

KADİR HAS UNIVERSITY

SCHOOL OF GRADUATE STUDIES

PROGRAM OF ELECTRONICS ENGINEERING

CACHING ALGORITHM IMPLEMENTATION FOR
EDGE COMPUTING IN IoT NETWORK

Mohammed Abduljabbar

MASTER’S THESIS

İSTANBUL, JUNE, 2020

M
oham

m
ed A

bduljabbar

M

.S. Thesis
 2020

Student’
s Full N

am
e

Ph.D

. (or M
.S. or M

.A
.) Thesis

 2011

CACHING ALGORITHM IMPLEMENTATION FOR
EDGE COMPUTING IN IoT NETWORK

Mohammed Abduljabbar

MASTER’S THESIS

Submitted to the School of Graduate Studies of Kadir Has University in partial

fulfillment of the requirements for the degree of Master’s in the Program of Electronics

Engineering

İSTANBUL, JUNE, 2020

DECLARATION OF RESEARCH ETHICS /

METHODS OF DISSEMINATION

I, Mohammed Abduljabbar, hereby declare that;

• This Master’s Thesis is my own original work and that due references have been

appropriately provided on all supporting literature and resources;

• This Master’s Thesis contains no material that has been submitted or accepted for a

degree or diploma in any other educational institution;

• I have followed “Kadir Has University Academic Ethics Principles” prepared in

accordance with the “The Council of Higher Education’s Ethical Conduct Principles”

In addition, I understand that any false claim in respect of this work will result in

disciplinary action in accordance with University regulations.

Furthermore, both printed and electronic copies of my work will be kept in Kadir Has

Information Center under the following condition as indicated below:

� The full content of my thesis will be accessible only within the campus of Kadir Has

University.

Mohammed Abduljabbar

30/6/2020

KADİR HAS UNIVERSITY

SCHOOL OF GRADUATE STUDIES

ACCEPTANCE AND APPROVAL

This work entitled CACHING ALGORITHM IMPLEMENTATION FOR EDGE

COMPUTING IN IoT NETWORK prepared by Mohammed Abduljabbar has been

judged to be successful at the defense exam held on 30.06.2020 and accepted by our jury

as MASTER’S THESIS.

APPROVED BY:

Assoc. Prof. Dr. Atilla Özmen (Advisor) Kadir Has University _________

Assist. Prof. Dr. Arif Selçuk Öğrenci (Co-Advisor) Kadir Has University _________

Assoc. Prof. Dr. Habib Şenol Kadir Has University _________

Assist. Prof. Dr. Figen Özen Haliç University _________

I certify that the above signatures belong to the faculty members named above.

Prof. Dr. Sinem Akgül Açıkmeşe

Dean of School of Graduate Studies

DATE OF APPROVAL: 30/06/2020

ii

TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGEMENTS ... iii

LIST OF FIGURES ... iv

LIST OF TABLES .. v

1. INTRODUCTION .. 1

1.1 Introduction .. 1
1.1.1 IoT Architecture... 2

1.2 Subject and Scope... 3
1.2.2 Definitions ... 3

1.3 Motivation ... 5
1.4 Problem Statement .. 6

1.5 Objective and targets... 6

2. METHODOLOGY ... 8

2.1 Cache Over view .. 8
2.1.1 Cache methods .. 8

2.2 Cache contribution .. 11
2.2.1 Cache contribution in computers Technology .. 11

2.2.2Cache Contribution in Web .. 14

 2.2.3Cache Contribution in wireless and Communication Network .. 15

2.3 ICN .. 17

2.3.1 Caching in ICN ... 18
2.3.2 IoT ICN .. 18

2.4 Edge Computing .. 18
2.4.1 Architecture .. 19
2.4.2 Different between Edge Computing and Cloud Properties .. 20
 2.4.3 5G and Edge .. 24
2.4.4 Cache and edge ... 24

2.5 Cache contribution in IoT Applications ... 24
2.5.1 M2M .. 25
2.5.2 Smart cities ... 26
2.5.3 Smart Vehicular .. 26
2.5.4 Smart health .. 27

3. SYSTEM DESIGN .. 28

3.1 Content placement ... 28

3.2 Request routing ... 29

iii

3.3 Caching Algorithm .. 30
3.3.1 Least Recently Used (LRU).. 31
3.3.2 First in First Out (FIFO) ... 33

3.4 Modeling ... 36
3.4.1 Common assumptions .. 37
3.4.2 Single cache ... 38
3.4.3 Cache networks .. 38

3.5 Data Generation .. 40
3.6 Remote Cache structure .. 42

3.7 System Work for a Single Node and Remote Cache ... 45

4. RESULTS .. 47

5. CONCLUSIONS ... 57

APPENDEX A:TASK GENERATION ... 58

APPENDIX B : LOAD NO CACHE ... 60

APPENDEX C : FIFO LOAD (simFIFO) .. 62

APPENDIX D : LRU LOAD ... 64

APPENDIX E : FIFO CALCULATION .. 66

APPENDIX F : LRU CALCULATION .. 67

APPENDIX G : Remote Cache ... 68

APPENDIX H: MAIN .. 73

APPENDIX I : GENERATE TASK TIME ... 76

APPENDIX J:MEMORY AVAILABLE ... 76

APPENDIX K: SIMULATION .. 77

APPENDIX L: SIM REMOTE .. 80

APPENDEX M :TASK ASSIGNING .. 82

APPENDEX N : CHECK CPU REMOTE ... 83

REFERENCES ... 85

i

CACHING ALGORITHM IMPLEMENTATION FOR EDGE

COMPUTING IN IoT NETWORK

ABSTRACT

The developing IoT concept brings new challenges to the service providers. The

architecture of the networks changes to satisfy the needs arising by the large number of

connected devices. Edge computing is the new architectural solution that will be used in

the IoT networks. This architecture is more dynamic than the cloud computing network

where the data can be quickly processed in the different layers of the network without

going to the cloud. This will remove the problems faced by cloud computing: increase in

data traffic and increase in latency of provided services. Research on edge computing in

IoT networks encompass information-centric networks, use of 5G, and improving the

hardware devices however a suitable solution for all the IoT use cases is not available yet.

In this thesis, use of caching among IoT nodes is proposed as a solution to increase the

efficiency of edge computing. Caching is an old but effective solution for dealing with

data because it improves the real-time response of the system and can be used in IoT use

cases. It will also not cause an extra hardware cost. In this research, two commonly used

caching algorithms, LRU (Least Recently Used) and FIFO (First in First Out), are

investigated and compared for their performance in sample IoT scenarios. Reductions in

data processing time are observed where CPU and RAM utilizations are enhanced.

Keywords: IoT, caching, utilization performance

ii

ÖZET

Gelişen IoT kavramı bu alandaki hizmet sağlayıcılarına başetmeleri gereken yeni sorunlar

ortaya çıkarmaktadır. Ağ mimarileri, bağlı bulunan yoğun cihazların değişen ihtiyaçlarını

karşılamak için değişmektedir ve çözüm olarak da “kenarda hesaplama” IoT ağlarında

ortaya çıkan yeni mimari yaklaşımdır. Bu mimari bulutta hesaplamaya göre daha

dinamiktir çünkü ağın her bir katmanında veri işlemeye olanak sağlamaktadır. Bu sayede

bulutta hesaplamanın yarattığı iki soruna çare olmaktadır: veri trafiğinde artış ve sağlanan

hizmetlerdeki gecikme. IoT ağlarında kenarda hesaplama konusunda yapılan araştırmalar

enformasyon merkezli ağları, 5G kullanımını ve donanım cihazlarında iyileştirmeler gibi

konuları da kapsamaktadır. Ancak hala tüm IoT kullanım alanları için uygun çözümler

ortaya çıkmamıştır. Bu tezde, kenarda hesaplamada verimi artırmak için IoT

düğümlerinde önbellekleme kullanımı önerilmektedir. Önbellekleme eski ama etkin bir

veri işleme yöntemidir, sistemlerin gerçek zamanlı cevap süresini iyileştirmektetir ve IoT

kullanım alanlarında uygulanabilir bir yöntemdir. Ayrı bir donanım maliyeti getirmemesi

de bir avantajdır. Bu araştırmada, sık kullanılan iki önbellekleme algoritması (LRU ve

FIFO) incelenmiş ve örnek IoT senaryolarında başarımları kıyaslanmıştır. İşlemci ve

hafıza kullanımı iyileşirken, işlem sürelerinin azaldığı gözlenmiştir.

Anahtar Sözcükler: IoT, önbellekleme, kullanım başarımı

iii

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor Selcuk Ogrenci of the graduate school of

science Kadir Has. The door to Prof. Selcuk Ogrenci, the office was always open

whenever I ran into a trouble spot or had a question about my research or writing. He

consistently allowed this paper to be my work but steered me in the right direction

whenever he thought I needed it. special thanks to Dr. Atila for his support and guide and

for the positive energy that he was given to me all the time

Deep gratitude to IALD that give me the chance to study in Turkey by gives me a

scholarship for the master and for my colleagues for providing me with unfailing support

during my years of study and through the process of researching and writing this thesis.

Finally, I must express my very profound gratitude to my parents and my brother and

sister for the support and continuous encouragement throughout my scientific and life

career also a special thanks for my big life coach and guide Mr. Abdulrahman Al-Ahmed

who help me to be the best version of myself I will remain grateful to him all my life.

This accomplishment would not have been possible without them.

iv

LIST OF FIGURES
Figure 2.1: FIFO data processing …. ………………………………………………….. 9

Figure 2.2: LRU data processing………………………………………........................ 10

Figure 2.3: CPU Cache…………….………………….…………………………….… 11

Figure 2.4: GPU simplified Architecture …………….……………………………… 12

Figure 2.5: Heterogeneous Architecture …….…………………………….………… 13

Figure 2.6: Cache browser …………………………………………………….………14

Figure 2.7: Proxy server ……………………………………………………….………15

Figure 3.1: LRU Flowchart ………………………………………………………...… 32

Figure 3.2: FIFO Flowchart step one…………………………………………….….…...34

Figure 3.3: FIFO Flowchart load addition……………………………………….... …...35

Figure 3.4: FIFO Flowchart for a single node……………...………………….…...…...36

Figure 3.5: Examples of topologies for feed and conditional cache network ……...….……39

Figure 3.6: Data generation flowchart …………………………….……….…………40

Figure 3.7: Task generation for the CPU and Memory data ...………………………...41

Figure 3.8: FIFO remote cache CASE1 ………………. ………………………...…...42

Figure 3.9: LRU Remote cache CASE1 ………………………….………………....…43

Figure 3.10: FIFO Remote cache CASE2 …………………………………………….44

Figure 3.11: The single node flow …………………………………………………......45

Figure 3.12: Tree network case and the topology mode ………………………...…......45

Figure 4.1: System architecture ……………………………………….…….……..........47

Figure 4.2: No cache CPU1 ………………………………….…….……....………...48

Figure 4.3: No cache CPU2 ………………………………….…….……...…………48

Figure 4.4: FIFO CPU …………………………………….…….……...…….……...48

Figure 4.5: FIFO CPU2 …………………………………….…….………...………...48

Figure 4.6: LRU Result CPU1…………………………………………………………48

Figure 4.7: No cache CPU 2 ………………………………………………………….48

Figure 4.8: LRU CPU 2….…………………………………………………………….48

Figure 4.9: LRU CPU 2 ……………………………………………………………….49

Figure 4.10: LRU CPU2 ….………….……………………………………….………49

v

Figure 4.11: LRU CPU ….………...……………………………………………….… 49

Figure 4.12: Scenario 4 LRU FIFO no cache …………….…………….………....... 50

Figure 4.13: Comparison between our LRU strategy and Li et al …………………….52

Figure 4.14: Node no cache result…...………………………………………………... 53

Figure 4.15: Remote cache 2-node Case1 CPU …………………………………........ 54

Figure 4.16: Remote cache 2-node Case1 RAM ………………….………………...... 55

vi

LIST OF TABLES

Table 2.1: Different between cloud computing and edge computing……………….23

Table 4.1: The comparison between LRU, FIFO and No Caching in our study…….43

Table 4.2: The Maximum comparison between LRU, FIO and No Caching in our study
....51
Table 4.3: CASE1………………………………………………………………….... 52

1

1. INTRODUCTION

1.1 History

In this era, the concept of the Internet is changing, the Internet starts on the desktop and

laptop that push the technology in the next level as we know it the sensor network and

the RFID, Bluetooth and the related wireless technique which the data transmitting is

hidden in the surrounding environment this continuous development make us push the

technology into a new challenge, that produces new data that need processing and storage

and Manage to get a beneficial result from it in real-time and that pushes the technology

a step further to a new challenge which is how to deal with this produced data and

information. The CLOUD computing was the solution for this case by providing a virtual

structure for monitoring and processing the data also store the data in a cloud servers work

base on an end to end system, this evolution in communication transceiver like (Wi-Fi,

Bluetooth. . . .etc.) the different devices start to connect directly or with unique design

bringing the IoT era. The main demands of any IoT System understand the user needs

and the types of their gadget that he uses and his behavior; therefore each IoT operating

system based on an architecture that has its own internal network and an analytical tool

work on making the system more automated with no need for any human inter fearing is

the backbone of the IOTs System. Kevin Ashton in 1999 was the first person how to quote

the phrase of the Internet of things; however, the meaning of this term has been changed

from that time until now, for example, the items terms now may refer to a Health devices

or home devices..etc. But the central concept of the IoT remains the same, which is the

data processing and transmitted computationally without any human interference to do an

action, and this data is collected by a sensor and the effort done by an actuator, to achieve

the above concept (transmitting or sensing the surrounding environment and processing

the information for a goal related to the people demands) IOT uses an existing protocol

to share this information by using devisees that have a wireless technology such as Wi-

Fi, Bluetooth Xbee etc.[1]. IoT is a harmonic system connecting the smart devices

that it have direct In touch with the Humans life, However the IoT system devises can

exchange data without any human interfering this process happen by the network that

connect these devises as a further advancement of this technology is to develop a system

2

in these devises enable these devises to communicate with each other and process the data

and do an action without any human interferences called Machine-to-Machine system[2].

That will lead us to a conclusion that The IOT system will not connect the people with

each other but it also connect virtual an physical things with each other based on operating

systems and smart intelligence technology [3]. The IoT in the next decade will change

the shape of our social life and will be connected to ever thing around us and it is an ample

opportunity for business investment and competition to develop these technology because

at the future the people who use this technology will choose the system that they like

based on the quality of service that offered to them ,but this technology put the developer

in an open challenges like the privies policy, the quality of service, the efficiency and

capacity of the system, the data analytic, the Energy consumption, the security of the

information, data Traffic produced by the new connected devices, system architecture

also let us do not forget that Frequency bands width standers and Protocols and Some

challenges related to the Wireless System Network (WSN) is a spirited field pertaining to

the IoT challenges these challenges are the cost of this new technology to reach to a

specific goal at the end which is make the IoT System a part from our daily life like the

social media now [2].

1.1.1 IoT Architecture
The architecture of any IoT system is different from system to another according to the

method used in (health, factory's, homes... .etc.) but it will still have the main three or

four layers with some differences in the internal devices like a sensor or actuator types or

operating system or even the driving application, but we can refer to the layers as

[3][4][5].

The cloud layer: it is the layer that it represents a platform for all data and information

ever saved and processed in it which it's the big server for the system. [5][6][7].

The application layer: this layer is different from the IoT system to another it depends

on the system some so for some system it may use for mortaring and alarm notification

• so the user will not inter fear with any of the action in the system there like the

M2M (machine to machine) and some PHD (Personal HealthCare Devises) but

some of them the user can then use act with them to control the system according

to his needs like the Smart Home System or Smart Vehicles System.[5][6][7].

3

• The gateway and the network layer: this layer where represent the Carrier

medium for the data and signal from the physical layer to the cloud this. layer is

consisting from set of nods that carry the data through a transferring Media which

could be any type of signal by any type of transmitting protocol like (Wi-Fi,

Bluetooth, GSM. . . etc.) [8].

• Physical layer: it is the layer that contends the sensor and actuator that that use

to make the action even by collecting the data or handling with the case

[9][10][11].

1.2 Subject and Scope
The spreading of the IoT system leads to connect new and different types of devices

producing massive data that need to be optimized in real-time to keep the QoS quality of

service of the application in the demand target. Therefore, the system must be optimized

at the Node edges. [12].

1.2.2 Definitions
• IoT

Era a broad group of computing and connected devices with each other directly

or by its own by any networking methods to facilitate human life to achieve an

action related to series of data processing and analyzing based on the collected

data by an operating system from the surrounding physical area to achieve a

specific gold. [13][14][15].

• IoT applications

The IoT future will make a massive change in our social life every place will be

work on IoT devices based on a Use case of the place like the smart market the

smart hospital . . . Etc. That will produce data traffic and increases data processing

[7].

Edge computing

Is an advanced cloud computing architecture methods base on putting external nods

near to the physical layer of the IoT system .to provide real-time data process for the

4

end-user data with law latency as could as possible to achieve an improved QoS quality

of service for the User [11] [12].

• Offloading

Processing and analyzing the data is very important for at any system but it will take a

massive energy and capacity to give an accurate result there for you have to transmit the

data to the cloud to get the accurate result but it will take a large number of resources

for this process also you have to make sure about the quality of signal and the however

this prosses may have some risk for transmitting the data to the main cloud from the

quality of service point of view there for offloading the data to an edge servers to

analytic proses near to the customer will provide a low latency and a real-time prosses

for the data Offloading data from core to edgy is important to improve the response

time of data proses and neglecting the unneeded data from being transmitted[11].

• End to end system

The end to end system is an estimation architecture model used to reduce the energy

conception in the module The mine concept is to divide the IoT element into a three-part

the data collecting devices part and the network part and the cloud part this methodology

will compress the elements to reduce the energy consumption because energy

consumption is directly proportional with the number of the devices connected on the IoT

system [11].

• Analytic Process

Data lose its value when it did not analyses quick enough [11]. Some collected data could

have an outlier data that need to be neglected in real-time or processed, Therefore the

need to a massive analytic computational algorithm to achieve an improve data process

time is a prior task in the [3].

• Caching

It is a temporary storage process concept that handles the data traffic to improve

the processing time with low latency in all computational systems. The

development of the IoT concept generates a new networking concept, which is edge

computing to deal with the massive data in the local area in real-time and To

manage the data exchange between the edge and the cloud so the use full (most

5

accessed) data will be kept at the edge. The unused-full data will go to the cloud to

process and store [14]; we must refer to an important point here which is There are

two types of data some of them need to a large and complicated process with no

need for real-time. The prosses happens in the main cloud, such as stuff related to

video streaming and serve lance cameras...Etc. and some need small or uncomplex

prose but with a real-time result such as the health system or M2M or smart home.

[15].

1.3 Motivation
Everything now can be sent through the wireless or sensor devices and can connect

to internet [12]. Casio and Ericsson declared that the devices that it will be

connected to the internet is going to be 50 billion devices in 2020[11], as we can

see the iot now has become and will become a wide spread and there is a lot of

devices is connected every day and this action will produce a new mount of data

need to be handle with , the developer will be under new challenge which is , How

to process this data and give the result in real time,[11]it is a big challenge

especially when you dealing with data from deferent styles when every different

data represent different event[4], the Edge computing was one of the solution

because of the spreading of the IoT and the need of real time possess and feedback

make the Inventors and developer make the local node could analyses and process

the collected data from the physical layers [13],in these time we have to move from

the classical big cloud servers towers the spreading the data between or a new

architecture base on computing nodes near from the local areas or the physical layer

or sensors there for we need to edge computing, still the capacity of the big data is

greater than the edge for this reason the big data architecture are suitable for

massive heavy computational system while edge is used for application need for

real time processing without latency[12].

1.4 Problem Statement
Data quantity rapidly increasing because of the evolution of IoT system and the

effect of the huge content exchange in social media which cause huge data traffic

these data need to be processed in real-time with low latency this put the service

provider to the challenge or improve the quality of service and make the processing

executed in real-time as possible as it could, therefore, the cloud computing is not

6

useful anymore to deal with the new data stream there for the edge computing was

the solution to deal with this new generation of data however the new edge

computing architecture does not have the massive capability such as the storage

capacity and the high processing ability that the cloud computing has and that

brings the challenge of improving time process in the table again therefore caching

was and still one of the solution of time process problems that face the data in many

application, therefore, we will discuss the effect of cache Algorithm on-time

process.

1.5 Objective and targets
IoTs Generally, will be affected directly on our life there for every IoT system is

developed by new architectures to improve the QoS Quality of Service one of the

architecture Solution is Edge computing essential Edge computing architecture

found to improve QoS and reduce data traffic caused by the connected devices but

still this architecture need for more advancement because of the widespread of the

data transaction that Couse by data track of the new connected IoT devices and the

competition between the company for best service with real-time For this reason

[12], therefore we will implement caching methods based on caching strategy with

improved algorithms help to improve the Quality Of Service and time processing

at the edge so the outcome will be:

1. study the effect of caching algorithm on the time process.

2. reduce the time process for the data and make it executed in real-time as passable

as could.

3. cache program can be excited at the edge to reduce the time process.

4. research that describing the effect of caching on improving the edge computing

performance and the contribution of cache in the different computational

application.

 edge computing system with improved process time could matches the real time

with low latency.

7

2. METHODOLOGY

2.1 Cache Overview

Caching is a permanent storage concept that can be achieved through a hardware or

software component caching concept is how to provide a temporary storage for the data

that user mostly use it in the future or frequently without need for any new processing

action inside or from the main data storage area, Reducing the delay in processing time

and achieving low latency is the main properties that the cache mechanism achieve in the

grid, it becomes the commonly used methodology in the most technical application,

however, the cache concept will not be effective unless the used application has a data

traffic [9][16], The principle of cache is started as a computer concept use to improve

computer processing [22]. The performance of the computer process become faster and

much easier and adequate with the cost of the computer that time, the caching mechanism

built on the Replacement Policy Algorithm (page replacement algorithm) applying this

algorithm concept in the computer processor achieve this technical jump in time

processing quality in computer performance in the past decade. The performance that the

replacement policy algorithm did through improving the processing ability and

performance make the researcher focus on this kind of algorithm and leave other

algorithmic procedure that could improve computer processing, Replacement algorithm

is not a random why of programing but it should be based on a writing policy and cache

algorithm. the cache methodology this technology is old but still a serious topic with every

new technology or application deals with data, Therefore Scholar still use this kind of

algorithm to achieve the better data processing performance in that application, To

achieve ether latency reduction or time proceeding improving and a real-time response

Random replacement algorithm replaces the cache line at randomly by forming a random

number in each cache access and set the memory access block on that lines' number. The

major disadvantage of this methodology the priority does not take into consideration

[16][20] [22][27][28] [30].

2.1.1 Cache methods

Each cache strategy has a different criteria and different task according to the use case

that deals with and it is also different from application to application, therefor the cache

strategy priorities in data storage are different from communication applications to the

8

computational application to the servers [22][24][28][31]. The flexibility of using the

replacement algorithm is wide because we can combine several cache strategies to solve

the case [9]. The caching strategy cannot be affected unless there is data traffic or data

density in the system otherwise the cache is useless. Therefor the cache replacement

algorithm is classified into the following types:

First in Frist Out (FIFO)

The first in first out algorithm work according to the queuing mechanism which stated

that the data set will form a single queue in a specific size of data processed as shown in

the fig 2.1 the data will shift registry move in the cache and whenever and when the cache

size is full the cache will erase the first data (task) interred the queue, and this sequence

will continue until the data is finished there for if the same task is repeated, we will call

this a cache (hit) and when and when the same task arrived we call this a cache (fault).[17]

Figure 2.1: FIFO data processing

9

Last in First Out (LIFO)

LIFO is the queue strategy that is work in the opposite way of the FIFO the evacuation

will be for the latest data that has been cached in the memory [18].

Least Recently Used (LRU)

The Least Recently Used Algorithm is similar to the FIFO but it is a bit complicated cause

the FIFO is erased the first data inter to the queue if a new data arrived but the LRU will

check the repeated data in each page and then erase the lest repeated data in the queue

according to the old page, not the first finishing data therefore according to the figure2.2

the (M2, M) is the newest used data in the queue, therefore, it won't be neglected while

(1) is the least recently used data in the queue their fore it will be erased the main

difference between the LRU and FIFO is [19].

Figure 2.2: LRU data processing

LRU:

• Keep tracking the pages when the pages have a new Fault

• Difficult to implement

FIFO:

• We do not need to track the new page when the Fault is occurs

• Easy to implement.

10

Time-Aware - Lest Recently Used (TLRU)

This type of replacement algorithm is an advanced LRU method of cache strategy it is

commonly used with the ICN information-centric network and the data evacuation take

in the consideration the frequent time that this labeled data is common demanded and the

possibility and the local places that need this data [21].

Most Recently Used (MRU)

The algorithm action in MRU is most the most popular or the most significant accessed

data because it is possible that the users do not need this data. This strategy works mainly

in the PC s [20].

2.2 Cache contribution

2.2.1 Cache contribution in computers Technology
2.2.1.1 CPU Cache

 The CPU (Centric Process unit) is the primary unit of any computer, and the board

contains the I/O ports and the MMU memory management unit clock ethernet caching

memory In all of the computer architecture design now time the CPU the supported by a

cache memory this memory store the most used data so the user could have the data from

the cache memory not from the main memory in the CPU; therefore this hardware cache

improve the CPU performance by reducing the data processing time [22]. Figure 2.3

shows the cache of the simple cache mechanism in the CPU. Moreover, the continuous

advancement of the processor leads to improve data process performance of the CPU but

in the same time leads to increase energy consumption, therefore implementing cashing

algorithm at the processor of the computer to achieve low power consumption with high

process speed the cashing not only reduce the power conception but advanced the data

processing inside the CPU [23].

Figure 2.3: CPU Cache

11

2.2.1.2 GPU Cache

Graphic Process Unit is a computer hardware work side by side with it contains a very

complicated mathematical matrixes algorithm that presenting the data to graphics on the

main screen [24], The contribution of the GPU in the last several years has been increased

in the different applications because of the high data processing performance it is used in

forming the different digital currency (Bitcoin, Lit cons..etc.) and get involved in the other

technological application because of its properties [25], One of the things that s makes

the GPUs different from the CPU is the GPU is processing the data in parallel while the

CPU process it in serial, it also contains a Management Memory unit and a caching

memory [24], The block diagram in Figure 2.4 shows the architecture of the GPU.

Figure 2.4: GPU simplified Architecture

2.2.1.3 CPU&GPU Cache

Because the two processors have the same architect the developer starts to develop a

Hairdo core meet the need for the continuous data revolution especially when because of

the heading toward the big data in the next several years, to prosses the tremendous

amount of data now time it is become a trend to use the dual hybrid architecture which

mean combining the two chip (Graphical processor unit and the centric process unit) to

get the benefit of the two prosses in the same especially from the properties of the GPU

in the industrial and applied technology because of the massive data possess that the GPU

12

gives. Therefore, and based on common memory cache computer companies start to

develop the cache replacement algorithm to meet the criteria of the new CPU-GPU hybrid

architecture [26][24]. Figure 2.5 shows the new GPU and CPU Heterogeneous

Architecture.

Figure 2.5 Heterogeneous Architecture

2.2.1.4. Disk Cache

Disk drive is the hardware derives in the computer that all the programs data are store

inside it also there are two types of hard disk even it is a built-in or out disk, and old

generation and generation the new generation of disk is the SSD which it uses transistor

for the storage and the old generation is using the magnetic media to store data and

transmitting and resaving bits and because of the massive data storage that we need for

the new programs the disk should be able to meet the storage criteria for this programs

and should have a sufficient storage space to satisfied the needs of the program [28][29]

[30].And the high prosses speed proportional to CPU input-output functions of the PC.

the internal caching it is implemented inside the hard disk by allocating a space for the

cache inside the disk and there is a lot of research dealing with this method and this

research focus on compressing and simplified the caching algorithm the other

contribution of cache found to improve the magnetic delay on the hard disk that lead to

use the caching, the mechanism by adding external RAM with the disk drive [29]. The

time delay caused by the magnetic gap delay in the disk so scholars start to discover new

methods to improve that delay[29], therefore moving to the new SSD drive is an advanced

solution for this delay, moreover Caching is an open research topic in SSDs to find new

heterogeneous architect for the disk drive to improve the performance[30].

13

2.2.2. Cache Contribution in Web

Data traffic now is huge challenge in the cloud computing the and this challenge is related

to the widespread of the smartphones that bring new challenge to the developer and web

service company to provide fast service with low latency and high time process therefor

caching methods took place in this knowledge area to _x the problem of the data traffic

for less using of the bandwidth example in [31][32][33]. We can classify caching into two

layers caching at web browser layer and caching at the servers or proxy server.

2.2.2.1 Web Browser

This type of cache is based on saving the web page data temporary on the hard disk of the

computer, so if the user needs this web page again the browser will not open the web page

from the server it will open from the user computer hard disk [33], figure 2.6 shows a

simple mechanism of cache algorithm in browser.

Fig 2.6: Cache Browser

2.2.2.2. Proxy Server

It is a sharable device in the internet network grid placed in the half distance between the

client and the server and as any caching methodology. It is used to store the prior data of

the web pages that user mostly access to proxy server is used to reduce the presser on the

bandwidth[32] also reduce the data traffic in the internet network by storing data that

mostly used that took a massive prosses operation like photos and videos with high

resolution this kind of content that mostly used especially after the smart phone evolutions

[31]. figure2.7 shows the proxy server concept.

14

Figure 2.7: proxy server

2.2.2.3. Server Layer

The proxy cache is part of the internet network that used by some internet provider

company but it is not a part of the client or the server there for some internet web site

service provider use caching algorithm inside the web pages itself to make the web site

much easy to access and this property more related to web pages programmer than the

service provider[32].

2.2.3 Cache Contribution in wireless and Communication Network

The wireless network started with the internet evolution area, therefore we can define it

as a computational network use to transmit and receive data between two different places

it is using in large building and institute to reduce cabling usage instead of the wired

networking and also use in the long-distance transceiver the wireless network. We will

focus on several advanced wireless application dealing with cache [35][36][37][39].

2.2.3.1. D2D Cache

The D2D (Device to Device) is a communication concept based on the connecting of two

mobile devices without any transceiver point and those devices can share content. The

evolution of smart devices such as smartphone tablet.... etc., this concept is expanded to

include connecting several devices in the same time, however, D2D also start to face

different problems like the power consumption because the battery power of the

smartphone devises is limited, also the data traffic this problem caused by the high data

15

owing by the devices [35], therefore the caching Replacement Algorithm took place to

Minimize data traffic By Off-loading the data traffic that caused by High data rate

transceiver content[36], The proposed solution was using the cache algorithm in the

cluster to reduce the data traffic[35], and this action leads also to reduce battery

consumption [36].

2.2.3.2. Ad Hoc

Mobile Ad Hoc Network MANET or Wireless Ad Hoc WANET is a network it is a name

labeled on an exclusive type of network that it has no constant info structure simulated to

any wireless network like router or constant node this kind of network is designed to do

special tasks like the Wireless sensor network or Navy or industrial robots network or

streets smart light network . . . etc. This network is very useful in transactivating the

information in the surrounding and do not need for a high-cost info structure devices

however this kind of network is facing great challenges because of the high data that the

smart devises produce this data traffic increase the latency and reduce the process time

The caching methodology was one of the solution to solve this issues [37] by follow

caching strategy based on setting a cluster named as a (cluster cooperative) this cluster

grouped in not overlapping clusters inside each claustral there is caching node this

strategy achieve reducing in the latency comparing with the similar ad hoc network that

does not use this strategy [38].

2.2.3.3 5G

The 5G technology is the next generation of the of cellular communication the scholars

developing the 5G to be much prepared to overcome technology market challenges in the

next several years the need for the 5G is prior to overcoming the large production of data

that caused by smartphone application that needs for real-time response with low latency

for the data process especially, that in the next several years (78 percent) of the data

content will be video and image with high resolution [34]. However caching hot topic for

reducing time processing by permanent saving for the data this concept is start as a

computational concept to reduce the time process in the computers but still need it uses

in other operating system technology for the same purpose There for the scholar still

working on new caching methodology in the different level of 5G system (the user, the

service provider, and the operating system level) [39].

16

2.3 ICN

Information-Centric network is a new concept based on developing the internet network

architecture by improving the static protocols between the cloud and the end-user that

most of the internet network use the data will be shareable based on information, not data

the data will be labeled according to most accessed information from the end-user

side[40] this structure Begin from the need to a new architecture focus on the shared

information trend between the users, e.g., the expanding of social media such as Facebook

YouTube . . . etc. and another platform that shares videos with high resolution from

amazon and Netflix ..etc. Therefore, the network criteria have become based on what

meets the requirements of the user and facilitates his experience in the information he

shares, whether it is a video or high-resolution image and not an unknown data type. A

Point out between data and information; the data is the lowest structure that any system

is based on and after the data is processed and simplified and classified to be a piece of

information [41]. Therefore, the characteristic of the ICN founded to Meet content needs,

not the data and there are several types of ICN which is

• Content-Centric Networking (CCN).

• Publish-Subscribe Internet Routing Paradigm (PSIRP).

• Network of Information (NetInf) · Data-Oriented Network Architecture

(DONA). [41]

2.3.1. Caching in ICN
Using cache mechanism makes us get the full efficient from Information-centric network

most cache mechanism use in FIFO (First IN FIRST OUT) and LRU (Least Recently

Used) [42] the cache is either be at the edge of the ICN network or in the network [40] or

caching the specified information content at the node to [41].

2.3.2. IoT ICN

The Internet of Things is the new era of technology that everything around us will be

connected to the internet like your home your cite and also the big machines and the small

17

cost electronic instrument for example (home sensors, refrigerators, microwave... etc.)

these devices need to get the access in the system smoothly to give the best user

experience to the user more over the IoT technology will lead us to the big data IoT cloud

era where combining between the virtual content (Facebook, YouTube . . . etc) with the

data of physical worlds .many of the connected devises have a limited design like the

energy consumption memory size . . . etc. This brings new challenges to the scholars to

provide a system that fits these devices, therefore the IP address versions or cloud

computing are not appropriate for the IoT needs for the user data traffic to data security

There for building IoT system based on ICN structure is appropriate more for the IoT

system [43].

2.4 Edge Computing

Transmitting and resaving data in the next several years will grow more than ever because

all the surrounding devises and sensor will be connected to the internet this huge data

growing need to be handled in different whys there for developer and scholars are

discussing a new method to handle this amount of data, The upcoming revolution of smart

devices will generate data added to the system, for example, the face ID detection

technique and the high-resolution video stream apps the user content production on social

network (Facebook, YouTube. . . .)and their data production means these data will go

through the networks by the IoT system which it will reach more than 1.6 Z-byte by 2020,

that's will cause a pressure on the network, Therefore the available cloud computing and

Consecutive versions of IP address Networking method are not suitable for the new data

, because in the IP address even the new version application still facing the un-solved

mobility problem challenge which is the moving devices will disconnect or the data will

interrupt temporarily until the user reached to the next access point device and this

situation does not fit for the new mobile devices that will connect to the internet such as

robots health care accessories . . . etc. [44], and not appropriate for the IoT system, edge

computing can be defined according to the continuous development in the IoT system in

the next several years will produce a huge amount of data that needs to be handled. Edge

computing is an advanced networking info structure consisting of placing a sub server

nearby the user device areas; this server can store and process data and can achieve the

seeking random data access for the mobile IoT devices without any temporary

18

interruption. The edge computing will be about 80B of the network industry BY 2021

[48]; the edge device is part of the network layer, not from the clouding layer [45].

2.4.1. Architecture

The edge computing is a networking model used to improve the data way of processing

to reduce latency and get rid of the temporary disconnection that happens in the mobile

device while moving from access point to another and this does not suit able for the IoT

systems however according to the previse research [44][45][46][47]. the design of the IoT

system can be executed according to our needs and the system purpose and classified the

IoT system to a different layer inside the layer edge server is placed inside the layer. The

classification will start from bottom to top; therefore, we can propose generally:

• Layer 1

Hardwar is the basic info structure that contact with the physical world that any IoT

system based on which it includes the sensors that collect data from surrounding

environment like (humidity, temperature. . . etc.) the actuators which represent the

data output hardware after the data is handled like (smart home lighting, speakers. . .

.etc.) mobile devices like (phone, Smartwatches, cars. . . etc.).

Layer 2

The network layer is mid wear between the cloud and the hardware layer that

transceiver data to the cloud to store or process and distribute the process data to the

hardware layer to achieve action such as (Router, Node, Gateway, Microprocessor . .

. .etc.), and as we mention before the IoT Architecture system that based on edge

computing network placing an Edge Server at the network Layer, the task of that the

server is to Prosses data to achieve real-time response with low latency and to neglect

the cut-off or the disturbance that mobile devises facing.

• Layer 3

This layer is the clouding layer that all the data from all edges are transfer to be stored

or to be processed moreover in the next several years we are heading to the big data

clouding where the social network data like (Twitter, Facebook, YouTube . . . etc.)

and the physical world data devices such as (vehicles, sensors, home devises .. etc.)

19

going to be mix the edge computing architect will be a good enhancement in data

stream because it will reduce data traffic between network level and cloud level.

2.4.2. Different between Edge Computing and Cloud Properties

We can list a group of the main different properties between the edge computing and

cloud computing:

1. Latency

The latency is the phenomenon that Couse a time difference or lag between the order and

the response time during data processing action the latency in the communication

networks depends on the system capacity and the broadcasting distance and the data rate,

the broadcasting distance in edge computing is extend for several meters for the small

transceiver similar to the device to device networking and maximum could reach to 1 Km

between the edge server, and the user, the cloud computing broadcasting distance range

from the user to the cloud server is extended form several Kilometers to distance could

be a cross country because of the service provider server in another country. And this will

cause a broadcasting delay for Cloud computing, which is the reversing of the Edge [46].

2. System capacity

Generally the cloud computing servers have a high computational capacity enable to

process data in real time and that what cloud computing Precedes edge computing in,

even though edge computing is dealing with a local data that does not require a high

capacity in contrast with cloud and this will reduce the gap between the edge computing

and cloud computing process speed More over the available server that will use in edge

computing is suitable for that edge task it has a high processing speed to meet the

obligated. Therefor this issue will not be a big challenge for edge computing,

Data Rate in the Cloud computing the data have to flow from the nods and radio access

transvers and other networking part and this will Couse time delay related to the data

traffic and other challenges before on the other hand in the edge computing the data will

not go through this processing procedure because the servers will be at local places[46].

2. Energy Consumption

20

IoT devices are different size devices with low memory storage programmed to achieve

specific tasks the spreading of IoT devices will bring us to a new open challenge which

is providing sustainable power to operate this device, using a portable battery and change

the battery is not a practical solution because we will be dealing with plenty of IoT

Devices the Edge computing is providing solution for this challenge by offloading the

intensive computational operation from the IoT devises to the Edge that will be a practical

solution for this problem the researcher how were working on this area of research

achieve a reduction in battery conception and increase the battery lifetime to 40-50 %[46].

3. Context

Awareness the edge computing server is placed in a local area nearby the Customer (IoT

User) it gives an additional feature to the system by giving an easy and fast access to the

user attitude, location . . . etc. That will give fast information source to the end-user

behaviors and that will It is an opportunity to provide the user with his needs of services

or products based on analyzing the trends or his location. For example, if you were in a

specific place in the market the edge will analyze your location or attitude to provide

suitable information about the stuff you want to buy and the best offers that you can get

from the product[46].

4. Privacy and security improvement

In the cloud computing the user data will be collected in one place which is the service

provider (Amazon, MICROSOFT. . . .etc.) server and its persistent target for the hackers

because it contains the users (customers and companies) therefore it is an information

treasure for them also the ownership and the management of data is separated (if I own

my data I cannot manage it if I can manage my data, I am not the owner of my the data

the service provider control my data) and this will Couse an issues of loss leakage of user

information because the companies control my data not me, The edge computing provide

an improve security properties for the edge services users, firstly the fact that the edge

servers extend on a small scale region the probability of hacking a valuable information

is difficult because the information not gathered in one place[46].

Secondly, generally, the ownership of the edge server will under the privet sector

companies how to provide IoT service (health, money, transaction etc.) or the end-

user himself and this will reduce the probability of hacking the privet information that

21

transmitted between the end-user and the service provider, more on that (IoT) companies

will be able to control the access level to the information access without needing to

external units[46], we can list of most different criteria with the following system

structure as showed in table 2.1.

 Cloud Computing Edge Computing

Server Size Large, complicated

servers

Small server with improved

accessory devises

Server Location The servers located in a

remote data center each

data center size equal

football field size in

several places around

the world

 The server located in the local

area in the network layer nearby

the gateways, router and the end-

user themselves

Deployed Cloud computing

adopted by Internet

Service provider

companies such as

Amazon and Microsoft

required a complicated

configuration and

design.

The small companies or smart

homes adopt edge computing, and

it required a soft configuration and

design

System

management

Centric control Hierarchical/ the network is even

centric network or distributed

network

Latency More than 100

milliseconds

Less than several tens of

milliseconds

Applications The application criteria

should have tolerance

latency (social Media,

learning … etc.)

The application criteria are deal

with a critical latency

smart vehicle, automated factory

… etc.

Table 2.1: Different between cloud computing and edge computing [46]

22

2.4.3 5G and Edge

The talking about the next generation of mobile communication is become a hot topic in

this several year the past generation the of communication methods like (3G, LTE,

4G...etc.) in the past several years was discussing the why of improve some of the

communication criteria but the 5G will be a big jump for communication industries

because of the massive data 5G will deal with therefore the [48] 5G new criteria will focus

on improving the bandwidth by using the mm-Wave stream and improving this spectrum

efficiency by using the MIMO methods [49].The spreading of smart devices like

smartphones and tablets which it have a high processing energy equal to the computers

processing ability will produce a high data density Cather on the edge and that's will bring

us to a new challenge which is the grantee of the quality of service (QoS) [50] and the

transmit media between the IoT devises and IoT system will be 5G, Moreover the caching

strategy also took place in improving 5G data traffic to achieve good performance for the

network [51].

2.4.4. Cache and edge

Edge network deals with devices and systems have Critical latency [46] the smart devices

will be equals to billions in 2021 [38], therefore the continuous improvement in the edge

computing service is essential in all layers. The rapid data follow need for a methods to

reduce latency and provide real-time process as much as possible Each caching study has

to focus on what to cache and where to cache therefore the cache must be implemented

in two places even at the core edge (edge server) network or edge network because the

ICN is important in the new data management system labeling the data based on the

content information according to the end-user attitude and using LRU or FIFO is a

promising cache strategy to improve data time process in the core edge and reduce latency

by reducing the data traffic[52].

2.5. Cache contribution in IoT Applications

IoT Applications distinguished due to the Sustainable advancement of wireless networks

the devices started to connect with each other via Wi-Fi, Bluetooth, GSM, therefor the

IoT starts to rise up bringing a new life standard for the developing cities, In the next

23

several years the smartphones and laptop will reach to billions devises this will bring us

to new era of communication network, the network will be heterogeneously connected

and the virtual data for social media and the smart devise data will be grouped in one big

cloud there for face a huge data challenges that will be related to data traffic and

processing time . . . etc. The useful IoT Application should provide a perfect QoS (Quality

of service) [53], Cisco announced that at 2021, 78 percent of internet traffic content will

be videos [38], focusing on developing methodology to achieve an improved user

experiment is prior task, To achieve a good QoS in IoT Applications scholars started to

focus on the caching methodology and internet-centric network ICN mechanism to

achieve effective transmission with real-time response they started to develop new

technology based on caching strategy [54], in the different IoT applications [56][58][60],

assuming Edge computing considered as business solution for IoT application services

[54] Caching mechanism is a technology that trades time for space, studying how to

minimize the required time to gain information and familiar network traffic and achieve

efficient information transfer.to provide effective User Experience[54].

Generally, any IoT Architecture is made from several layers the sensor and actuator that

collect data from the surrounding area and the network layer which contain a

heterogeneously random access network and the cloud layer and the combination of this

structure forming IoT application, IoT applications are the services that IoT could provide

to the customer like smart homes, smart health system and smart vocals and smart grids .

. . . etc., and each IoT application the possibility of implementing a cache strategy is

available [54].

2.5.1 M2M

The Machine to machine technology is one of the IoT most advanced application the IoT

system is designed and implemented to achieve a special task (industrial or civil) without

any physical or human interfere the basic architecture as any IoT system in consist of the

sensor layer and the cloud layer and the network layer which the data will flow according

to (end-to-end) concept, the data will be collected from the end-user (physical world) and

flow through the sensor network through the gateway to the end server and analyze and

processes to achieve the application task of IoT/M2M. This system is widely used such

as smart industry smart trafficetc., where the device in communicate and process

24

data without any human interfere, however, this methodology is facing several challenges

because each and every M2M system are unique system and have a different task and

each solution will produce more data which it is huge by itself and the solutions subjected

under the business and customer need [55]. therefore the cache is now taking place to

produce a single improved cache strategy for the Differentiated and complicated M2M

applications network to achieve high process time[56].

2.5.2 Smart cities

In the next several years the objects around us will be connecting to the Internet throw a

Microcontroller have a digital transceivers device this transmitting and resaving method

could be RFID, Wife, Xbee. . . etc., the smart cities implementation occur in the short

term because in 2020 the investment in smart city will equal billions of dollars because it

is a new open market and it going to be a part of the lifestyle, the design of the smart city

will be an ecosystem have a smart hospitals and smart traffic and smart building and

lighting Etc. or anything facilitates human’s life [57]. this will produce a massive

data need to be handled data caching algorithm is took place in advancing the Smart cities

system network side by side with the ICN (information-centric network) and the MEC

(Mobile Edge Computing)[58].

2.5.3 Smart Vehicular

The IoT in vehicles or the IoV (internet of vehicular) is a new IoT concept, and now the

developed country start to adopt this concept in the transportation system like the

European country and Japan this concept aims to achieve new automobile driving

experiment and reduce the accidents and traffic and reduce the petrol consumption the

object that will connect on the system will be even V2V vehicle to vehicle or V2I vehicle

to internet or V2S vehicle to the sensor or V2R vehicle to road the ad hoc network is the

used networking in the IoV network although the future of IoT system is facing a several

challenges from the speed and range of the transceivers (RFID, WIFI . . . etc.) to the data

traffic [59] there for the research took the cache algorithm as a strategy in improving the

ad hoc network of the IoV, and it considers a promising solution to achieve the excellent

IoV performance [60][61][62].

25

2.5.4 Smart health

The IoT is entering the health industry from the early moment of IoT, outset the

enhancement started in the E-health industry by the IoT's contribution. E-HEALTH now

cover more, and new health sector and that caused by the IoT Health system application

like remote health treatment e-health wearable devise and smart hospital. etc., the new

advancement of the IoT system Is took place in the new IoT health system according to

the massive Data and the critical time that the health treatment need there for the Edge

computing become an essential part in implementing any IoT Health application, for

example, each hospital will have a local Edge server and in that server will contain a

cache computing algorithm [63][64][65].

26

3. SYSTEM DESIGN

The problem of in-network caching can be divided into three defined sub-problems:

• Content placement and content-to-cache distribution, this is about the issue of

which items of contents to place and how to distribute them to those nodes in

which caching node.

• Request-to-cache routing, which addresses how the requester routes the content

requests to an appropriate caching node containing a copy of the contents

requested.

• Cache allocation, that discusses optimization of caching node positioning and

size.

3.1 Content Placement

 In general, content items can be proactively or reactively placed in in-network caches.

Caches are pre-populated during off-peak traffic cycles with constructive information

positioning. Using historical data and/or future forecasts, the position is usually calculated

by an off-line optimization algorithm and replicated daily, approximately 24 hours a

week. Several algorithms are proposed for automated placing of content under several

objective functions and restrictions[23],In the case that an application moves beyond a

buffer before reaching the data, a copy of the query in each node crossed defined as Left

Copy Everywhere (LCE) should be left behind. These techniques, therefore, leads to a

high degree of consistency as all caches use cache storage to hold similar artifacts along

the delivery path, placing constructive material allows the caching nodes to be better

deployed and improves performance. Nonetheless, since the caches community takes

place at peak times with constructive positioning, working hours will be read-only. It

enables multi-core caches to work lucklessly as no writing occurs. This also ensures better

reading from storage technologies like SSD and HDD, which would give a less read

output if concomitant writings were performed. However, two major disadvantages result

from the simpler node implementation offered by proactive placement, first of all, it

makes traffic demand changes more rigid, as any unpredictable variation in demand

patterns would cause cache hit ratios to be reduced until proactive new content is

positioned. Second, optimal content placement requires both data from cache operators–

27

cache topology, processing capabilities, cache sizes–and the contents providers, which

can be very complicated to collect if the cache operator and content provider are different

entities. This can also lead to data collecting by cache operators and content providers.

As regards cache effectiveness, there is agreement that proactive placement is preferable

to reactive placement, only in the case of certain workloads, such as Video on Demand

(VoD)[25],[26], and adult video content[29], characterized by a small catalog of content

and predictable variations of requests. In fact, Netflix, the world's largest provider of VoD

content, uses its video caching infrastructure with proactive content placement [30], Other

traffic types generally are characterized by rapid variations in the popularity for data that

eliminate the benefits of a proactive optimized positioning. They have shown that even

placing content items proactively with accurate knowledge of future demand would

generate performance gains of only 1–18 percent compared to adaptive placements. All

commercial site traffic CDN's refer to our knowledge, whether specifically optimized for

static or adaptive web, fill their caches reactively. The specialized caching facilities of

large-scale content providers such as Facebook photo storages and Google Web

Cache.[21] also use reactive content placement. This strategy also includes the placement

of the packet caches in network routers, selected by all ICN architectures [25].

3.2 Request routing

Routing approaches for applications can be primarily classified to two categories:

opportunistic on and off the lane, the information requests are first routed from the

requester into the nearest cache with on-path database routing. These are then routed over

the caching network to the origin of data using the shortest path routing and served from

a cache only if the information element on the query path on the specified node is

accessible. The routing strategy is highly scalable because communication between

caching nodes is not necessary and can be used with the proactive or reactive positioning

of data. Nonetheless, reduced cache hits, especially in heavy-duty cache deployments,

may occur because data cached next to the requestor is never reached on the shortest route

to its source, it is worth noting that edge caching is also (simpler) an opportunity case. In

edge cache applications are redirected to the nearest cache but are sent directly to the

source of the data in the case of a cache error. This can be achieved in instance by Google

Global Cache [23], which dynamically maps any cache installed on an ISP network to a

28

subset of requests and routes requests outside an ISP network if it fails the cache. In fact,

queries can be managed by a neighboring node with off-pattern structured routing, even

if not on the shortest source path. Nevertheless, it costs increased cooperation for the

exchange of information on content access between caches, Off-path routing may be

carried out by a mechanism of hierarchical or distributed data-to-cache resolution. A

(logically) hierarchical object with a global view of cached contents is queried before

routing an information query and returns the address of the closest node which stores the

requested data element. In a centralized resolution process. Though, this method is only

suitable for processes working under aggressive product placing or even responsive

positioning so long as the content position is not adjustable. Several scalable off-path

request routing algorithms have been proposed for reactive caching systems with a high

content replacement rate (which also includes ICN architectures where items are cached

with chunks of granularity. The main objective is to allow caching nodes to exchange

states and route requests with each other in a lightweight way. The design of the

application routing represents a clear compromise between scalability and efficiency. The

limited scalability of off-road routing schemes particularly limits the availability of

reactive cache and ICN architecture design choices, which are of our interest.

3.3 Caching Algorithm

Throughout previous work on cache replacement algorithm for other computer system

implementations such as servers and storage systems, cache replacement algorithm was

strongly rooted in the architecture for the delivery of information. Although these

algorithms have been established for different purposes, their development is also suitable

for distribution of information, while more regulations have also been expressly

introduced for distribution of content.

3.3.1 Least Recently Used (LRU)

Least Recently Used (LRU), which substitutes the least requested element, is the most

used for caching policy. This technique usually uses a double-linked server and functions

as follows. Often moved to the top of the list when the item currently stored in the cache

is submitted. Likewise, the requested item is placed at the top of the list on a query for a

product not already in the cache, and the item is discarded at the bottom. It is made

29

popular by LRU with two key advantages. Furthermore, this reacts strongly to non-

stationary events because its alternatives are only based on regeneration. The proportion

between the optimal cache-hit ratio and the LRU-cache-hit ratio is not substantially worse

than much-caching algorithms, LRU is not well-suited for simultaneous entry, given its

simplicity and ease of use. Each quest culminating in a hit, and each substitution needs

an object at the top of the double-linked list to be added. The serialized access to the list

header, particularly in very parallel environments, will result in contention and detriment

of results, Additional solutions to the problem of simultaneous application of LRU were

proposed. One is CLOCK, which approximates LRU operation without shifting a cache

struck element. In a rotating queue (that is, the term CLOCK) organizes objects explicitly.

Each component is attached to a flag originally unset when applied and set to a cache hit.

CLOCK holds a reference each iteration of the rotating queue to choose an object to be

substituted. If the CLOCK finds an object whose flag is set, it sets the flag and moves to

the next item, until an item is found and replaced with an unset flag. The hunt for the item

to substitute starts from the spot where the last item has been substituted at the next

substitution operation. In action, CLOCK is identical to FIFO, but with the exception that

when an item is hit before the bottom of the list is reached, it is not deleted and provided

a "second opportunity" [18].

In addition to the competition, LRU is not scanning resistance, as any scanning operation

over many unpopular items would thrash out the cached content. In databases and disk

based I / O, several legitimate workloads scan and read large sequences. This is a

significant concern. In connected caching systems, this can also be a concern because

adversarial workloads could scan thrash caches precisely. Furthermore, the distribution

of contents is known to be affected by the one-time problem, i.e., many items only once

requested. In addition to regency allocation decisions, the weak scan strength of LRU can

be addressed with changes in the LRU design that incorporate frequency considerations.

In fig 3.1 we can notice the flow chart for the LRU Program that we build our program

based on.

30

Figure 3.1: LRU Flowchart

LRU caching methodology depends on cache size and data size. If we consider that the

LRU cache is equal to 3-page frames, then we can take size of the queue as 3 which

considered as empty initially. The first three inputs will fill the queue makes it have no

more space for another item. At this point, the oldest item in the queue (which happened

to be the first in this example) is going to be sent to the client when a new item arrives to

the cache. This methodology keeps going till data size become 0 (basically process all the

data).

31

3.3.1.2 Doubly Linked List

A connected information structure composed of a series of sequencing records called

nodes is a double-related chart in computer science. Every node has three areas: two

connections (the previous and next branch ties in the node sequence) and one information

region. The prior and next connections of the starting and finishing nodes signify a certain

form of terminator, typically a sentinel node or node, to make it easier to cross the list. If

only one sentinel node remains, the list is connected circularly via the sentinel node. It

can be structured as two independently linked lists consisting of the same data objects in

specific sequential orders, The first and last nodes on a double-related category are

immediately reachable, which means they are accessible from beginning to end or from

end to end, so they can cross the list from start to finish and thus the search for a node

with specific value for data. In this scenario, the row is usually called head and tail. The

list is accessed at the beginning or end of the list.

3.3.2 First in First Out (FIFO)

One rule is more suitable than LRU for concurrent implementations, though it transfers

the First in First Out (FIFO) frequency to a lower cache level. The evicted object is the

one first loaded into the inventory in compliance with the FIFO rule. Only when an item

in the cache is necessary, the action of this policy varies from LRU. However, while this

object is placed up at the top of the set in LRU, we upgrade the flowchart of the FIFO

flow chart in three-step the first one as shown in figure 3.2 is working fancily but there

is some major operation problem the first one is this flow chart does not check the load

available, and the tasks are stored in the cache before the operation, and the correct thing

is to the cache should be store in the cache after the task execution is finish and there

32

should be a two-unit step off time for the restoring the data from the cache if it repeated.

Figure 3.2: FIFO Flowchart step one

The next step was to improve the data load checking and the time step calculation unit;

therefore, we upgrade the flow chart as shown in figure 3.3

33

Figure 3.3: FIFO flow chart load addition

The third step as shown in figure 3.4 making the task store at the cache after the task

calculation is finish and this move was made in FIFO because in LRU flow chart will be

made the same step with adding the LRU algorithm strategy only the third step is

representing the cache in a single node only, figure 3.4 representing the main FIFO

algorithm code structure for a single node.

34

Figure 3.4: FIFO flow chart for a single node

3.4 Modeling

We now concentrate on theoretical models, which define the operations of such

algorithms, after analyzing the layout space and algorithm for management of a cache

network. This work in modeling has been given considerable attention, mainly because

modeling cache performance is very difficult, even for simple isolated substitution

35

policies such as LRU or FIFO. When such caches are part of a network, the difficulty

increases more.

3.4.1 Common assumptions

Market decisions are usually made in relation to three features: I the association (or

failure) of subsequent applications, (ii) distribution of the importance of information and

(iii) distribution of the volume of demand.

Most cache operations, whether within the CPU, database, I / O disk or the distribution

of contents, assume that demand is consistent with the Independent Reference Model

(IRM). This model assumes that requests are issued through a catalog of N items of finite

size. The likelihood for each item I I= 1; N is stationary and unrelated to previous

requests, denoting pi.

Although there are typically temporary local properties on operational workloads, IRM

assumptions usually apply if both conditions apply.

• The cache serves applications from multiple applicants to minimize the temporal

position inherent in a single applicant's application cumulatively.

• In contrast with the time frame for page updates, the cache churn duration is low.

3.4.1.1 Popularity distribution

While hypothesizing the distribution of product popularity, a heavy-duty distribution is

usually expected, as past measurements of several heterogeneous user demand workloads

have repeatedly demonstrated that conduct. The key hypothesis is that traffic follows a

Zipf structure (in some publications referred to as zipf-like or general law on power) is

especially and specifically for content distribution traffic. This is the normal presumption.

To be full, several works have proposed that material importance may be best based on

implementations other than Zipf under certain circumstances. The traffic calculated in

HTTP on an Orange connection in France is most suitable to remodeling, with a distinct

Weibull for the face, a zipf for the wheel and another discrete Weibull for the tail (but

with different settings). Nevertheless, given that a Zipf delivery throughout the collection

typically models the popularity of content very accurately.

36

3.4.1.2 Size distribution

Several studies examined the distribution of product in volume for different workloads.

In addition, the distribution of content volume is ideal for a heavy-duty distribution like

a Pareto or a lognormal distribution. No previous work, however, has established

substantial ties between prominence of product and data size. The common assumption

is thus that all content is equal in size and the caches are measured in numerous items

with the intent of cache design.

3.4.2 Single cache

There have been extensive attempts to create reliable and tractable structures with earliest

results from the 1970s. As far as we learn, the first study has been focused on the exact

formulation of the constant-state impact ratio of an IRM topic collection. He constructed

an LRU cache as a series of Markov and States. Although this model provides the same

cache impact ratio efficiency, it is not feasible for real caches because of the extremely

large number of states, Thanks to LRU model's sophistication, a variety of theoretical

versions with lower system magnitude have been suggested. O(NC) iterative approach

for approximating the LRU replacement policy's steady-state strike ratio on IRM usage.

It is also relevant to FIFO replacement schemes, but its complexity cannot be calculated

because of the iterative nature, T is a random variable and is specific to any content in an

LRU cache that is subject to the IRM request. If the cache is large enough, each item's

characteristics fluctuate very little around its mean and can therefore be approximated

with its mean value precisely. Moreover, it has been observed that the characteristic times

values of every item are similar, so that all items in the catalog can be approximated by a

single constant value.

3.4.3 Cache networks

The main source of complexity in cache modeling is that simplifying demand

assumptions normally used to model a single cache (i.e. IRM requirements) usually do

not apply when cache demand includes missing streams of other caches, as is common in

cache networks. The missing stream of an IRM-subject LRU cache shows strong

correlations between requests. Nevertheless, they have shown that, if the number of

caches is high, the aggregated miss flow from a community of caches every target of

37

independent query appears to be IRM. As a result, the IRM principle could still be

implemented on missed streams in certain particular cases like the caching trees with a

large branching factor, rendering modeling easier to track, It is important to separate two

types of topologies, feed-forward and random, before addressing models for database-

networks. The topology of a cache network will be retrievable if the demands flow in one

direction on every path only and the requested objects only flow in the other, and the

graph with cache nodes and query flows are a Data Acyclic Graph (DAG) as guided edges

(see for example Figures 3.3a and 3.3b). As is shown in Figure, a tree with leaf requestors

and the original content of the root is a simple example of feed-forward topology. 3.3b.

the second version. Database networks that are not routed are random (see Figure 3.3c,

for example).

Fig.: 3.5 Examples of topologies for feed and conditional cache network

For determining the hit rate of cache, the distinction between feed forwards and random

cache networks is significant because in feed forwards, by default, a cache hit ratio in a

leaf node is not conditional on other caches (i.e. a node subject solely to exogenous cache

requests from users with no misses from other caches). It makes an increasingly cache-

by-cache estimation of the impact ratio of the entire network from leaf nodes. In addition,

the mis flow of a cache will affect the demand on the same cache later in the arbitrary

network because of loops. This complicates considerably the analysis of the cache tests

all the task will plotted in the graph.

38

3.5 Data Generation

For the data Generation in the program and according to the flow chart in fig 3.4

 Figure 3.6: Data generation flowchart

Cal. CPU &
Memory for this

task and

Cal. arrival
time

Int: data for specific task
according to CPU & Memory

 If

 There is

 task

plot CPU & Mem

Calculate travel
time

 If

 CPU > 100

 If

 There is at least

 One task

Cal. req.
time end

N
O

No

N
O

Yes

Yes

start

39

the data is randomly generated by a pdf function that represents a random number of

tasks repeated frequently this data contains a random number from CPU and Memory

utilization, the data is generated sequence and uniformly as shown in fig3.5

Figure: 3.7 task generation for the CPU and Memory data

Then This data is forming the plot chart of the CPU and Memory and to change this data

to that chart it should be run under several loop and programing process described in the

above flow chart, Therefore after the data Generation initializing the if state gives two

options if there is on new task generated (arrived) the program can plot the CPU and

Memory and if there is a new task arrive the program will go under group of continuous

data operation it will start to calculate the new arrival time for the task having sure that

the utilization will not go above 100 percent and will continue to calculate the arrival time

and the process and execution time for the task until all the task will be plotted in the

graph. When the plot is generated each task is arrive in a specific time and execute in a

different time line according to the load capacity and calculated in a specific duration

time the cache hit column is checking the repeatable tasks in the data stream if the task is

occur so it is a hit (1) if it not it will be a fault (0)

40

3.6 Remote Cache structure
According to the theoretical remote cache there is two use cases for the remote cache the

first on the network will share the task to reduce the load between the nodes or the task

will distributed between the node until each node is loaded to maximum value as shown

in the flow chart in figure 3.6 for FIFO remote cache

Figure3.8: FIFO remote cache CASE1

The same FIFO algorithm will be implemented but we will add multi-number of nodes

For LRU remote cache the flowchart will be as shown in fig (3.7)

41

Figure 3.9: LRU Remote cache CASE1

We will implement the result for the same n number of tasks

42

 Figure 3.10: FIFO Remote cache CASE2

The different between the two use cases is the first case the task is distributed on the

processer one by one until each CPU is full the other case the task is enter each node

separately and the will start to share the task between each other in case of the load is full

43

3.7 System Work for a Single Node and Remote Cache
In the single node mode, the programs have five sub script

• FIFO.m

• Genetate_Task.m

• Sim_nocache

• Sim_fifo.m

• Sim_LRU.m

• MAINE.m

For this program structure the data is generated in the in generate task file have the

following data (assigned number of tasks represent random number of CPU & RAM load

value). Each task has it is own data label and this generated task is assigned in one queue

to forum the CPU and Ram Graph have the load axis and the load axis then the Fifo sim

and the FIFO will check the cache hit and cache the result (same goes for the LRU) the

figure (3.9) show the single node flow the MAINE program is combining tree network

case and the topology mode as shown in the figure 3.10 below

Figure 3.11: The single node flow

Figure 3.12: tree network case and the topology mode

44

4. RESULTS

This work was done using MATLAB for LRU and FIFO which they were compared to the same

process without caching algorithm.

Figure 4.1: System architecture

According to figure 4.1 the single node system structure is based on three main

components, sever (our cloud), caching system, and client (our node/sensor). The caching

system is based of queue which is the local cache storage place for the caching system,

and the algorithm’s control unit which contains the algorithms caching method which in

this study the methods used were LRU and FIFO, In our approach, cloud’s data is

generated randomly in form of tasks that has task processing requirement, storage

requirements, time duration, and time arrival which the data processing is optimized by

either LRU or FIFO, or, in no cache strategy, the local cache storage data will be used as

queue. The optimized data will be sent to the client (node) for processing.

Figure 4.2: No cache CPU 1

Figure 4.3: No cache CPU 2

45

Figure 4.4: FIFO CPU

Figure 4.5: FIFO CPU2

Figure 4.6: LRU Result CPU1

Figure 4.7: No cache CPU 2 Figure 4.8: LRU CPU 2

46

Figure 4.9: LRU CPU 2 Figure 4.10: LRU CPU2

 Fig 4.11: LRU CPU Fig 4.12: scenario 4 LRU FIFO no cache

The figure 4.2, 4.3, 4.4, 4.5, 4.6, to 4.11, represent the memory and CPU consumption for the

system architecture (figure 4.1) when LRU and FIFO compared to the same system without any

caching method. In this example the data size of total was 1000 task and the cache size are 10

tasks. As we see in this example LRU and FIFO were faster and used less time for processing and

memory consumption compared to the system with no caching method. The figures show that

LRU is significantly faster than FIFO in this example.

47

Table 4.1: The comparison between LRU, FIFO and No Caching in our study

Task
400

Time
Requirement

Time
Req.

Time
Req.

Time
Req.

Time
Req.

LRU 3328 3886 3230 3727 3932
FIFO 4151 4470 3644 3727 4319
No

cache 12341 11000 7152 10093 9074

Table 4.2: The Maximum comparison between LRU, FIFO and No Caching in our study

 Load Load Load Load Load Load Load

LRU 60% 60% 60% 60% 60% 60% 60%

FIFO 70% 70% 70% 70% 70% 70% 70%

NO

CACHE

100% 100% 100% 100% 100% 100% 100%

Table 4.1 shows the comparison between LRU, FIFO, and no caching algorithm in

terms of CPU usage, Memory consumption and Total time of the whole process. The

results show that LRU was significantly faster compared to FIFO and when the system

has no caching method and also the maximum CPU usage was less compare to the other

methods, for the fifth scenario the FIFO result and the LRU is close to each other

because it is depend on the changing of the arrival time so if the arrival time for the task

is close the number of hit is increasing there for the LRU is effect much more if the

arrival time much closer IF THE arrival time is far the fifo will be much efferent but

still the LRU much better.

48

Figure 4.13 Comparison between our LRU strategy and Li et al [03]

Figure 4.8 shows the comparison between our LRU strategy and Li et al [03], which they

used strategy called All-Edge-Caching (AEC) which also used LRU algorithm for

replacement. The results showed that our strategy is great in terms of processing

consumption compared to the other study that done by Li et al [35].

For the remote cache result the data result task=200, No.CPU=2

Table 4.3 CASE1:

Scenario N-nodes Utilization Unit of Time

1 2 100% 6075

2 2 100% 6267

3 2 100% 5465

FIFO Result

1 2 99% 1915

2 2 100% 2746

3 2 100% 2531

49

LRU Result

1 2 99% 1716

2 2 99% 2413

3 2 99% 2265

Figure: 4.14 node no cache result

50

Fig: 4.15 Remote cache 2-node Case1 CPU

51

Fig: 4.16 Remote cache 2-node Case1 RAM

In the upper figures 4.14,4.15,4.16 For the single node result we can notice that the

LRU have a significant better time process than FIFO because of the paging algorithm

in the LRU and for all the caching result the load will still reach to 100 % but the time

process will be much faster also in the remote Cache Case 1 the data will set as a one

series entering the nodes one by one and the cache will hit the repeated data until the

data set is finish , And for the case2 we did not use it result because of some technical

issues in the implementation of the code and for the increasing of number of node we

52

could not get the result because of the huge time it took to get the result because of the

PC that we operate the program with also the better task number for our PC for the

remote cache result was 200 task because the PC ability was limited but for the single

node the number was open there for we could not check the ability of the program and

the result if we increase the number of the node.

53

5. CONCLUSIONS

The IoT is the most vulnerable Internet infrastructure to mass transport and the

complexity of the communication. This is because the amounts of clever things are

growing, and their implementations have strict requirements. ICN has therefore attracted

the attention of the IoT group, encouraging the use of the definition based on information

in IoT networks. The ability of ICN to help IoT applications was discussed in this

dissertation. The NDN architecture has proven to be the best information focused

architecture for IoT environments among several proposals from ICN architectures.

A recipient-driven, pull-based, reliable connection-free framework for interaction with

simple and scalable data access, energy efficiency, and flexibility supports is described

in Named Network Networking. While the use of NDNs in IoT networks has acquired

numerous benefits, the demands made by IoT implementations delay the introduction of

the information centric IoT model. This latter ecosystem is first heavily restricted by

capital. On the other hand, the data availability and low response latency are very high.

The most important feature that can meet the needs of IoT users is the in-network caching.

The caching solution will, therefore, allow material for the users still accessible without

growing data size and network resilience. In fact, because IoT information is dynamic

and often modified, material residing at cache nodes is potentially outdated. In addition,

certain critical IoT applications impose a strict data freshness requirement. In addition,

IoT devices are generally mobile. It is worth noting As a consequence, after a move,

farmers are no longer accessible, In this work, we used our approach for IoT edge caching

using LRU and FIFO for single node and N-number of nodes (Remote Cache) which both

of them were compared to the same system architecture without caching algorithm. The

results showed that our LRU strategy was significantly better in terms of CPU usage,

memory consumption and total time. Our approach showed that it is capable on reducing

time for data and make it executable and also executed in much less time which provide

the network with higher up the data processing limitation using less processing and less

memory possible, the Remote cache for the two use cases we will notice a further

improvement for the performance of the node network ad that will mitigate this era needs

.

54

APPENDIX A: TASK GENERATION

function [load, t_end,NCTask] = sim_nocache(tasks)
%define max capacity for cpu and ram
c_cpu=100;
c_ram=100;

%number of tasks finished/executed
task_finished=0;

%generate tasks according to parameters in function

% load array contains actual load of cpu and ram
% load matrix has 3 columns: time, cpu_load, ram_load
% max of time: timesteps should be increased if necessary
timesteps=sum(tasks(:,6));
load=zeros(timesteps,3);
% initialize first dimension of the load array
for i=1:timesteps
 load(i,1)=i-1;
end;

% total number of taks
no_task=size(tasks,1);

%generate 3 columns for actual start time end time and flag for cached
newcol=zeros(no_task,3);
task=[tasks newcol];

% execution of tasks starting with the first
for i=1:no_task
 % assign current task values to scalar variables
 tt=task(i,2); % tt: task arrival time
 t_type=task(i,3); % task type
 t_dura=task(i,6); % task execution time
 t_cpu=task(i,4); % task cpu load
 t_ram=task(i,5); % task ram load
 flag=0; % flag for task being assigned to a free time
slot
 %search for available cpu and ram capacity for the duration of
 %execution time for task
 while flag==0
 c_max=max(load(tt:tt+t_dura,2)); % max cpu load during the
period
 % tt and tt+execution time
 r_max=max(load(tt:tt+t_dura,3)); % max ram load during the
period
 % tt and tt+execution time
 if c_max+t_cpu<=c_cpu && r_max+t_ram<=c_ram

 % if the cpu and ram have available resource for task
 for j=1:t_dura % increase cpu and ram load for
 % the period between tt and
 % tt+execution time

55

 load(tt+j-1,2)=load(tt+j-1,2)+t_cpu;
 load(tt+j-1,3)=load(tt+j-1,3)+t_ram;
 end
 flag=1; % indication that task is assigned
 task(i,7)=tt; % set task actual start time
 task(i,8)=tt+t_dura; % set task actual finish time

 else
 % cpu or ram does not have available resource for task
 % increment the time
 tt=tt+1;
 end %if
 end %while
end
% set the time to finish all tasks
t_end=max(task(:,8));
NCTask=task;
end

56

APPENDIX B: LOAD NO CACHE

function [No_hits, No_fails, load, t_end] = sim(tasks,
cpu_count, type)
%define max capacity for cpu and ram
c_cpu = 100;
c_ram = 100;

%generate tasks according to parameters in function

% load array contains actual load of cpu and ram
% load matrix has 3 columns: time, cpu_load, ram_load
% max of time: timesteps should be increased if necessary
load=zeros(1,3,1);

if type == 1

 memory_cash = 4;

 for i=1:cpu_count
 [No_hits, No_fails, memory] =
FIFO(tasks,memory_cash);
 size(memory)
 size(tasks)
 tasks(:,:,i) = memory;
 end;

end;

if type == 2
 memory_cash = 4;
 [No_hits, No_fails, memory] = LRU(tasks,memory_cash);

 tasks = memory;
end;

% total number of taks
no_task=size(tasks,1);

%generate 3 columns for actual start time end time and flag
for cached

newcol=zeros(no_task,4);

task=[tasks newcol];
for t=1:task(1,2)

57

 load(t,1,1:cpu_count) = t;
end;

% execution of tasks starting with the first
for i=1:no_task
 tt=task(i,2,j); % tt: task arrival time
 flag = 0; % flag for task being assigned to a
free time slot
 %search for available cpu and ram capacity for the
duration of
 %execution time for task

 if tt > size(load,1)
 for t=task(i-1,2,j):task(i,2,j)
 load(t,1,1:cpu_count) = t;
 end;
 end;
 while flag==0

 cpu_cnt = 1;
 [cpu_no, load, task, flag, tt] =
check_CPU_RAM(cpu_cnt, j, load, i, task, c_cpu, c_ram,
flag, tt);

 end %while
end
% set the time to finish all tasks
t_end=max(task(:,8,j));

end

58

APPENDIX C: FIFO LOAD (simFIFO)

function [load, t_end, No_hits, No_fails] = sim_FIFO(tasks,
cpu_count)
%define max capacity for cpu and ram
c_cpu = 100;
c_ram = 100;

%generate tasks according to parameters in function

% load array contains actual load of cpu and ram
% load matrix has 3 columns: time, cpu_load, ram_load
% max of time: timesteps should be increased if necessary
load=zeros(1,3,1);

memory_cash = 4;
[No_hits, No_fails, memory] = FIFO(tasks(:,:,1),memory_cash);

tasks = memory;

% total number of taks
no_task=size(tasks,1);

%generate 3 columns for actual start time end time and flag for
cached
newcol=zeros(no_task,4);
task=[tasks newcol];

for t=1:task(1,2)
 load(t,1,1:cpu_count) = t;
end;

% execution of tasks starting with the first
for i=1:no_task
 tt=task(i,2); % tt: task arrival time
 flag = 0; % flag for task being assigned to a free
time slot
 %search for available cpu and ram capacity for the duration
of
 %execution time for task

 if tt > size(load,1)
 for t=task(i-1,2):task(i,2)
 load(t,1,1:cpu_count) = t;
 end;
 end;

 while flag==0

 cpu_no = 0;

59

 [cpu_no, load, task, flag, tt] =
check_CPU_RAM(cpu_count, cpu_no, load, i, task, c_cpu, c_ram,
flag, tt);

 end %while
end
% set the time to finish all tasks
t_end=max(task(:,8));

//check fifo
function [memory, index] = check_FIFO(hit, index, memory, task,
cpu_no)
index(cpu_no) = mod(index(cpu_no)+1,size(memory,1));

if index(cpu_no) == 0
 memory(size(memory,1), cpu_no) = task;
else
 memory(index(cpu_no), cpu_no) = task;
end;
end

60

APPENDIX D: LRU LOAD

function [load, t_end,LRUTasko, No_hits, No_fails] = sim_LRU(tasks)
%define max capacity for cpu and ram
c_cpu=100;
c_ram=100;

%number of tasks finished/executed
task_finished=0;

%generate tasks according to parameters in function

% load array contains actual load of cpu and ram
% load matrix has 3 columns: time, cpu_load, ram_load
% max of time: timesteps should be increased if necessary
timesteps=sum(tasks(:,6));
load=zeros(timesteps,3);
% initialize first dimension of the load array
for i=1:timesteps
 load(i,1)=i-1;
end;

memory_cash = 4;
[No_hits, No_fails, memory] = LRU(tasks,memory_cash);

tasks = memory;

% total number of taks
no_task=size(tasks,1);

%generate 3 columns for actual start time end time and flag for cached
newcol = zeros(no_task,4);
task=[tasks newcol];

% execution of tasks starting with the first
for i=1:no_task
 % assign current task values to scalar variables
 tt=task(i,2); % tt: task arrival time
 t_type=task(i,3); % task type
 t_dura=task(i,6); % task execution time
 t_cpu=task(i,4); % task cpu load
 t_ram=task(i,5); % task ram load
 flag=0; % flag for task being assigned to a free time
slot
 %search for available cpu and ram capacity for the duration of
 %execution time for task

 while flag==0

 c_max=max(load(tt:tt+t_dura,2)); % max cpu load during the
period
 % tt and tt+execution time

61

 r_max=max(load(tt:tt+t_dura,3)); % max ram load during the
period
 % tt and tt+execution time

 if c_max+t_cpu<=c_cpu && r_max+t_ram<=c_ram

 % if the cpu and ram have available resource for task
 for j=1:t_dura % increase cpu and ram load for
 % the period between tt and
 % tt+execution time
 load(tt+j-1,2)=load(tt+j-1,2)+t_cpu;
 load(tt+j-1,3)=load(tt+j-1,3)+t_ram;
 load(tt+j-1,4)=t_type;

 end
 flag=1; % indication that task is assigned
 task(i,7)=tt; % set task actual start time
 task(i,8)=tt+t_dura; % set task actual finish time

 else
 % cpu or ram does not have available resource for task
 % increment the time

 tt=tt+1;

 end %if

 end %while

end
% set the time to finish all tasks
t_end=max(task(:,8));
LRUTasko=task;
end

62

APPENDIX E: FIFO CALCULATION

function [No_hits, No_fails, memory2] = FIFO(pages,memory_cash)

memory = [];

index = 0;
No_hits = 0;
No_fails = 0;
counter = 1;
for i=1:size(pages,1)
 hit = [];

 for j=1:length(memory)
 if pages(i,3) == memory(j)
 hit = j;
 end;
 end;

 if isempty(hit) == 1
 index = mod(index+1,memory_cash);
 if index == 0
 memory(memory_cash) = pages(i,3);
 memory2(counter,:) = pages(i,:);
 counter = counter+1;
 else
 memory(index) = pages(i,3);
 memory2(counter,:) = pages(i,:);
 counter = counter+1;
 end;
 No_fails = No_fails + 1;
 else
 No_hits = No_hits + 1;
 end;
end;

end

63

APPENDIX F: LRU CALCULATION

function [No_hits, No_fails, memory2] = LRU(pages,memory_cash)
memory = [];
index = 0;
cash = [];
No_hits = 0;
No_fails = 0;
counter = 1;
for i=1:size(pages,1)
 hit = [];

 for j=1:length(memory)
 if pages(i,3) == memory(j)
 hit = j;
 end;
 end;

 if isempty(hit) == 1
 if length(memory) < memory_cash
 index = index+1;
 memory(index) = pages(i,3);
 cash(index) = pages(i,3);

 memory2(counter,:) = pages(i,:);
 counter = counter+1;
 else
 LR = cash(1);
 for j=1:length(cash)-1
 cash(j)=cash(j+1);
 end;
 cash(length(cash))=pages(i,3);
 memory(find(memory==LR)) =pages(i,3);

 memory2(counter,:) = pages(i,:);
 counter = counter+1;
 end;
 No_fails = No_fails + 1;
 else
 k = find(cash==pages(i,3));
 for j=k:length(cash)-1
 cash(j)=cash(j+1);
 end;
 cash(length(cash))=pages(i);
 No_hits = No_hits + 1;
 end;
end;
end

64

APPENDIX G: REMOTE CACHE

 % clear

% clc
% Test basic cache functions
LRUSize=FIFOSize;
% DATASize=100;
ProcessedData=1;
% Create a cache with a maximum of 3 items
lru = LRU(LRUSize);
% lsize=lru.size();
t=0;

mem=[];
CPU=[];
TempCPU=[];
TimeLRU=[];
TimeLRUTemp=Timenocache;

% AllData=[];
i=1;

% DATASize=100;
% AllData=[];
% AllDataCPU=[];
% AllDataMem=[];
%
% MaxTask=9;
% r = rand(1, MaxTask);
% for i=1:10
% while r>=1
% r=rand;
% end
% end
% r = r / sum(r);
%
% T=0:MaxTask;
%
% for i=1:MaxTask
% nub=DATASize*r(i);
% if nub-fix(nub)<0.5
% fnub=fix(nub);
% else
% fnub=fix(nub)+1;
% end
% for j=1:fnub
% AllData=[AllData i-1];
% end
% end

65

%
% AllDataTemp=AllData;
% AllData=[];
% [p c]=size(AllDataTemp);
% if c>100
% for i=1:100
% AllData(i) = AllDataTemp(i);
% end
% elseif size(AllDataTemp)<100
% AllData(100) = MaxTask;
% else
% AllData=AllDataTemp;
% end
% % AllDataTemp=AllData;
% AllData=AllData(randperm(length(AllData)));
% % lru.size()
%
% % num2str(fix(ranber));
% AllDataFinal=AllData;
% AllData=[];
% for i=1:100
% sranber = num2str(fix(AllDataFinal(i)));
% AllData=[AllData;sranber];
% end
% % lru.size()
% r = rand(1, DATASize);
% for i=1:DATASize
% r(i)=rand;
% while r(i)<0.1
% r(i)=rand;
% end
% r(i)=r(i)*10;
% r(i)=fix(r(i))*10;
% AllDataCPU=[AllDataCPU;r(i)];
% end
%
% r = rand(1, DATASize);
% for i=1:DATASize
% r(i)=rand;
% while r(i)<0.1
% r(i)=rand;
% end
% r(i)=r(i)*10;
% r(i)=fix(r(i))*10;
% AllDataMem=[AllDataMem;r(i)];
% end
%
while ProcessedData <= DATASize

i=1;
if i<LRUSize+1

 if ProcessedData <= DATASize

66

 if lru.size() < LRUSize
 lru.put(AllData(ProcessedData), i);
 mem=[mem AllDataMem(ProcessedData)];
 CPU=[CPU AllDataCPU(ProcessedData)];
 TimeLRU=[TimeLRU TimeLRUTemp(ProcessedData)];
 else

 assert(lru.size() == LRUSize);

 ranber=rand*10;
 if ranber<1
 ranber=rand*10;
 end
 sranber = num2str(fix(ranber));

 lru.put(sranber, LRUSize+1);
 assert(lru.size() == LRUSize);
 lru.remove(AllData(LRUSize));
 lru.put(AllData(ProcessedData), i);
 if DATASize<100
 for lp=1:TimeLRUTemp(ProcessedData)
 CPU=[CPU AllDataCPU(ProcessedData)];
 mem=[mem AllDataMem(ProcessedData)];
 end
 TimeLRU=[TimeLRU TimeLRUTemp(ProcessedData)];
 else
 CPU=[CPU AllDataCPU(ProcessedData)];
 mem=[mem AllDataMem(ProcessedData)];
 TimeLRU=[TimeLRU TimeLRUTemp(ProcessedData)];
 end

 i=i-1;
 end
 end
 i=i+1;

 ProcessedData=ProcessedData+1;

end

% mem=[mem lru.memusage];
t=t+1;

end

oldCPU=[];
TimeEndLRU=[];TimeLRU=[];temp=[];
for i=1:DATASize
% temp1=[];
 if i==1
 TimeLRU=[TimeLRU AllDatanocache(5,1)];
 for lp=1:TimeLRUTemp(i)
 oldCPU=[oldCPU AllDataCPU(i)];

67

% temp1=[temp1 AllDataCPU(i)];
 end
 else
 [ro col]=size(oldCPU);
 TimeLRU=[TimeLRU col];
 if i<DATASize
 if AllDataCPU(i-1)+AllDataCPU(i)<100
 oldCPU=[oldCPU oldCPU(i-1)+AllDataCPU(i)];
% temp1=[temp1 CPU(i-1)+AllDataCPU(i)];
 else
 for lp=1:TimeLRUTemp(i)
 oldCPU=[oldCPU AllDataCPU(i)];
% temp1=[temp1 AllDataCPU(i)];
 end
 end
 else
 for lp=1:TimeLRUTemp(i)
 oldCPU=[oldCPU AllDataCPU(i)];
% temp1=[temp1 AllDataCPU(i)];
 end
 end
 end
% temp=temp1;
 [ro col]=size(oldCPU);
 TimeEndLRU=[TimeEndLRU col];
end

% [ro is]=size(TimeLRU);
% for i=1:is
% if i==1
% sum=AllDatanocache(5,i);
% else
% sum=sum+AllDatanocache(4,i);
% end
% TimeLRU(i)=sum;
% end
%
% [ro col]=size(TimeLRU);
% TimeEndLRU=zeros(1,col);
% for i=1:DATASize
% TimeEndLRU(i)=TimeLRU(i)+AllDatanocache(4,i)-LRUSize;
% end

f=figure(3);
movegui('northwest');
stairs(mem);
title("LRU Memory");
xlabel("Time");
ylabel("MEM");
LRU_Memory=mem;

68

f=figure(4);
movegui('southwest');
stairs(CPU)
title("LRU CPU usage");
xlabel("Time");
ylabel("CPU");
LRU_CPU=CPU;

AllDataLRU=[AllDatanocache(1,:);AllDatanocache(2,:);AllDatanocac
he(3,:);TimeLRU;TimeEndLRU];

69

APPENDIX H: MAIN

clc;clear;
type = 1;
cpu_count = 1;
series_count = 1;
a = [];
task_orig = [];
cpu = [20 50];
ram = [20 50];
exe = [30 80];
arr_time = [1 10];

no_types = 10;
no_task = 100;

memory_cash = 4;

a = generate_task(cpu, ram, exe, no_types);
for i=1:series_count
 task_orig(:,:,i)=generate_task_time(a, arr_time, no_task);
end;

for type = 0:1
[No_hits, No_fails, load1, t_end1] = sim_multi(task_orig, cpu_count,
series_count, memory_cash, type);
%[No_hits, No_fails, load2, t_end2] = sim_multi_remote(task_orig,
cpu_count, series_count, memory_cash, type);
%[No_hits, No_fails, load3, t_end3] = sim_multi_remote2(task_orig,
cpu_count, series_count, memory_cash, type);
load2=[0];load3=[0];t_end2=0;t_end3=0;

for i=1:cpu_count
 load1(1:max(t_end),1,i) = 1:max(t_end);
 load2(1:max(t_end),1,i) = 1:max(t_end);
 load3(1:max(t_end),1,i) = 1:max(t_end);
end;
t_end = [t_end1 t_end2 t_end3]
f1=figure('Name','CPU Load');

% for j=1:max(t_end)
% for i=0:cpu_count-1
%
% subplot(cpu_count,3,i*3+1)
% plot (load1(1:max(t_end),1,i+1),load1(1:max(t_end),2,i+1));
%
% subplot(cpu_count,3,i*3+2)
% plot (load2(1:max(t_end),1,i+1),load2(1:max(t_end),2,i+1));
%
% subplot(cpu_count,3,i*3+3)
% plot (load3(1:max(t_end),1,i+1),load3(1:max(t_end),2,i+1));
%
% T = timer('TimerFcn',@(~,~)disp(''),'StartDelay',0.001);
% start(T)
% wait(T)
%
% end;

70

%
% end
load1(max(t_end)+1,1,1:cpu_count)=max(t_end)+1;
load2(max(t_end)+1,1,1:cpu_count)=max(t_end)+1;
load3(max(t_end)+1,1,1:cpu_count)=max(t_end)+1;

load1(max(t_end)+1,2,1:cpu_count)=0;
load2(max(t_end)+1,2,1:cpu_count)=0;
load3(max(t_end)+1,2,1:cpu_count)=0;

load1(max(t_end)+1,3,1:cpu_count)=0;
load2(max(t_end)+1,3,1:cpu_count)=0;
load3(max(t_end)+1,3,1:cpu_count)=0;

for i=0:cpu_count-1

 subplot(cpu_count,3,i*3+1)
 plot (load1(1:max(t_end),1,i+1),load1(1:max(t_end),2,i+1));
 subplot(cpu_count,3,i*3+2)
 plot (load2(1:max(t_end),1,i+1),load2(1:max(t_end),2,i+1));
 subplot(cpu_count,3,i*3+3)
 plot (load3(1:max(t_end),1,i+1),load3(1:max(t_end),2,i+1));

% T = timer('TimerFcn',@(~,~)disp(''),'StartDelay',0.001);
% start(T)
% wait(T)

end;

for i=0:cpu_count-1
 subplot(cpu_count,3,i*3+1)
 title = strcat('CPU Load without cach 1 C ',string(i+1));
 xlabel('Time step')
 ylabel('Load (%)')

 subplot(cpu_count,3,i*3+2)
 title = strcat('CPU Load without cach 2 C ',string(i+1));
 xlabel('Time step')
 ylabel('Load (%)')

 subplot(cpu_count,3,i*3+3)
 title = strcat('CPU Load without cach 3 C ',string(i+1));
 xlabel('Time step')
 ylabel('Load (%)')
end;

f2=figure('Name','RAM Load');

for i=0:cpu_count-1

 subplot(cpu_count,3,i*3+1)
 plot (load1(1:max(t_end),1,i+1),load1(1:max(t_end),3,i+1));

 subplot(cpu_count,3,i*3+2)
 plot (load2(1:max(t_end),1,i+1),load2(1:max(t_end),3,i+1));

 subplot(cpu_count,3,i*3+3)
 plot (load3(1:max(t_end),1,i+1),load3(1:max(t_end),3,i+1));

71

% T = timer('TimerFcn',@(~,~)disp(''),'StartDelay',0.001);
% start(T)
% wait(T)

end;

for i=0:cpu_count-1
 subplot(cpu_count,3,i*3+1)
 title = strcat('RAM Load without cach 1 C ',string(i+1));
 xlabel('Time step')
 ylabel('Load (%)')

 subplot(cpu_count,3,i*3+2)
 title = strcat('RAM Load without cach 2 C ',string(i+1));
 xlabel('Time step')
 ylabel('Load (%)')
 subplot(cpu_count,3,i*3+3)
 title = strcat('RAM Load without cach 3 C ',string(i+1));
 xlabel('Time step')
 ylabel('Load (%)')
end;
end;

72

APPENDIX I: Generate Task Time

function [task] = generate_task_time(a, arr_time, no_task)

% generation of task queue
% task is a matrix no_task x 6
% columns: index, arrival time, task type, cpu,ram,exec

t_arr=randi(arr_time,no_task,1);
t_arr2(1)=t_arr(1);
for i=2:no_task
 t_arr2(i)=t_arr2(i-1)+t_arr(i);
end

cdf2=[0 transpose(a(:,3))];
d=rand(no_task,1);
Y = discretize(d,cdf2);
for i=1:no_task
 task(i,1)=i;
 task(i,2)=t_arr2(i);
 task(i,3)=Y(i);
 task(i,4)=a(Y(i),4);
 task(i,5)=a(Y(i),5);
 task(i,6)=a(Y(i),6);
end
end

73

APPENDIX J:MEMORY AVAILABLE

unction [hit, No_hits, No_fails] = memory_avilable(task,cash, No_hits, No_fails,

cpu_no)

for j=1:size(cash,1)
 if task == cash(j,cpu_no)

 hit = 1;
 No_hits(cpu_no) = No_hits(cpu_no) +1;
 break;
 else
 hit = 0;

 end;
end;
if hit == 0
No_fails(cpu_no) = No_fails(cpu_no) +1;

end;

74

APPENDIX K: SIMULATION

function [No_hits, No_fails, load, t_end] = simulate(tasks, type, memory_cash, cpu_no)
%define max capacity for cpu and ram
c_cpu = 100;
c_ram = 100;
memory = [];

%generate tasks according to parameters in function

% load array contains actual load of cpu and ram
% load matrix has 3 columns: time, cpu_load, ram_load
% max of time: timesteps should be increased if necessary
load=zeros(1,3,1);

if type == 0
 No_hits = 0;
 No_fails = 0;
end;

index = 0;
% total number of taks
no_task=size(tasks,1);

%generate 3 columns for actual start time end time and flag for cached

newcol=zeros(no_task,4);

task=[tasks newcol];

for t=1:task(1,2)
 load(t,1,1:1) = t;
end;

cash = zeros(memory_cash,1);
No_hits = zeros(1);
No_fails = zeros(1);
% execution of tasks starting with the first
for i=1:no_task
 tt=task(i,2); % tt: task arrival time
 flag = 0; % flag for task being assigned to a free time slot
 %search for available cpu and ram capacity for the duration of
 %execution time for task

 if tt > size(load,1)
 for t=task(i-1,2):task(i,2)
 load(t,1,1) = t;
 end;

75

 end;
 while flag==0
 cpu_cnt = 1;

 [cpu_no, load, task, flag, tt, cash, No_hits, No_fails, index] = ...
 check_CPU_RAM_one(cpu_cnt, load, i, task, c_cpu, c_ram, flag, tt, cpu_no,
cash, No_hits, No_fails, index, type);

 end %while

end
% set the time to finish all tasks

t_end=max(task(:,8));

end

76

APPENDIX L: SIM REMOTE

function [No_hits, No_fails, load, t_end] = sim_remote(tasks, cpu_count, series_count,
type, memory_cash)
%define max capacity for cpu and ram
c_cpu = 100;
c_ram = 100;
memory = [];
load = [];

%generate tasks according to parameters in function

% load array contains actual load of cpu and ram
% load matrix has 3 columns: time, cpu_load, ram_load
% max of time: timesteps should be increased if necessary
load=zeros(1,3,1,1);
No_hits = zeros(cpu_count);
No_fails = zeros(cpu_count);
index = zeros(cpu_count,1);
% total number of taks
no_task=size(tasks,1);
%generate 3 columns for actual start time end time and flag for cached
newcol=zeros(no_task,4,series_count);
task=[tasks newcol];
for t=1:task(1,2)
 load(t,1,1:cpu_count) = t;
end;

cash = zeros(memory_cash,cpu_count);
No_hits = zeros(cpu_count);
No_fails = zeros(cpu_count);

% execution of tasks starting with the first
for i=1:no_task
 for j=1:series_count
 tt=task(i,2,j); % tt: task arrival time
 flag = 0; % flag for task being assigned to a free time slot
 %search for available cpu and ram capacity for the duration of
 %execution time for task
 if tt > size(load,1)
 for t=task(i-1,2,j):task(i,2,j)
 load(t,1,1:cpu_count) = t;
 end;
 end;
 while flag==0

 cpu_no = 0;
 [cpu_no, load, task, flag, tt, cash, No_hits, No_fails, index] ...
 = check_CPU_RAM_remote(cpu_count, load, i, task, c_cpu, c_ram, flag, tt, cpu_no,
j, cash, No_hits, No_fails, index,type);

 end %while

77

 end
end
for i=1:cpu_count
 t_end(i)=max(task(:,8,i));
end;
end;

78

APPENDEX M: TASK ASSIGNING

function [cpu_no, load, task, flag, tt, cash, No_hits, No_fails, index] ...
 = check_CPU_RAM_remote2(cpu_count, load, i, task, c_cpu, c_ram, flag, tt,
cpu_no, series_no, cash, No_hits, No_fails, index,type)

cpu_no = cpu_no+1;
% assign current task values to scalar variables

t_type=task(i,3, series_no); % task type
t_dura=task(i,6, series_no); % task execution time
t_cpu=task(i,4, series_no); % task cpu load
t_ram=task(i,5, series_no); % task ram load

if tt > 0
 for t=tt:tt+t_dura
 load(t,1,:) = t;
 end;
end;

c_max(cpu_no)=max(load(tt:tt+t_dura,2,cpu_no)); % max cpu load during the period
% tt and tt+execution time
r_max(cpu_no)=max(load(tt:tt+t_dura,3,cpu_no)); % max ram load during the period
% tt and tt+execution time

flag = 0;
if c_max(cpu_no)+t_cpu<=c_cpu && r_max(cpu_no)+t_ram<=c_ram
 if type > 0
 [hit, No_hits, No_fails] = memory_avilable(t_type,cash, No_hits, No_fails,
cpu_no);

 if hit == 0

 for t=1:tt+t_dura
 load(t,1,cpu_no) = t;
 end;
 % if the cpu and ram have available resource for task
 for j=1:t_dura % increase cpu and ram load for
 % the period between tt and
 % tt+execution time
 load(tt+j-1,2,cpu_no)=load(tt+j-1,2,cpu_no)+t_cpu;
 load(tt+j-1,3,cpu_no)=load(tt+j-1,3,cpu_no)+t_ram;
 end;

79

APPENDEX N: CHECK CPU REMOTE

function [cpu_no, load, task, flag, tt, cash, No_hits, No_fails, index] ...
 = check_CPU_RAM_remote2(cpu_count, load, i, task, c_cpu, c_ram, flag, tt,
cpu_no, series_no, cash, No_hits, No_fails, index,type)

cpu_no = cpu_no+1;
% assign current task values to scalar variables

t_type=task(i,3, series_no); % task type
t_dura=task(i,6, series_no); % task execution time
t_cpu=task(i,4, series_no); % task cpu load
t_ram=task(i,5, series_no); % task ram load

if tt > 0
 for t=tt:tt+t_dura
 load(t,1,:) = t;
 end;
end;

c_max(cpu_no)=max(load(tt:tt+t_dura,2,cpu_no)); % max cpu load during the period
% tt and tt+execution time
r_max(cpu_no)=max(load(tt:tt+t_dura,3,cpu_no)); % max ram load during the period
% tt and tt+execution time

flag = 0;
if c_max(cpu_no)+t_cpu<=c_cpu && r_max(cpu_no)+t_ram<=c_ram
 if type > 0
 [hit, No_hits, No_fails] = memory_avilable(t_type,cash, No_hits, No_fails,
cpu_no);

 if hit == 0

 for t=1:tt+t_dura
 load(t,1,cpu_no) = t;
 end;
 % if the cpu and ram have available resource for task
 for j=1:t_dura % increase cpu and ram load for
 % the period between tt and
 % tt+execution time
 load(tt+j-1,2,cpu_no)=load(tt+j-1,2,cpu_no)+t_cpu;
 load(tt+j-1,3,cpu_no)=load(tt+j-1,3,cpu_no)+t_ram;
 end;

80

REFERENCES

[1] J. Gubbia, R. Buyyab, S. Marusic , M. Palaniswami, Internet of Things (IoT): “A

vision, architectural elements, and future directions, Future Generation Computer

Systems”, vol 29, no. 7, pp. 1645-1660, Sep 2013.

[2] M. A. Burhanuddin, Ali A. Mohammed, R. Ismail and H. Basiron, Internet of

Things Architecture: “Current Challenges and Future Direction of Research”,

International Journal of Applied Engineering Research, vol. 12, no. 21 pp. 11055-

11061, 2017.

[3] T. Yu, X. Wang and A. Shami, ”Recursive Principal Component Analysis-Based

Data Outlier Detection and Sensor Data Aggregation in IoT Systems”, in IEEE

Internet of Things Journal, vol. 4, no. 6, pp. 2207-2216, Dec. 2017.

[4] A.Akbar, A.Khan, F.Carrez, and K. Moessner , “Predictive Analytics for Complex

IoT Data Streams”, IEEE Internet of Things Journal, vol.4 , no. 5 pp. 1571 – 1582,

Oct. 2017.

[5] B. Farahani, F.Firouzi, V.Chang, M. Badarogl and N. Constant, K.

Mankodiya,Towards fog-driven IoT eHealth: Promises and challenges of IoT in

medicine and healthcare, Future Generation Computer Systems, vol. 78, no.2 ,

pp.659-676, Jan 2018.

[6] Y.Cao, T. Jiang, S.Member, and Z.Han, “A Survey of Emerging M2M

Systems:Context, Task, and Objective”, IEEE Internet of Things Journal, vol.6

no. 3 pp. 1246-1258, Dec 2016.

[7] B.Afzal, M.Umair, G.A.Shah, E.Ahmed , “Enabling IoT platforms for social IoT

applications: Vision, feature mapping, and challenges, Future Generation

Computer Systems”, vol. 92, pp. 718-731, March 2019.

[8] V. G. Cerf and P. T. Kirstein, “Gateways for the Internet of Things: An old

problem revisited”, 2013 IEEE Global Communications Conference

(GLOBECOM), Atlanta, GA, pp. 2641-2647, Dec. 2013.

[9] Tang, Yayuan & Guo, Kehua & Ma, Jian"hua & Shen, Yutong & Chi, Tao, “A

smart caching mechanism for mobile multimedia in information centric

networking with edge computing”, Future Generation Computer Systems,2018.

81

[10] F.Al-Turjman, “5G-enabled devices and smart-spaces in social-IoT: An

overview”, vol. 92, pp. 732-744, March 2019.

[11] Y. Li, A.Orgerie, I. Rodero , B.L. Amersho, M. Parashar, J. Menaud,End-to-end

energy models for Edge Cloud-based IoT platforms: “Application to data stream

analysis in IoT”, Future Generation Computer Systems, vol. 87, pp. 667-678 , Oct

2018.

[12] S. K. Sharma and X. Wang, "Live Data Analytics With Collaborative Edge and

Cloud Processing in Wireless IoT Networks," in IEEE Access, vol. 5, pp. 4621-4635,

2017.

[13] X. Xu, S. Huang, L. Feagan, Y. Chen, Y. Qiu and Y. Wang, “EAaaS: Edge

Analytics as a Service,” IEEE International Conference on Web Services (ICWS),

Honolulu, HI, pp. 349-356, 2017.

[14] Y.Tang, K.Guo, J.Mac, Y.Shen, T.Chi, “Future Generation Computer Systems”

 Vol. 91, Pages 590-600, Feb 2019.

[15] A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, “Internet of

Things for Smart Cities,” in IEEE Internet of Things Journal, vol. 1, no. 1, pp.

22-32, Feb. 2014.

[16] A. Balamash and M. Krunz, “An overview of web caching replacement

algorithms,” in IEEE Communications Surveys & Tutorials, vol. 6, no. 2, pp.

44-56, Second Quarter 2004.

[17] A. Muhammed, K. M. Saleh and A. Abdullah, “Optimum packet size of voice

packet in the FIFO adversarial queuing model,” Asia-Pacific Conference on

Applied Electromagnetics, Melaka, pp. 1-6, 2007.

[18] Cholvi, Vicent & Echagüe, Juan & LeBoudec, “On the Feasible Scenarios at

the Output of a FIFO Server”, IEEE Communications Letters, vol .9, no.5, may

2005.

82

[19] Tanwir, G. Hendrantoro and A. Affandi, “Early result from adaptive

combination of LRU, LFU and FIFO to improve cache server performance in

telecommunication network,” International Seminar on Intelligent Technology

and Its Applications (ISITIA), 2015, pp. 429-432, 2015.

[20] G. Kesidis, “Stationary Distribution of a Generalized LRU-MRU Content

Cache,” 2018 International Conference on Computing, Networking and

Communications (ICNC), pp. 676-681, 2018.

[21] M.Bilal, S.Kang, “Time Aware Least Recent Used (TLRU) Cache

Management Policy in ICN”, Korea Electronics and Telecommunications

Research Institute (ETRI), Feb. 2014.

[22] M. M. Hsieh, T. C. Wei and W. V. Loo, “A cached system architecture

dedicated for the system IO activity on a CPU board,” IEEE International

Conference on Computer Design: VLSI in Computers and Processors,

Cambridge, pp. 518-522, 1989.

[23] A. K. Datta and R. Patel, "CPU Scheduling for Power/Energy Management on

Multicore Processors Using Cache Miss and Context Switch Data," in IEEE

Transactions on Parallel and Distributed Systems, vol. 25, no. 5, pp. 1190-1199,

May 2014.

[24] J. Nickolls and W. J. Dally, "The GPU Computing Era," in IEEE Micro, vol.

30, no. 2, pp. 56-69, March-April 2010.

[25] P. Blinzer, "The Heterogeneous System Architecture: It's beyond the GPU,"

2014 International Conference on Embedded Computer Systems: Architectures,

Modeling, and Simulation (SAMOS XIV), Agios Konstantinos, 2014, pp. iii-iii

[26] J. Fang, Q. Fan, X. Hao, Y. Cheng and L. Sun, "Performance Optimization by

Dynamically Altering Cache Replacement Algorithm in CPU-GPU

Heterogeneous Multi-core Architecture," IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (CCGRID), Madrid, 2017, pp. 723-726,

2017.

83

[27] M. A. Maddah-Ali and U. Niesen, "Fundamental Limits of Caching," in IEEE

Transactions on Information Theory, vol. 60, no. 5, pp. 2856-2867, May 2014.

[28] R. Rajamoni, R. Bhagavathula and R. Pendse, "Timing analysis of block

replacement algorithms on disk caches," Proceedings of the 43rd IEEE Midwest

Symposium on Circuits and Systems, Lansing, pp. 408-411 vol.1,2000.

[29] W. Jiang, Y. Deng, X. Meng, C. Hu and Y. Zhou, "Boosting Disk

Performance by Compressing On-board Disk Cache," 2017 IEEE 19th

International Conference on High Performance Computing and

Communications; IEEE 15th International Conference on Smart City; IEEE 3rd

International Conference on Data Science and Systems (HPCC/SmartCity/DSS),

Bangkok, pp. 98-105, 2017.

[30] Y. Liu, J. Huang, C. Xie and Q. Cao, "RAF: A Random Access First Cache

Management to Improve SSD-Based Disk Cache," 2010 IEEE Fifth

International Conference on Networking, Architecture, and Storage, Macau, ,

pp. 492-500, 2010.

[31] Y. Niranjan, S. Tiwari and R. Gupta, "Average memory access time reduction

in multilevel cache of proxy server," 2013 3rd IEEE International Advance

Computing Conference (IACC), Ghaziabad pp. 44-47, 2013.

[32] A. Imtiaz and M. J. Hossain, "Distributed cache management architecture: To

reduce the internet traffic by integrating browser and proxy caches," 2014

International Conference on Electrical Engineering and Information &

Communication Technology, Dhaka, pp. 1-4, 2014.

[33] hangyao Chen, Xiufen Fu, Shaohua Teng, Peijiang Liu and Baixing Chen, "A

cooperative browser-level web caching system based on chord," International

Conference on Computer Supported Cooperative Work in Design, Xi'an, 2008,

pp. 93-97,2008.

[34] “Cisco visual networking index: Global mobile data traffic forecast update,

fg2016–2021,” Cisco, San Jose, CA, USA, White Paper, Feb. 2017.

84

[35] A.C. Kazez, T.Girici,” Clustering-based device-to-device cache placement, Ad

Hoc Networks”, Vol. 84, pp. 170-177, March 2019.

[36] N. Deng and M. Haenggi, "The Benefits of Hybrid Caching in Gauss–Poisson

D2D Networks," in IEEE Journal on Selected Areas in Communications, vol.

36, no. 6, pp. 1217-1230, June 2018.

[37] A. Kushwaha and H. R. Sharma, "Designing an Enhanced Selective Encryption

Method for Securing Mobile Ad Hoc Network," 2014 International Conference

on Computational Intelligence and Communication Networks, Bhopal, pp. 793-

798, 2014.

[38] N. Chand, R. C. Joshi and M. Misra, "An efficient caching strategy in mobile

ad hoc networks based on clusters," 2006 IFIP International Conference on

Wireless and Optical Communications Networks, Bangalore, pp. 5, 2006.

[39] G. Paschos, E. Bastug, I. Land, G. Caire and M. Debbah, "Wireless caching:

technical misconceptions and business barriers," in IEEE Communications

Magazine, vol. 54, no. 8, pp. 16-22, August 2016.

[40] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher and B. Ohlman, "A

survey of information-centric networking," in IEEE Communications Magazine,

vol. 50, no. 7, pp. 26-36, July 2012.

[41] N. Deng and M. Haenggi, "The Benefits of Hybrid Caching in Gauss–Poisson

D2D Networks," in IEEE Journal on Selected Areas in Communications, vol.

36, no. 6, pp. 1217-1230, June 2018.

[42] C. Ho, C. Ho and C. Tseng, "A case study of cache performance in ICN —

Various combinations of transmission behavior and cache replacement

mechanism," 2015 17th International Conference on Advanced Communication

Technology (ICACT), pp. 323-328,2015.

[43] S. Arshad, M. A. Azam, M. H. Rehmani and J. Loo, "Recent Advances in

Information-Centric Networking-Based Internet of Things (ICN-IoT)," in IEEE

Internet of Things Journal, vol. 6, no. 2, pp. 2128-2158, April 2019.

85

[44] I.Psaras, O. Ascigil, and S. Rene, G. Pavlou, L. Zhang,” Mobile Data

Repositories at the Edge”, Workshop on Hot Topics in Edge Computing

(HotEdge 18), jul 2018.

[45] S. Li, Y. Tao, X. Qin, L. Liu, Z. Zhang and P. Zhang, "Energy-Aware Mobile

Edge Computation Offloading for IoT Over Heterogenous Networks," in IEEE

Access, vol. 7, pp. 13092-13105, 2019.

[46] Y. Mao, C. You, J. Zhang, K. Huang and K. B. Letaief, "A Survey on Mobile

Edge Computing: The Communication Perspective," in IEEE Communications

Surveys & Tutorials, vol. 19, no. 4, pp. 2322-2358, Fourthquarter 2017.

[47] R.A. Cherrueau, A. Lebre, and D. Pertin, and F. Wuhib and J. M. Soares,

“Edge Computing Resource Management System: A Critical Building Block!

Initiating the debate via Open Stack”, Workshop on Hot Topics in Edge

Computing (Hot Edge 18), jug 2018.

[48] S. Zang, W. Bao, and P.L. Yeoh, “Paying Less for More? Combo Plans for

Edge-Computing Services”, Workshop on Hot Topics in Edge Computing, jug

2018.

[49] C. Mehteroglu, Y. Durmus and E. Onur, "Semantic edge caching and

prefetching in 5G," 2017 14th IEEE Annual Consumer Communications &

Networking Conference (CCNC), Las Vegas, NV, 2017, pp. 692-695.

[50] J.G. Andrews, S. Buzzi, and W. Choi, and S. Hanly, A. Lozano, A.C.K. Soong,

Zhang, “What Will 5G Be?”, Selected Areas in Communications, IEEE Journal

on, Vol. 32, no. 6, pp. 1065-1082, July 2014

[51] X. Wang, M. Chen, T. Taleb, A. Ksentini and V. C. M. Leung, "Cache in the

air: exploiting content caching and delivery techniques for 5G systems," in IEEE

Communications Magazine, vol. 52, no. 2, pp. 131-139, Feb 2014.

[52] B. Li, L. Rui, X. Qiu and H. Huang, "Content Caching Strategy for Edge and

Cloud Cooperation Computing," 2019 15th International Wireless

Communications & Mobile Computing Conference (IWCMC), Tangier,

Morocco, 2019, pp. 260-265.

86

[53] I. Yaqoob et al., "Internet of Things Architecture: Recent Advances,

Taxonomy, Requirements, and Open Challenges," in IEEE Wireless

Communications, vol. 24, no. 3, pp. 10-16, June 2017.

[54] Y. Tang, K. Guo, J. Mac, and Y. Shen, T. Chi, “A smart caching mechanism

for mobile multimedia in information centric networking with edge computing”,

Future Generation Computer Systems, pp. 590-600 vol. 91, Feb.2019.

[55] S. Jalali, "M2M solutions — Design challenges and considerations," 2013

IEEE Recent Advances in Intelligent Computational Systems (RAICS),

Trivandrum, 2013, pp. 210-214.

[56] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil and K. Drira, "Cache

coherence in Machine-to-Machine Information Centric Networks," 2015 IEEE

40th Conference on Local Computer Networks (LCN), Clearwater Beach, FL,

2015, pp. 430-433.

[57] A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, "Internet of

Things for Smart Cities," in IEEE Internet of Things Journal, vol. 1, no. 1, pp.

22-32, Feb. 2014.

[58] Y. He, F. R. Yu, N. Zhao, V. C. M. Leung and H. Yin, "Software-Defined

Networks with Mobile Edge Computing and Caching for Smart Cities: A Big

Data Deep Reinforcement Learning Approach," in IEEE Communications

Magazine, vol. 55, no. 12, pp. 31-37, Dec. 2017.

[59] Y. U. Devi and M. S. S. Rukmini, "IoT in connected vehicles: Challenges and

issues — A review," 2016 International Conference on Signal Processing,

Communication, Power and Embedded System (SCOPES), Paralakhemundi,

2016, pp. 1864-1867.

[60] B. Ram, N. Chauhan, N. Chand and L. K. Awasthi, "A new mechanism to

query latency minimization for cache invalidation in vehicular ad hoc networks,"

2011 3rd International Conference on Electronics Computer Technology,

Kanyakumari, 2011, pp. 250-253.

87

[61] F. Wu, T. Wu and M. R. Yuce, "Design and Implementation of a Wearable

Sensor Network System for IoT-Connected Safety and Health Applications,"

2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland,

2019, pp. 87-90.

[62] K. Monteiro, É. Rocha, É. Silva, G. L. Santos, W. Santos and P. T. Endo,

"Developing an e-Health System Based on IoT, Fog and Cloud Computing,"

2018 IEEE/ACM International Conference on Utility and Cloud Computing

Companion (UCC Companion), Zurich, 2018, pp. 17-18.

[63] R. K. Pathinarupothi, P. Durga and E. S. Rangan, "IoT-Based Smart Edge for

Global Health: Remote Monitoring with Severity Detection and Alerts

Transmission," in IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2449-2462,

April 2019.

