =1,2,...

(A3)

(1) Let the function f(x, ¢, u) be continuous with respect to all arguments in D7 x(—00, 00) and satisfy the following

condition

U f(x,t,u) Y f(x,t, 1)
ax” B ax”

<b(x,t)|lu—1u| ,n=0,1,2,

where b(x,t) € Lo(D7), b(x,t) >0,

(2) f(x7[7u) € C4[O’ 1]7[ € [07 T]7 f(xvtvu)|x=0 = f(x’t’u)|x=l ’ fx(xvzvu)|x=l = O’ fXX(xvtvu)|x=0 =
fxx(xstsu)|x=l )

(3) fax(t) =0, fo(t) >0, Vt € [0, T], where

1 1

0K = /(p(x)Yk(x)dx, fr(@) = /f(x,t,u)Yk(x)dx,k =0,1,2,..
0

0
Xo(x) =2, Xpp—1(x) =4cos2wkx, Xor(x) =4(1l —x)sin2nkx, k =1,2,....
Yo(x) = x, Yag—1(x) = xcos2mkx, Yor(x) = sin2nkx, k =1,2, ...

The systems of functions X (x) and Yx(x), k = 0,1, 2, ... are biorthonormal on [0, 1]. They are also Riesz bases
in L>[0, 1] (see [7]).
We obtain the following representation for the solution of (1)-(3) for arbitrary a(¢) by using the Fourier method:

t
u(r.0) = | go + / fo()dt | Xo(x)
(0]

1 t t
o —Qrk)? [a(s)ds i —Qnk)? [a(s)ds
+) e 0 +/f2k(f)dfe ‘ dt | Xox(x)
k=1 0
o [ —(2nk)2j'a(s)ds
+ ) | (921 — dmkgoit) e 0 Xok—1(x)
k=1
o A t
—@2rk)? [a(s)ds
+ 30 | [ @ = sakproe— e T | xoi )
k=1 [}
Differentiating (5) we obtain
1
/u,(x,z)dx =E(),0<:<T. (6)
0
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(5) and (6) yield

, >0
—E' (1) +2fo() + X 7 fax(0)
k=1
a(t) = - - (7N
oo —Q27k)? [a(s)ds t —@rk)2 [a(s)ds
8k | paxe 0 + [ fax (v)e : d
=1 0

T

k

Definition 2.1. {u(¢)} = {uo(t), uzx(t),u2x—1(t),k = 1,...,n} ,are continuous functions on [0, T| and satisfying
o0

the condition max_|ug(?)| + > max_|usx(t)] + max |uzx—1(t)| ) < oo. The set of these functions is
0<t=T = \o=r=T 0<t<T

o0
denoted by Biand the norm in By is |u(?)|| = max_|ug(t)| + > ( max |uzx ()] + max |uox—1 ([)|) Lt
0<t<T k=1 \0=t=T O=t=T

can be shown that By is the Banach space.

Theorem 2.2. [f the assumptions (A1) — (A3) are satisfied, then the inverse coefficient problem (1)-(4) has at most
one solution for small T.

Proof. We define an iteration for Fourier coefficient of (5) as follows:

t 1
LN+ =u(()O)(t)+//f(§,r,u(N)($»T))§d§dT
0 0

t
—(27rk)2fa(N)(s)dsd

t 1
W0 =0+ [ [ e eu® e oysinzeie e
0 0

‘
—Q2rk)?2 faN)(s)ds

t 1
W0 = a0+ [ [ 16 na™ € opgcosamrg e T dgdr
00

t
—@2rk)? [aN)(s)ds

r 1
—4k / /(t — ) f(€ . u™) (£ 1)) sin2wkE e T dédt ©))
0 0

where N =0,1,2,... and

t
— 2
Q2rk)? [fa(s)ds ©)

t
0) 0) —Qrk)? [a(s)ds
uy () = o, Uy (1) = paxe 0 JUse_1 (8) = (pok —dmktpax—1)e 0 .

It is obvious that u@ (r) € By and a©@ e C|[0, T].
For N =0,

t 1 t 1
WD) = u@ ) + [ / & ru@E ) — fEr.0)eded + / / FE. 7. 0)EdEd .
0O 0 00

Let us apply Cauchy inequality,
3 2 3

t 2 t 1
16" )] < lpol + / I / / [fE0u@E ) = f(E. 7. 0ldE | dr
0 0 0

t
+/dr
0

1
1 1
> 2

t (1 2
[1[ reroeast ae
0 0
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and with Lipschitz condition we obtain

(N7,

1
¢ 2 2 1 2

1
w0 < ool + Vi | [ 1 [p60 [ OC0]asf ar| +vi j [ recodsy ao
o o o

0

If we take the maximum of the last inequality, we get the following estimation for u(l) ).

omax g )] < lgol + VT 1Dl o [

‘ (0)0)” + VT f 0 Loy -

'
Qrk)? [a(s)ds

1
—Qrk Zfa s)ds —
us (1) = gaxe R R f / £ . u@(E 1) — f(E.7.0)]sin2rkEe : dédt
0 0

1
( . —(27k)? fa(s)ds
+//f(§, 7,0)sin2wkée H dedr.

00
Let us apply Cauchy inequality,

=

1
t 2 2

t 1
‘u(zlk)(l)‘§|<ﬂ2k| + /dt f/[f(g,r,u“”(g,r))—f(s,r,O)]sinznksdgr dv
0 0 0
' (1 2 3
+ dt f(&, 7,0)sin2xkéEdE dt
) (/11

0 0

and take the sum of the last inequality and partial derivative of f with respect to & and apply Holder inequality,

‘M(zlk)(l)‘ < Z lp2x | + oy (Z k2)
k=1 k=1 k=1

(S

2

[ oo (1
/Z /[fé(?f,u(o)(‘?,f))—fs(iT»O)]COSz”kEd? dt
o k=119

2 3
1 o0 1 % { oo 1
+2H(Z ,{2) | 2] s roeomk g ax
k=1 o k=1 1y

By applying Bessel inequality we obtain
1
2 z

oo 1
> UG ru@E o - ferolds | de
0

k=1

t

V6T
|u;1,g<o\ < z ool + 200 |
0

2
JET oo (1
yoo fe(£, 1, 00dE Y de
12 O/kzzl 0/5

If we use Lipschitzs condition and take the maximum of the last inequality, we get the following estimation for

o0

1
Z ’u;k)(l)‘-
=1

JeT

Jmax [u$}) o) < Z o2l + o 1o, o [1OO] + L 5Ol o
=1 — —
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max ‘ (1)(0) Z |2k | + F”b(x Dlzacor |u ‘ O)mH " gM

— 0<i=<T

t
—2rk)? [a© (s)ds
/ dédr

ro1
(21k) 1) = ”g?c)—l(t)+//f(é,T,M(O)(é’,f))écosange z
00

t 1 t
—Q2rk)? [a D (s)d
—ank [ =0 sE eu®Eoysinznie T e
00
Similarly, let us apply Cauchy inequality,
1
2 2

t t 1
uglk’_l(t)) < |@ak—1| + 4kt |po| + /dr / /[f(é,r,u(o)(é, 1) — f(£,7,0) cos2wkE dE b dt
0 0 0

1
2 2

t % t 1
+ dr f(,t,0)cos2nkédE y drt
AT
' 31 2 3
+arke | [ dr [fE T u@E 1) — fE1.0)]sin2wkE dE} dt
AT
t 31 2 z
+arnke | | dt f 1,0)sin2nkEdEy dr|
AT

and take the sum of the last inequality and partial derivative of f with respect to £ and apply Holder inequality and
Bessel inequality,

Oo o0
‘u(zk) 1(l)‘ Z lp2rc—1| + \/» Z
k=1

1
/[fs(é, u@E ) - fe (€00l dE Y de
0

1
/k@m@dé d
0

k=1
= ankei [ [ [ ¢ 2\ 3
KLV © ~
+,§1 (mk)? 0/ O/[fff@’f’“ (£. 1) — fee(6.7,0)] dE} dr
o 4, ki T t 1 2 1
KA/
+};W [ /féé(é’f»o)dé dt
- 2\

If we use Lipschitzs condition and take the maximum of the last inequality, we get the following estimation for

X i, o).
k=1

7"

Dok

«@T
max ’u;lk) 1(l‘)‘ Z|¢2k 1+ — Z

o<t<T
=1 k=1
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Ver T
( L ) b Dllzsop [P0,
NECT

Finally we obtain the following inequality:
(1)

o]
— 1 n
b= o 0]+ 3 (omas, s+ man, i o))

J6T & .
< el +——=>_ |ex

e

6
k=1
T TT
(T i,
(erf FT)

where [|¢|| = |go| + 4[|@2k| + |2k —1]]. Hence uP(¢) € By. In the same way, for N we have

ol g ol 5 ( m, b0+ o, 0]

O<t<T
o0
< ol + YT
6T V6T T _
+ (ﬁ + 2+ o | Dl [# VTP
6T VOoT' T
+ (ﬁ+ 5t ) M.

Since uY ~D(¢) € By, we have u™V)(r) € By,

{u()} = {uo(), uak (1), u2k—1 (1), k = 1,2,...} € By.
We define an iteration for (7) as follows:

—E'(t) + f1 fE 1, u™M)dx
0

N+1
aWNv+ )(1‘) — - -
—Q2rk)2 [aN)(s)ds —Qrk)2 [aN)(s)ds
0

) 1
> 8wk | poxe 0 + [ [ f(E .u™N))sin2rkEe dedr
k=1 00

1 S}
Itis clear that [ (£, T, u)dx =2fo(t) + Y %fyg(l). For N = 0,
0 k=1

—E'(t)+ fl fE 1, u®)dx
0

a(l)(t) = 1 f
oo —@2rk)2 [a©(s)ds 1 —@2rk)2 [a©®(s)ds
S 87k | poxe 0 + [ [ fE 1, u®)sin2rkée 0 gdt
k=1 00

1
Let us add and subtract [ f (&, 7,0)déd T to the last equation and use the Cauchy inequality and take the maximum

to obtain:
‘E/(t)‘ |

o, &
‘u ( ) B + C2

1
+ o 16(x, D 2senr)

|«

clo, T] Cs
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where

Co = E(T) — 290 —2 / fo0)dr,

Hence a V) (r) € C[0, T]. In the same way, for N, we have

E (1)
Ha(N)(t)HC[O,T] = ‘ Cs ‘

1
(N=1) H
t M
‘u () B + C

— 16, Dl oD
5 2(D7) >

Since uY D (¢) € By, we have aV) (¢) € C[0, T.
Now let us prove that the iterations uV 1 (¢) and aV+1) (¢) converge in By and C[0, T], respectively, as
N — oo.

o0

uD0) = u @) = (u’O -1 ) + D10 = uSR @) + @S O —uS)_ 1))

r 1
[f&cu® o) - 16 r0eagar | + [ [ erogdsar
0 0

Qrk)? f a9 (s)ds

1
/ [ fETuQE ) - fE 0)] e 4 sin2rkédEdt
(0]

Il
(e}
Me <"

O O O—  °o——
O _ O~ O— _

>
Il
_

—(2nk)2fla(°)(s)ds .
S 7,0 4 sin2wkédEdr

+
8

>
I
—

k)2 }a(o) (s)ds

[/Eeu@E ) - rEro)e £ cos 2mkEdEdr

+
8

>
I
_

—(27k)? fa(o)(s)ds

+
8

f(,7,0)e Ecos2nkédédt
k=1

o 1 1 ) ©

“terk Y [ [a-o[rean®cn - sero)e fevwas o mkeasar
k=1g o
o 1 S s

167k Z//(z—f) fE 0 0 Java sin2rkEdEd
k=1

Applying Cauchy inequality, Holder inequality, Lipshitzs condition and Bessel inequality to the last equation, we
obtain:

Hu(l)(t)_u(O)(t)HBl < (ﬁ+ Vor | «/6?7"T

)ub(x,r)HLz(DT) 0l (f +\/§7 J?T)

%

3

K=<ﬁ+J27+ \/6?TT

) ”b(xvl)“Lz(DT) (f_f_ F «/WT)

@) = uD ) = (uP O —u©) + D 1RO —uS0) + @R ) —u)_ )]

k=1
r 1
[ [[recun®em - 6 ru®em)easis
0 O
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oo z 1 t
—Q2rwk)? (1)( )d
+Z/[[f(g,r,u“)(g,f))—f(g,f,u“”(g,f))]e s G awkedEdT
k=10 o
o —(an)zfta(”(s)ds —(2nk)2fa<0>(s)ds
+2 /ff(é,r,u“”(é, )| e z —e T sin2rkédEdt
k=19 o
oo f —@rk)? [a D (s)ds
w3 [ [[era®e - renu@em]e § cos 2rktdgdt
k=19 o
oo f1 —(2nk)2ja<”(s)ds —(2nk)2fa<0>(s)ds
—l—Z//f(E,r,u(O)(E,r)) e T —e T Ecos2rkédédr
k=19
S — @k [aD (s)ds
—167k Z/[(z—z) FE L uVE 1) - f(g,r,u“”(g,f))]e 4 sin2wkédEdt
k=10 o
oo f1 —(2nk)2ja“>(s)ds —(2nk)2f[a(0’(s)ds
—167k Y //(t—r) fE L uE )| e z —e T sin2rkédédt
0 0

k=1

Applying the same estimations we obtain:

«/6T VOT' T
Hu(z)(t)_u(l)(t)HB (ﬁJr E 16Ce Dl oo ‘u(l) _,© H
V6T V6T T
+|— + ™ Ha(l) —a
6 3
, 1
—E () + [ f& 7. uV)dE
2D _ 4O _ : 0 :
oo —Q2rk)? faD(s)ds t 1 —@2rk)? [aD(s)ds
> 8wk | poxe 0 + [ [ f(E t.uD)sin2rkée 0 dedr
k=1 00
, 1
—E(0)+ [ & r.u®)dE
0
oo —(an)zja(o) (s)ds t 1 —(2nk)2fta(0)(s)ds
3 8wk | pske 0 + [ [ fE 1 u®)sin2nkée 0 dédt
k=1 00

If we apply the Cauchy inequality, the Holder Inequality, the Lipschitz condition and the Bessel inequality to the last
equation, we obtain:

1) ©) ‘E (t)‘ 4) ‘E/(t)‘
0a —a HC[O.T] 2[02 Z ‘ ‘+ QJECZZ 2[6‘2 Z ‘¢

(4)‘+M2 TH a _ (0)”
C[0.71]

2|7 <f>\

+ + ‘ ‘—i—M b(x.i
N fczz Dok b O Ly pp |4

’ (1 _,,© ”

5o
Jecz f

2 k=1
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([0l g 00
) ’ (4)‘ 2
@ + M
Z ‘ 2ﬁc22 2f C3 ¢ Z
R P

1 0
co.r) = 1= g7 1P DlLaon ’u( gt )“

6T 6T T\ MAT
Hu(z)(t)—u(l)(t)HBl < {<ﬁ+ % + “/? (F + C ) 1_BT] [LICROI TSRS

- (reS8. )

6 3
6T 6TT
o= ()

MAT
2 n
2w -uv0], = (¢ + 0 M) 1Dl K

If we use the same estimations, we get

1 MAT \?
HM(S)(,) _u(2)(t)HBI <— (C + D BT) b DIZ,pr) K

For N :

Ha<N+1> _a(N)H

b(x,t )u(N'H)—
cor S T-BT 16C, O Ly nry

K MA N
Hu(N+1)(t) —u"")(t)HBl <7 (C + Dm) IbCe D1, (D7) ©)

It is easy to see that if uWNFTD 5 N N 5 o0, then a™ D — (V) N — o. Therefore u(N‘H)(t) and
a‘N+D (1) convergence in B and C[0, T], respectively.

Now let us show that there exist # and a such that
lim VTP @) = u@), lim aV V@) =a().
N—oc0 N —o00

If we apply the Cauchy inequality, the Holder Inequality, the Lipshitzs condition and the Bessel inequality to
u —u(N+1)| and |a—a(N)’

N—

t 1
2
‘u—u(N'H)‘ <cC //bz(x,t)‘u(r)—u(N+l)(r)) dedt
(ON0]

N—

t 1
+C b2( 1) (N+l)( )— (N)( )zd%‘d
(0/!. X,t ‘u T u T ‘ T
t !
/

+D ‘a(t) —a<N>(f)‘2 dede

o _

’a W’) < (/t/lbz(x,t)]u(r)—uW“)(r)]zdgdr 2
00
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(S

A
1-BT

+ /t/lbz(x,t)‘u(N+l)(r)—u(N)(T)‘2d§df

00

and the Gronwall inequality to the last inequality and using inequality (9), we have

2
2 DMAT\NT! K
a0, < (e 20) Ky, )

DMAT)?
I T

exp2 {C +

Then N — oo we obtain u¥ 1D — o oWV+D 5 4.

Let us prove the uniqueness of these solutions. Assume that problem (1)-(4) has two solution pair (a,u),
(b, v). Applying the Cauchy inequality, the Holder Inequality, the Lipshitzs condition and the Bessel inequality
to |u(z) —v(¢)| and |a(z) — b(¢)|, we obtain:

() = v ()] < (f{z wor| +

k=1

"

MZ’ 2k—1‘ ﬁM +2ﬁM>X

—1‘ 3

1
2

7
_ 2
T 0/()[|a(r) b(r)|"dédr

t 1
+(ﬁ+“§7 ﬁT) [/bz@rnu(r)—v(r)|2dsdr ,
0O 0

1
2

t 1
f[bz(s,r) (o) — (@) déde | .
00

a0 = b = =5~

and applying the Gronwall inequality to the last inequality we have u(¢) = v(¢). Hence a(t) = b(¢), here T < %
The theorem is proved. O

3 Continuous dependence of solution upon the data

Theorem 3.1. If the assumptions (A1) — (A3) are satisfied, the solution (a,u) of problem (1)-(4) depends
continuously upon the data ¢, E.

Proof. Let® = {¢, E, f}and ® = {g, E, f}betwo sets of the data, which satisfy the assumptions (41)—(43).
Suppose that there exist positive constants M;, i = 0, 1,2 such that

IEllcio,r1 = Ma, ||E||C1[0 71 = M. llelicaro.nn = M2. 1@l cago.17 < Mo.

Let us denote ||| = (|Ellcip0.77 + lelcao.17 + ||f||c4 o(by))- Let (a,u) and (a,u) be solutions of (1)-(4)
corresponding to the data ® = {¢, E, f}and ® = {go, , } respectively. According to (5), we have

lu —1u| < llp =@l 40,17

n (Zx/67 (Z ‘(,0(4)

t 1
.T la(t) —a(r)|> dédt
I

“4)
Pok—1

)+2J?M+2xé67)

=
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2

r 1
+ (wﬂ ”?T” + */6?”) [/zﬂ(s,r) lu(e) — (o) déde
00

< Millo—o My | E@0) — E'0)]
la —al = M3 |l¢ —@llcapo.17 + Ma | E(2) ()CI[O,T]

(S

t 1
+Ms /sz(g,r)|u(z)—u(f)|2dgdz + MgT |a —al
0 0

1
t 2

1
(1-TM¢)la—al < M7 | |®—®| + //bz(g,r)|u(r)—ﬁ(r)|2dgdf
00

1
t 1 2

la —al < Mg ‘CIJ—E]—}— b2 (€. 1) |u(r)—ﬁ(r)|2d§dr

—

00

t 1
i <23 o~ + 2047, | [ [ 82600 (o) ~ (o) P agar
(O]

where My = max(Ms, My, Mo) . Ms = 140, Mo = Ms + (24T + 2§77 LT 7 <
Applying the Gronwall inequality,

2

t 1
=3, =203 |& -8 xexp2nt?y | [ [ 02 agar
00

For ® — ® then u — u. Hence ¢ — a. O

4 Numerical method for the problem (1)-(4)

In order to solve problem (1)-(4) numerically, we need the linearization of the nonlinear terms:

ul™ = a@u® + fe..u” D), (x.1) e D (10)
u™,1) =u"™@0,1), 1e€l[0,T] an
u™(1,1) =0, 1 €[0,T] (12)
u™ (x,0) = o(x), xe[0,1]. (13)

Letu(x,t) = v(x,t) and f(x,t,u® D) = 7(x, t). Then we obtain a linear problem:

v = a)w® + F(x.t) (x.1) e Dr (14)
v(0,1) = v(l,7), t€0,T] (15)
vx(l,2) =0, tel0,T] (16)
v(x,0) = p(x), x €[0,1] . )

In this step, we use the implicit finite difference approximation for the discretizing problem (14)-(17):

1, . ) 1 , . ) _
J+1 J\ = i+l J+1 J+1 J+1 J+1
;(”i _”i)—a ﬁ(vi—l - 2v; +vi+1)+fi :
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le = ¢i7 (]8)
vé = v/j\./x‘i"l’ (19)
Vhm = Vg1 (20)

where x = ih,t = jr,1 <i < Nyand1 < j < Ny, vij =v(xi, 1), ¢i = @(x;), 7{ = 7(Xi,lj), x; = ih,
tj = jt.
Let us integrate the equation (1) with respect to x and use (3) and (4) to obtain

—E'(t) + [y f(x,1)dx

alt) = 22 (0.1)

@2y

The finite difference approximation of (21) is

[(E/ 1 - E’) /f)'— (Fin)/]h

J J
U1 — Y

a’ =

)

where E/ = E(t;), (Fin)/ = fol F(x.tj)dx, j = 0,1,...,N;. We mention that fol 7 (x.tj)dx is numerically
calculated using Simpson’s rule of integration.

a’®, vl.j &) are the values of a” vij at the s-th iteration step, respectively. At each (s + 1)-th iteration step,
a’/ T16+D s as follows

[(E/*2 - E/*Y) /1) — (Fin)/ T h

o/ HIGHD
oI F16) _ J+1)
1 0

The iteration of (18)-(20) is

1/ ; 1 i1 ; ; ; ~;
(U/+l(s+1)_v/+l(s)) ]+1(3+1)(v!+1(3+1)_201_1+1(5+1)+v]+1(5+1))+f{+1, 22)
T

i i = hiza i—1 i+1

vy T = o H1) (23)
f T = FD s =0.1.2,.... (24)

JH1G+D
4

the difference of values between two iterations reaches the prescribed tolerance, the iteration is stopped and we
accept the corresponding values ¢/ T16+1D vl./'H(S'H)(i =1,2,...Ny) asa’/ 1, vl-j'H(i =1,2,...,Nyx), on

the (j + 1)-th time step, respectively.

The system of equations (22)-(24) is solved by the Gauss elimination method and v is determined. If

Example 4.1 (smooth diffusion coefficient). The first example investigates finding the exact solution
(a(t), u(x, 1)) = {(rz +2), (x3 o 4x+ 5) exp(—z)} .

for the given functions

61
e(x) =x3=2x2+x+5 E@) = p exp(—t),

F(x,1) = —u — (t* + 2)(6x — 4) exp(—1).

The step sizes are 7 = 0.01, T = 0.005.
The comparisons between the exact solution and the numerical finite difference solution are shown in Figures 1
and 2 when 7' = 2.
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Fig. 1. The analytical and numerical solutions of a(¢) when T' = 2 The analytical solution is shown with dashed line.
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In order to investigate the stability of the numerical solution, noise is added to the overdetermination data (4) as
follows
Ey(1) = E0)(1 +y0), (25)

where y is the percentage of noise and 0 are random variables generated from a uniform distribution in the interval
[—1,1].

Figure 3 shows the exact and numerical solutions of a(¢) when the input data (4) are contaminated by y = 1%,
5% and 10% noise. From these figures it can be seen that the numerical solution becomes unstable as the input data
is contaminated with noise. We use wavelet decomposition and thresholding to remove noise and we obtain Figure
4.

Example 4.2 (discontinuous diffusion coefficient). In the previous Example 4.1, a smooth function given by a(t) =
t2 + 1 is considered. In Example 4.2, a more severe discontinuous test function is given:
—(2+2).1€[0,1)
a(t) = 5
(t +2),t e [L1,2]
Let us apply the scheme above for the step sizes h = 0.01, T = 0.005. Figure 5 shows the exact and the numerical
solutions of a(t) when T = 2.
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Fig. 3. The exact and approximate solutions of a(t),(a) for 1% noisy data, (b) for 5% noisy data, (c) for 10% noisy data. In figure (a)-(c)
the exact solution is shown with dashed line.
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Fig. 4. The exact and approximate solutions of a(t), after thresholding, (a) for 3% noisy data, (b) for 5% noisy data, (c) for 10% noisy

data. In figure (a)-(c) the exact solution is shown with dashed line.
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Some discussions

In the previous section, in Example 4.1, the man-made noise in the measured output data is added to show the stability
of the numerical method. Unstable numerical solution is obtained and wavelet decomposition and thresholding are
used to remove noise. Also in Example 4.2, discontinuous source function is given to show the efficiency of the
present method. From Figure 5 it can be seen that the agreement between the numerical and exact solutions for a(z)
is excellent.

In future the fractional problem of this inverse problem can be studied [8-10].
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