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Abstract. Stratified flows in open channels arise as a result of density or surface level
differences. If the channel is connected to a basin at one or both ends, strong winds originating
from the basin cause the “wind setup” effect that increases the water level at the entrance of
the channel. On the other hand, along the channel, persistent winds in the upper layer flow
direction lead to an increase of the drift velocity and to a decrease in upper layer flow depth.
The Istanbul Strait (Bosphorus) connecting the Black and the Marmara Seas, is characterized
by a stratified flow caused by the surface level and salinity difference between these basins,
consisting of a southward upper layer flow and a northward lower layer flow. Along the strait,
there are three hydraulic control points; the north sill, a midway contraction reach and the
south sill. Under wind effects, the northern and southern entrances of the strait behave as an
estuary whereas the midway reach to the south of the contraction acts as as an open channel.
In winter, when the sea level difference is relatively low, the wind setup due to southerly winds
may cause a blockage and even reversal of the upper layer flow. On the other hand in spring
when there is excessive river discharge, northerly winds increase the influx of Black Sea waters
into the strait and may lead to a blockage of the lower layer. We claim that strong northerly
winds may cause a decrease of the upper layer depth beyond the contraction and we propose a
simple model for its estimation in terms of the wind and water flow speeds.

1. Introduction

Sea basins connected by straits have been the subject of many research papers, e.g. [5] [6] [16]
[2]. Salinity, temperature and/or surface level differences between the basins lead to stratified
currents, such as in the Gibraltar Strait connecting the Atlantic Ocean and the Mediterranean,
the Istanbul Strait (Bosphorus) connecting the Black Sea and the Marmara, the Kerch Strait
connecting the Azov Sea to the Black Sea [9] . In these stratified flows, the Atlantic Ocean, the
Black Sea and the Azov Sea act as low salinity basins. Perturbations to the main flow regime
can arise as a result of tides, sea level differences or winds.

The exchange flow regime of the Istanbul Strait has important effects on the delicate ecological
balances in the Black and the Marmara Seas. The effects of strong winds are one of the major
causes of perturbations. The well known effects are the blockage and even reversal of the upper
layer under the effect of southerly winds and the blockage of the lower layer under the effect of
northerly winds [1], [3], [7], [8], [10],[11].
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The Istanbul Strait (Bosphorus) is a 31 km long narrow channel in the north-south direction
joining the Black Sea and the Marmara Sea basins. It has a width of 3.329 km and 2.826
km at the north and south entrances respectively. The Black Sea’s water level is about 30 cm
higher than the Marmara Sea, due to high influx from rivers into the Black Sea, causing a net
southward flux throughout the year. The more saline (36-38 psu) Mediterranean water flows at
the bottom layer from south to north while the less saline (18-22 psu) Black Sea water flows at
the top layer in the reverse direction. The south and north exits of the strait are marked by sills
at depths 33 and 61 meters, respectively, forming hydrological control sections. There is a third
control section about 10 km north of the southern entrance, caused by a “contraction”.

In this work we point out a possible effect of northerly winds on the flow of the upper layer. It
is well known that strong northerly winds cause a wind set up at the north entrance of the strait,
that increases the sea level difference and the upper layer flux. As a result, the northern section
of the strait is filled completely with Black Sea waters and this leads to a complete blockage of
the lower layer current at the Contraction zone. As one moves to south beyond the Contraction,
the flow speed of the upper layer increases considerably and there is more or less horizontal
interface layer up to the south entrance. Motivated by a result in the literature on wind effects
measured at the Ishikari river estuary [15], we suggest that strong northerly winds may cause a
decrease in the thickness of the upper layer current along the section of the strait between the
Contraction and the south entrance. Experimental work that supports this argument is given
in [12]

2. The Model

Wind effects on open channel flows are studied within the framework of an experimental single
layer flow setup [12], [14]. In this work, the authors have found if the wind blows for a sufficiently
long period of time, a new flow regime is set up and the flow depth decreases, by momentum
transfer between the wind and the water.

We propose a simple model for the decrease in the fluid level due to wind induced drift under
the assumption of constant flux. For this computation we integrate the vertical drift velocity
profile up to the unknown, the new lower level equilibrium height h and determine h from the
constant flux assumption. To our knowledge there is no discussion of the wind induced open
channel drift in the Bosphorus.

We combine experimental results of [12], [13] and [8] to choose a realistic drift velocity profile.
In [13], the authors analyze wind driven and density currents in the Petrozavodsk Bay of Onega
Lake, between the Baltic Sea and the White Sea. This paper reports measurements of the drift
current (Figure 1a in [13]) due to wind effects. The wind induced flow is confined to the upper
1/6th of the 23 meter depth. It drops from about 50 cm/sec on the surface to zero sharply.
The lower level density current in the reverse direction is more or less uniform and it has values
around 6-8 cm/sec. Finally, in [8] we have detailed velocity profiles under various conditions at
the south entrance.

Flow velocities are taken from [6], where the authors report current and salinity measurements
along the Bosphorus, during early September in 1994 (days 250 to 260), over a period quite
atmospheric conditions. The surface flow speed is 0.2 at the north entrance and it increases to
0.6-0.8 around the Contraction.

Vertical profile of streamwise velocity for open channel flows can approximately be represented
by a power law [4]:

u(z) = Umax (z/h)
1/N , 0 ≤ z ≤ h,

where h is the channel depth, z is the vertical distance from the bottom of the channel, u(z)
is the flow velocity and Umax is its maximum. The power law parameter N usually changes
between 4 and 12, depending on the boundary friction. The most commonly used value is
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N = 7. If the open channel flow is stratified with densities ρ1 and ρ2 (ρ1 > ρ2) and the flows
are in opposite direction (as in the case of Istanbul Strait); velocity profiles of lower and upper
layers each follow a power law with a smooth transition in between them (Figure 1).

When the wind blows on the free surface, in the direction of the flow, with a velocity V , an
increased shear stress cause an increase in the flow speed of via a momentum transfer mechanism
resulting in a new velocity profile u′(z). This increase in the flow velocity induced by the wind
dies out exponentially with depth. Nevertheless, if the discharge is constant, this leads to a
reduction in the flow height to h′. Assuming constant cross-section and constant discharge, the
flow heights h and h′ are related by

q =

∫ h

0
u(z) dz =

∫ h′

0
u′(z) dz. (1)

This is the effect that has been reported in an experimental setup in [12].
We study a problem where two layers in an open channel stratified flow flowing in opposite

directions (Figure 1). The flow velocity at the interface layer is 0. With no wind effect on the
free surface, the lower layer has a height of h1 and maximum velocity of Umax,1 to the right and
upper layer has a height of h2 and maximum velocity of Umax,2 to the left. We assume that the
flux of the upper layer is constant, the total fluid height is constant and and the interface layer
acts as a movable boundary. When wind blows on the free surface, in the direction of the upper
layer flow, with a velocity V , the height of the upper layer decreases to h′2, as discussed above.
Since the total height is assumed to be constant the lower level height increases to h′1. these
values being related by

h1 + h2 = h′1 + h′2.

We assume furthermore that the effect of wind on the open channel flow is limited to the upper
layer only. The lower layer velocity profile is slightly adjusted to match with the new velocity
profile in the upper layer. Then, Eqn(1) is still valid for a double layer flow.

The assumption of constant total height is valid in the reach at the south of the Contraction;
the increases on the water levels are confined to the entrances of the Istanbul Strait. The
validity of the constant flux assumption is supported by the existence of the Contraction. The
mechanism leading to the increase of the height of the lower level may be either reduced velocity
or increased flux, but the cause is practically irrelevant for the purposes of our analysis.

Figure 1. Bi-directional open channel flow (solid curve) and the wind induced velocity profile
(dashed curve).
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3. Simulation of Wind Effects

We consider a bi-directional flow in a channel with constant cross-section. Let h1 and h2 be the
heights of the lower and upper levels respectively and let z denote the vertical distance from
the channel bottom. The fluid velocities of these layers are respectively u1(z) (in the negative
direction) and u2(z) (in the positive direction) with boundary conditions,

u1(0) = 0,
du1
dz

(0) = ∞,
du2
dz

(h) = 0.

A general model that would fit these boundary conditions are

For 0 ≤ z ≤ h1 : u1(z) = −Azα[h1 − z]β,

For h1 ≤ z ≤ h1 + h2 : u2(z) = B[z − h1]
γ [h1 + h2(1 + δ/γ) − z]δ ,

where A and B are positive and the exponents α, β, γ, δ are in the range (0, 1). The smoothing
of the first derivative at the interface can be achieved by spline interpolations at the boundaries
of mixing layers say h1−a and h1+ b, by matching velocities and their derivatives, but this will
be omitted in the present work.

In our simulation, we choose the following normalized values for fluid layers.

h = h1 + h2 = 1, h1 = 5/8h, h2 = 3/8h, A = −1/2, B = 1, α = β = γ = δ = 1/7.

With these values, the velocity profile of the upper layer is practically constant up to a reasonable
depth and in the calculation of wind effects on the upper layer height, we assume that u2(z) is
approximately equal to Umax. As mentioned above, the wind effect is considered to die out as
a Gaussian pulse, hence we propose a wind induced velocity profile in the form

v(z) = Vmaxe
−k2

(

h−z

h2

)2

.

Let h′1 and h′2 be the layer heights under wind effects. The constant discharge equation is
expressed as

∫ h

h−h2

u2(z) dz =

∫ h

h−h′

2

u2(z) dz +

∫ h

h−h′

2

v(z) dz.

Approximating u2(z) by Umax, we get

Umax(h2 − h′2) = Vmax

∫ h

h−h′

2

e
−k2

(

h−z

h2

)2

dz.

After a change of variable s = (h− z)/h2, we obtain

Umax(h2 − h′2) = Vmax
h2
k

∫ k h′

2/h2

0
e−s2 dz.

Since
∫ x

0
e−t2dt =

√
π

2
Erf(x),

after dividing both sides by h2, we obtain the relation

Umax

(

1−
h′2
h2

)

= Vmax

√
π

2k
Erf(

(

k h′2
h2

)

.

This gives a relation between the ratios h′2/h2 and Vmax/Umax. We evaluate Vmax/Umax

numerically in terms of h′2/h2 in the range (0.5, 1) and plot their relation for k = 2, 3, 4, 5.
The results are presented in Figure 2a,b where we show the steady state (no-wind) velocity
profile together with wind induced velocities (Figure 2a) and the reduction in the upper layer
height h′2/h2 as a function of the relative wind speed Vmax/Umax (Figure 2b) for the values of
k = 2, . . . 5.
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Figure 2 (a) Bi-directional velocity profile u(z) and wind induced Gaussian velocity

v(z) = Vmaxe
−k2

(

h−z

h2

)2

for k = 2, . . . , 5 (b) k2/h2 as a function of the relative wind
speed Vmax/Umax, where Umax = u(h), k2 and h2 are respectively upper layer heights with and
without wind effects.
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