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Abstract. We model the sol-gel transition in terms of Susceptible-Infected-Removed (SIR)
and Susceptible-Exposed-Infected-Removed (SEIR) models and compare with experimental
results. We show, numerically, that the “gel point” described as the onset of the gelation
phenomena and measured experimentally, corresponds to an accumulation point of the extreme
values of the derivatives of the gelation curve. We define the “critical point of a sigmoidal curve”
as the limit of the points where the derivatives reach their extreme values, provided that this
limit exists.

1. Introduction
Physical phenomena involving a phase transition are likely to be described by different
mathematical models before and after the transition point. The polymerization of a monomer
solution is such an example that displays the passage from the sol state to the gel state. In the
sol state, monomers start to agglomerate, forming small clusters. There is a specific instant,
called the gel point at which these clusters consolidate to form a giant network. In the steady-
state, the gel fraction stabilizes to a value that may be less than 1, i.e, the sol and gel states
may coexist. These transitions have been monitored and recorded by Pekcan and co-workers by
a fluorescence technique for a variety of chemical and physical gels [1]. In most experiments,
the sol-gel transition follows a sigmoidal curve with a sharp rise between the two stable states.
At the exact instant of phase transition, physical properties of the monomer solution change;
the gel point is either monitored by an independent experiment [2], or by finding the base point
that gives the best fit to well-known power low growths [3]. The location of the gel point with
respect to the inflection point of the sigmoidal curve is not fixed; in some types of experiments
it is closer to the inflection point, in some other it is located earlier in time. Furthermore its
location varies also with activation levels in the same experiment.

The Susceptible-Infected-Removed (SIR) and Susceptible-Exposed-Infected-Removed (SEIR)
[8] epidemic models describe the spread of an infectious disease in a closed society. We have
used these systems to model the gelation of sodium alginate-carragenan solution by fitting the
curve for removed individuals to the gelation curve [4] for various levels of activation. We have
noticed that the gelation curves obeying the “percolation model” and the “classical model” were
described by the SIR and SEIR epidemic models respectively. This approach was motivated by
the modeling of the sol-gel transition as a percolation model [5], [6], [7], providing a common
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basis with the spread of an epidemic in a closed society and the polimerization and gelation
phenomena.

In the search for a description of the gel point in terms of the SIR and SEIR systems, we
noticed that the points where the derivatives of the sigmoidal curve reach their global extremum
formed a convergent sequence. We have used numerical techniques to compute the location of
the limit point and we have observed that the location of the critical point agreed qualitatively
with the gel point observed by dilatometric techniques [9]. Although we observed the existence
of a limit point for the global extremum of the derivatives of a sigmoidal function for a variety
of functions, the proof of this fact was extremely challenging. In [10] we have used Fourier and
Hilbert transform techniques to prove the existence of a limit point of the global extreme values
of a sigmoidal function under fairly general assumptions.

2. Epidemic models and the gelation mechanism
The Susceptible-Infected-Removed (SIR) and Susceptible-Exposed-Infected-Removed (SEIR)
models describe the spread of an epidemic in a closed society. These models are based on a
subdivision of the population into compartments, as indicated by the names of the models. It is
assumed that the passage among the compartments are one-directional, i.e. in epidemiological
framework, immunity, once acquired, cannot be lost. The strength of the epidemic depends
both on the activity of the virus and on the level of interpersonal relations in the society. If the
combination of these effects is strong enough, the number of infected individuals make a peak
and then decrease steadily, as there are less and less susceptible individuals around [8].

In the Susceptible-Infected-Removed (SIR) model the time evolution of the number of
“Susceptible (S)”, “Infected (I)” and “Removed (R)” individuals is given by

dS

dt
= −βIS,

dI

dt
= βIS − ηI,

dR

dt
= ηI, (1)

where β and η are constants. In the SEIR model, the “Exposed (E)” individuals act as an
intermediate step as seen from the equations below

dS

dt
= −βIS,

dE

dt
= βSI − ϵE,

dI

dt
= ϵE − ηI,

dR

dt
= ηI, (2)

where β, ϵ and η are constants.
The link between epidemic spread and the gelation is the interpretation of both phenomena

by “percolation” that typically represents the passage of gas or fluids trough porous media [11].
For the spread of a disease, susceptible individuals are analogous to empty sites while removed
individuals are interpreted as filled sites of a percolating network. The passage from one state to
the other is governed by the transition rules. Percolation models are built via simulations and
take spatial evolutions into consideration. The SIR and SEIR models being systems of ODE’s
ignore spatial evolution of the disease and give only cumulative numbers.

3. The gelation of the polyacrilamide-sodium alginate composite
The sol-gel phase transition of polyacrilamide-sodium alginate composite with low and high
Sodium Alginate concentrations is studied in [2]. The gelation curves for various levels of
activation are presented in Figure 1. The steep, low amplitude curves correspond to low SA
concentrations obeying percolation model. The slower rising high amplitude curves obey classical
model.

In these experiments, the gel points are determined by a dilatometric technique. The critical
point is located at the left of the inflection point of the gelation curve; it is farther away from
the inflection point for high activation (low SA concentrations) levels).
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Figure 1. The gelation of
the polyacrilamide-sodium alginate
composite.

4. Derivatives of the gelation curve
In the search for a mathematical characterization of the gel point, we observed that successive
derivatives of the sigmoidal curve representing the number of removed individuals seem to
“diverge” near a point that agrees qualitatively with the “gel point” that has been experimentally
determined. The mathematical set-up for this phenomenon is described below.

Let y(x) be a smooth sigmoidal curve, i.e, monotone increasing with horizontal asymptotes
as t → ±∞ and let {xm,i} and {xa,i}, i = 1, 2, . . ., be the set of points where the derivatives
of odd and even order reach their extreme values. If the sequences {xm,i} and {xa,i} are both
convergent and they have a common limit xc, this limit is called “the critical point of the phase
transition”.

The ith zero of y(n) is xin. The inflection point of y(x) is the unique zero of its second derivative
y(2), denoted by x12. x12 lies in between the two zeros of the third derivative x13 and x23, and we
have the order relations x13 < x12 < x23. The fourth derivative has three zeros, satisfying the order
relations x14 < x13 < x24, x

2
4 < x23 < x34. Although the zeros of the third and fourth derivatives

alternate, we can’t say anything about the relative positions of x12 and x24. Thus, the observed
regular behavior of the zeros near the “critical point” is not a straightforward consequence of
the alternation of zeros of successive derivatives. The extrema of odd derivative correspond to
the zeros of even derivatives and vice versa. Thus, if the critical point is to represent some type
of break-point, the best that we can expect is that the sequences, {xm,i} and {xa,i}, converge
to a common limit point xc.
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Figure 2. Derivatives of R(t) for
k = β/η = 3.
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Figure 3. Derivatives of R(t) for
k = β/η = 10.

The first 24 derivatives of R(t) normalized to 1 for η = 1, S0 = 0.9 and k = β/η = 3 and
k = 10 are plotted against S(t), respectively in Figures 2 and 3. The phase transition points are
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indicated by (∗) in the upper graphs. The lower graphs display the time domain plots of the
solution curves S, I, R. S(t) is monotone decreasing while R(t) is monotone increasing. The
sequence of points converging to the phase transition point tc are shown on each curve by (.).
The phase transition point tc indicated by (o), is located between the maximum of zero I, tm
denoted by (∗) and the inflection point of I, ta denoted by (+). For k = 3, tc is located at 78%
left of tm in the interval (ta, tm) The first 24 derivatives of R(t) normalized to 1 for k = 10,
η = 1 and S0 = 0.9.

5. Dependency of the critical point on the system parameters
The relative position of the critical in the interval bounded by the zeros of the third derivative
and the inflection point is shown in Figure 4, for k = 3, 4, 5, 10. In these figures, the inflection
point, the zero of the third derivative and the critical point are shown respectively by (∗), (+)
and (◦). It can be seen that, as k increases, the relative position of the critical point in between
the zero of the third derivative and the inflection point is moving towards the zero of the third
derivative, as the parameter k increases. For example for k = 10, the critical point tc is located
at 94% left of tm in the interval (ta, tm).
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Figure 4. The location of the
critical point.

References
[1] O.Pekcan and S. Kara, “Gelation Mechanisms”, Modern Physics Letters B, 26 (27), 1230019 (2012).
[2] G.A. Evingur, F. Tezcan, F.B. Erim and O. Pekcan, Monitoring the gelation of polyacrylamide-sodium

alginate composite by fluorescence technique, Phase Transitions, vol. 85, Issue 6, pp. 530-541, (2012)
[3] Y. Yilmaz, A. Erzan and O. Pekcan, Critical exponents and fractal dimension at the sol-gel phase transition

via in situ flourescence eperiment, Phys. Rev. E, Third series, vol. 58, Issue 6 Part B, pp. 7487-7491,
(1998).

[4] A.H. Bilge, O. Pekcan and V. Gurol, Application of epidemic models to phase transitions, Phase transitions,
Volume 85, Issue 11, 2012 DOI:10.1080/01411594.2012.672648, pp 1009-1017.

[5] D. Stauffer, Introduction to Percolation Theory (Taylor and Francis, London, 1985).
[6] P. J. Flory, J. Am. Chem. Soc. vol. 63, p. 3083, (1941).
[7] W. H. Stockmayer, J. Chem. Phys. vol. 11, p. 45, (1943).
[8] H.W. Hethcote, The mathematics of infectious diseases, SIAM Rev. vol.42, pp.599-653, (2000).
[9] A.H. Bilge and O. Pekcan, A mathematical Description of the Critical Point in Phase Transitions, Int. J.

Mod. Phys. C, vol. 24, 2013. International Journal of Modern Physics C, Volume 24, Issue 10, id. 1350065
[10] A. H. Bilge and Y. Ozdemir, Preprint: arXiv:1407.4839v1 [math.CA].
[11] D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, 43 London, 1992).

IC-MSQUARE 2014 IOP Publishing
Journal of Physics: Conference Series 574 (2015) 012005 doi:10.1088/1742-6596/574/1/012005

4




