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Abstract

In order to increase the transceiver performance in frequency selective fading channel environment, orthogonal frequency
division multiplexing (OFDM) system is used to combat inter-symbol-interference. In this work, a channel estimation scheme
for an OFDM system in the presence of sparse multipath channel is studied using the artificial neural networks (ANN). By
means of ANN’s learning capability, it is shown that how to model and obtain a channel estimate and how it allows the
proposed technique to give a better system throughput. The performance of proposed method is compared with the Matching
Pursuit (MP) and Orthogonal MP (OMP) algorithms that are commonly used in compressed sensing literature in order to
estimate delay locations and tap coefficients of a sparse multipath channel. In this work, we propose a performance- efficient
ANN based sparse channel estimator with lower computational cost than that of MP and OMP based channel estimators. Even
though there is a slight performance lost in a few simulation scenarios in which we have lower computational complexity
advantage, in most scenarios, our computer simulations corroborate that our low complexity ANN based channel estimator has
better mean squared error and the corresponding symbol error rate performances comparing with MP and OMP algorithms.
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1 Introduction broadcasting (DVB), 3-G Long Term Evolution (LTE) in
Europe [1,2].

A multipath channel in which most of the channel path
coefficients are zero and a few of them are non-zero is
called a sparse channel. Some communication problems for

OFDM systems, contain channels with large delay spread

With mounting demands of high data rate mobile commu-
nication services, the parallel communication systems have
gained popularity in the recent years. OFDM is a digital
multi-carrier modulation scheme that divides the available

spectrum into multiple equal sub-carriers to transmit the data
in parallel over these narrower sub-carriers. These narrow-
band sub-carriers are mutually orthogonal and can overlap,
allowing OFDM systems to use the bandwidth efficiently and
be more robust against the ISI caused by the multipath fading.
This makes OFDM the most favorable choice for the current
and future communication systems like IEEE 802.11a/g/n,
IEEE 802.15.3a, IEEE 802.16, IEEE 802.20 in the United
States and Digital audio broadcasting (DAB), Digital video
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and a smaller non-zero support [3]. These sparse channels
are faced in a number of practical applications like high def-
inition television (HDTV) where there are few echoes but
the channel response extends hundreds of data symbols [1].
Underwater acoustics or hilly terrain (HT) delay profiles in
broad-band wireless communication systems comprise of
a sparsely distributed multipath [4]. A frequency selective
channel is a wireless channel whose frequency domain mag-
nitude varies frequency to frequency within the transmission
band. Channel estimation of OFDM systems in frequency
selective channels with the help of pilot symbols is common
and used in many applications [5,6].

Conventional estimation methods applied to nonsparse
channels, such as minimum mean square error (MMSE)
and least square (LS), exhibit poor performance for sparse
channels, therefore in the past few years, sparse channel esti-
mation algorithms have been hot research in compressed
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sensing (CS) area [4]. The pilot assisted channel estima-
tion for OFDM systems aims at reconstructing the channel
frequency response from the pilot symbols, therefore, CS the-
ory is considered for pilot-assisted sparse channel estimation
with smaller number of pilot symbols [7]. The estimation
performance can also be improved and training overhead
greatly reduced by using the specially designed, optimized
pilot patterns in CS [8,9]. In practice, various pilot designsi.e.
block-type, comb-type, and scatter-type are used for differ-
ent types of channel environments [10]. Estimation of the
channel taps is done by one-by-one using MP and OMP
algorithms in [3] and the results are collated to thresholded
forms of the LS channel estimate. To accurately reconstruct
the compressible signal from a few noisy measurements,
greedy pursuit (GP) algorithms are preferred. The running
speed and reconstruction accuracy of these iterative algo-
rithms are significantly enhanced by refining the selected
datasets in each iteration, according to the algorithm known
as stage-determined matching pursuit (SAMP) conferred in
[11]. Compressive sampling MP (CoSaMP) is used as sparse
channel estimator in [12] based on the CoSaMP algorithm
devised in [13].

However, all the mentioned multipath sparse channel esti-
mation algorithms either suffer from an error floor or have
high computational overhead. One of the machine learning
(ML) algorithms known as ANN are performance-efficient
systems with low computational complexity that have caught
much attention these days for problems in many different
fields. The use of ML algorithms in wireless communica-
tions is not new and is producing considerably good results
in many aspects like fading channel-modeling by using
feedforward neural network (FFNN) [14] and, automatic
modulation classification using genetic programming (GP)
[15] and convolutional neural networks (CNNSs) [16]. Four
of the ML’s multi-classifiers algorithms (machine learning
ensemble algorithms) are used and compared to detect if
the received noisy signal contains impulse noise or not in
an OFDM system; and have shown promising insight [17].
Many studies have been performed on the use of ML for
channel estimation in OFDM systems. Recently, advanced
ML algorithms known as Deep Learning algorithms have
been incorporated for more complicated problems like the
doubly selective fading channels in the same setting [18].
In [19], two types of channel estimators based on deep neu-
ral networks (DNNs) are proposed for underwater acoustic
OFDM communication systems. [20] studies a deep-learning
based method that indirectly approximates the CSI (channel
state information) and directly retrieves the communicated
symbols that allows it to perform better even with smaller
number of pilot symbols. In [21], adaptive equalizer for
MIMO-OFDM system is designed using neural network
with functional expansions and neural weights are adjusted
using sparse adaptive filter with block processing of input
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samples. [22] studies various efficient pilot-based nonsparse
channel estimation schemes by neural network technolo-
gies for OFDM systems and compares bit error rates of the
proposed neural network with that of the other neural net-
work technologies, the least square (LS) algorithm, and the
minimum mean square error (MMSE) algorithm in 16QAM
environment. [23] uses Genetically Evolved Artificial Neural
Network for nonsparse channel estimation in MIMO-OFDM
systems and shows that the proposed estimator performs bet-
ter than LS and MMSE estimators at higher SNR values and
close to the MMSE estimator at lower SNR values.

Channel estimation based on RBFNN is proposed to
estimate channel frequency responses in OFDM interleave
division multiple access (OFDM-IDMA) systems. The com-
parisons are made between the different learning functions
used in the neural network training and RBFNN shows better
results with an added advantage of it requiring no statistical
information of the channel unlike LMMSE [24]. The prac-
tice of hybrid ML algorithms that make use of more than one
ML algorithm have been of some interest because of their
faster convergence and better throughput. In [25], authors
combine a back propagation NN for channel estimation and
compensation of signals with a genetic algorithm to improve
performance and the convergence rate. Various ANN models
are adopted for multi-user detection (MUD) in [26]. MUD
using NN models have shown to outperform other exist-
ing schemes in terms of BER performance and convergence
speed. [27] evaluates a channel estimation and equalization
strategy based on an online fully complex extreme learn-
ing machine (C-ELM), for OFDM systems. This technique
is implemented on the fading channels and the nonlinear
distortion occuring in high-power amplifier (HPA) and the
simulations show that it performs well without pre-training
and feedback link between receiver and transmitter.

Sparse channel estimation is a challenging problem since
the performance of the channel estimator critically depends
on channel tap locations. In this study, we jointly estimate
the tap locations and the tap coefficients of the OFDM sparse
multipath channel using ANN. The sparse multipath channels
used in this work are generated with respect to the specifica-
tions in [28]. While training the ANN, as target of ANN, we
employ higher resolution equivalent channel that are band
limited version of the physical channel. In this method, in
order to approximate non-integer tap locations as accurate
as possible, we increase the delay resolution in the non-
sparse channel expression involving in the receive equation
obtained on the receiver side. Although increasing the delay
resolution causes higher size of hidden layer in ANN, thanks
to offline training (pre-computation) property of ANNs, it
does not cause computational load. Although the proposed
ANN based sparse channel estimation scheme has the advan-
tage of low computing load, the symbol error rate (SER) and
the mean-squared error (MSE) performances of the proposed
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method are also compared with that of well known MP and
OMP algorithms in compressed sensing literature. In a gen-
eral manner, ANN is a nonlinear model which is trained to
learn relationship between input and output data. While MP
and OMP algorithms use pilot based dictionary matrix in
a recursive manner, ANN works as a batch algorithm and
use weight coefficients to model the estimator. When com-
pared with MP and OMP algorithms, ANN based estimator
uses the advantage of the supervised learning. During the
training process, on the contrary of the MP based estimators,
due to its supervised learning property, ANN estimator uses
input-output pairs to model well the system. Since there is a
reasonable relationship between input and output of the esti-
mator, with the help of the supervised learning advantages,
ANN based model outperforms the other methods. We show
that the proposed ANN sparse multipath channel estimator
outperforms MP and OMP based channel estimation algo-
rithms for reasonable higher delay resolution range except
a slight performance loss for much higher delay resolution
values beyond a certain mid-range SNR levels.

The paper is organized as follows: OFDM signal and chan-
nel model is explained in Sect. 2; channel estimation using
proposed ANN model is described in Sect. 3, the computa-
tional complexity is given in Sect. 4 and finally in Sect. 5 the
results of this study obtained from simulations are presented
and compared with MP and OMP algorithms in terms of SER
and MSE performances. The paper is concluded in the final
Sect. 6.

2 Signal and channel models

The efficiency of OFDM lies in the fact that all N sub-carriers
are closely spaced, that is allowed because they are orthog-
onal to each other. The considered OFDM system employ
only K active sub-carriers and rest of N — K sub-carriers
are reserved for zero-padding. These active sub-carriers are
modulated by data symbols and take form of a frequency
domain signal that is then converted from serial to parallel.
The parallel signal is converted to time domain by taking its
K -point inverse Fast Fourier transform (IFFT). After IFFT
task, a cyclic prefix (C P) of interval T, is added to the sig-
nal to overcome ISI, such that T, is larger than maximum
delay of multipath channel.The transmitted signal is com-
plex valued and is represented in continuous time-domain as
follow

K/2—1

s(t):% Z b[k]eJ'anAft’ (1)

k=—K/2

where b[k] is the data symbol transmitted over kth sub-
carrier, A f = 1/T is the OFDM sub-carrier spacing with

Tsym = T + T as the duration of cyclic prefixed OFDM
symbol [29].

Channel impulse response (CIR) of the transmission
system comprises of delayed impulses triggered by numer-
ous routes of propagation i.e. echoes from the surrounding
objects like buildings, trees etc. A characteristic channel
impulse response that considers several echoes is the sum-
mation of impulses.

L
gr)=) hid(t—m), £=1,... L, )
=1

where, uniformly distributed random variable 7 in [0, T¢)
is the delay location of £th path and helte ~ CN(0, £27)
is the tap coefficients of the £th path satisfying normalized
channel power such that Zle ETZ{.QIZ} = 1. E¢,{-} is the
expectation operator with respect to t¢. So, the continuous-
time received signal is obtained as follows

+00
y@) = / g(m)s(t —t)dt +w(t)

—00

L
:Zhgs(t—re)—i-w(t)
=1
| K/2—1 L
¥ Z Zhgb[k]eﬂ”mf(’_”)+w(t), 3)

k=—K/2 (=1

where w(t) is the time-domain zero-mean complex addi-
tive white Gaussian noise (AWGN) with variance Ny. Since
inverse Fourier transform relationship between discrete fre-
quency and the continuous time is given by

| K/2—1
Y = Y YIk]eTRAT, )

k=—K/2

the received signal at the output of FFT is represented using
(3) as follows

Y[k] = blkIG[k] + WIkI, (&)

where the frequency response of the channel is given by
L 2k

Glkl= hee /T, (6)
(=1

The channel taps are generated according to h; ~ CA (0, .(212)
where £th path power is defined by

e
Q= — e, 7
L= e—-nL¢ @)
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Fig. 1 Sparse multipath channel in time domain for L = 5 and its
discrete-time equivalent with p = 8

Given that the estimation considered here is pilot based and
the comb-type pilot symbol arrangement is used, the obser-
vation model at the pilot symbol locations can be candidly
concluded from (5)

Ylkpl = blk,1Glk,] + Wik,], p=1,2,---, P 8)

Here, P denotes the total number of pilots in the signal. The
number of pilot symbols is inversely proportional to the pilot
spacing constant that represents the number of data symbols
between two successive pilots.

Nevertheless, sparsity of the channel poses difficulties in
its discrete-time representation. The discrete-time baseband
representation is not reasonable because of the non-integer
normalized path delays and results in a poor estimation of the
channel. This can be resolved by introducing a finer delay
resolution in the Analog-to-Digital (A/D) conversion step of
the OFDM receiver; that improves the estimation quality.

Working with the channel impulse response given in (2)
to obtain its discrete-time equivalence with a certain delay
resolution, we first find the band limited equivalent of the
time-invariant channel in (2) as follows
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Fig. 2 Sparse multipath channel for L = 5 in frequency domain and
its discrete equivalent with p = 8

for N > 1 and sinc(rl\?Ti?) ~ 1 since

we approximate

T—7
NT,

is very close to 0,

L
g(t) ~ Zhg sinc(r ; te)
=1 §
- T ne
= hesing(— — — 10
; gsmc(TS p) (10)

Defining t = nT;/p, we obtain

L
gl = hesine(” ;”")  n=0.1,+ pNep — 1,
=1

Y

and channel frequency response is approximated with finer
delay resolution as follows

PNep—1

GIKl = F@EImy = Y &lnle 0, (12)
n=0

where p and N, show resolution constant and length of the
cyclic prefix respectively.

A time and frequency domain comparison between the
physical channel and its band limited equivalent is presented
in Figs. 1 and 2, respectively for L = 5, where L shows
the number of channel path. From these figures it can be
said that, the equivalent channel represents physical channel
well. From the received signal at pilot subcarriers, the linear
MMSE estimate of G[k,] can be found as follows
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E{Glkp1Y*[k,]1)
E{|vik,]*)
b*lkp]

= 2"y (13)
blkp1| + No

Glk,] = Ylk,l, p=1,2,---, P

By substituting (6) in (8) and collecting Y [k,] for all
p = 1,2,..., P, we can obtain the observation equation
at the pilot locations with the equivalent discrete-time rep-
resentation of the Linear Time-Invariant Sparse Multipath
(LTI-SMP) channel. This observation is further transformed
to the vector form

Y, = AZ + W, (14)

where g is the time-domain equivalent sparse channel vector
given by

Z = [3101, 211, -+, ZlpNep — 1] (15)

Y,= Y[k, Y[kz],---,Y[kP]]T, W, = [Wlki], Wik2],
e, W[kp]]T and A € P x pN¢p is a so-called dictio-
nary matrix in sensing theory, with b[k,lexp(—j2mk,(q —
1)/pN) as its pth-row, gth-column element.

The sparse estimation problem amounts to the approxi-
mately valuating non-zero elements of the sparse coefficient
vector g in (14) that can be achieved by using a sparse sig-
nal recovery method. The most efficient methods for such
problems are the MP algorithm and its variants.

3 ANN based sparse channel estimation

ANNs are comprised of several extremely linked, adaptive
and simple groups of elements that are capable of exception-
ally complex and parallel computations for data processing
and artificial intelligence (AI). With these characteristic qual-
ities and learning capabilities, ANNs have been used as
channel estimators and shown to have better system through-
put and lesser computational complexity. A carefully selected
and fine-tuned ANN model is used to find the best probable
solution to a given problem.

In neural network domain, the wireless channels and the
OFDM modulations are perceived as black boxes while train-
ing the modeled networks. Many channel models have been
established by researchers over the past years for CSI that can
express the real channels with reference to the channel statis-
tics. The transmitted symbols are generated by producing a
random data sequence and adding the pilot symbols for each
corresponding OFDM frame. The channel model defined in
Sect. 2 is used to simulate the current random channel state
for each transmitted signal. The OFDM signal is transmitted
through the channel by adding Gaussian noise. From these

Hidden Layer

Input

Re[?p] —>
1[Gy

Fig.3 ANN model

simulations, transmitted pilot symbols and received signals
are collected to generate the test and train data. The neural
network model is trained on this data to minimize the training
error.

3.1 ANN model and training

In this study, for the estimation of spare multipath chan-
nel in an OFDM system, we employ Multilayer Perceptron
(MLP) with a single hidden layer. Resilient Backpropagation
(Rprop) training algorithm is used as the training function for
the network that is a gradient-based, batch update function
based on the Manhattan Update rule. Rprop comes after Lev-
enberg Marquardt (LM) training algorithm in terms of speed
so it requires lesser memory and hence, is our choice of train-
ing function.

The sample space to be used for neural network training is
obtained by using the signal and channel models provided in
Sect. 2. The signal in (1) is obtained by digitally modulating
random bit stream according to observation model in Sect. 2.
The complex valued transmit signal passes through the sparse
multipath channel and is received as the channel impaired sig-
nal. We employ comb-type pilot structure in OFDM system
setup in which so-called pilot symbols are known at the both
side of the transceiver to estimate the channel.

In this study, the neural network input samples are lin-
ear MMSE estimate frequency domain channel in (13). On
the other hand, the target set used in the training phase con-
tains the samples of the band limited equivalent channel with
higher delay resolution in (11). The channel taps are gener-
ated according to equation (7). Total number of (M) samples
are collected for the target set in training phase. On the other
hand, the length of each OFDM sample of the target set
(Iength of the NN input and output) is directly proportional
to the resolution constant p because the equivalent channel
length is pN.,, where N, shows the length of the cyclic
prefix. For each SNR level, M different target and input set
is generated. Therefore for each SNR level the size of the
whole target and input set becomes p N, x M and NL,, x M
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Table 1 ANN parameters and

functions Parameter Value Parameter Value
Number of hidden layers 1 Number of hidden neurons 512
Input size Px2 Number of Samples 5000
Training function Rprop Performance param. MSE
Divide function Random Divide param. [0.50.20.3]

Table2 OFDM Parameters

Parameter Value

Number of subcarriers 1024

Number of used subcarriers (K) 180N /256
Sub-carrier spacing (A y) 15 KHz
Bandwidth 10N /1024 MHz
Carrier frequency ( f..) 2.5GHz
Modulation type QPSK, 16QAM
Number of multipaths (L) 5

Pilot spacing (N ) 8

Resolution factor(p) 2,4,8

respectively, where N, shows the length of pilot spacing and
K shows the number of used subcarriers.

Another factor in wireless communications is signal-to-
noise ratio (SNR) that is a measure of the signal strength
compared to the background noise. So, each received sig-
nal generated will have a specific SNR. Lower the SNR
value, greater the distortion in received signal meaning that
the channel estimation becomes more challenging for the
smaller values of SNR. To have variety for each SNR level
during the training process, input and target vector samples
of ANN, ?;,, = [Glki], Glka], -~ , G[kp]” and &, are gen-
erated using (13) and (15), respectively, and our ANN based
estimator provides the estimate of sparse multipath channel
vector g as implemented in an OFDM transceiver whose
MSE and SER performances are exhibited by simulation
plots in Sect. 5. On the other hand, since the input and output
data of ANNSs should be real valued, complex valued input
and target vector samples, G p and g are both converted into
real valued input and target data concatenating their real and
imaginary parts vertically as seen in Fig. 3.

In our neural network structure, we have one hidden layer
with 512 neurons. The transfer functions used for the hid-
den layer and output layer are tangent sigmoid and linear
functions, respectively.

Tables 1 specifies the network parameters and functions
for the ANN and Table 2 shows the OFDM parameters. The
Divide Function represents the function with which the train-
ing set is divided into 3 subsets namely train, validate and
test in random fashion. This is used to check goodness of net-
work outputs when it is introduced with an input it has not
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seen before. The Divide Parameters set gives the ratio with
which these subsets are obtained. These subsets are neces-
sary for a neural network in the training phase for network to
avoid over-training and to keep a check on its MSE based per-
formance. An over-trained network suffers from over-fitting
where it memorizes the training sequences instead of finding
the input-output relationship and hence is unable to perform
efficiently for unseen inputs. The total number of samples in
the sample space are set to be 5000. This can be produced
in any number as per the requirement in the data production
phase discussed in the previous Sect. 3.1.

4 Computational complexity

The computational complexity of MP, OMP and ANN is
derived from the number of the total additions and multipli-
cations. O(-) notation is used to express the complexity of
the methods. General OMP and MP algorithms contain the
following steps:

~ Stepl: Initialize ro = ¥, g, = 0,89 = @ and i = 0
lay, 7|

Hani 112

— Step3: Update @, = @; U {a;,}

— Stepd: Calculate g, = (@], P11~ @],

— Step2: Find #; = arg max
i

Y, (OMP)

Calculate g = (¢;r+1¢i+1)7]¢;+1ri (MP)
— Step5: Update rj 1 = Y, — ®; 118, (OMP)

Update r;1 = r; — @185, (MP)
— Step6: Stop the algorithm if the stopping condition is
achieved (||r;|| < €), otherwise seti =i + 1 and go to
Step2

In this algorithm, r; is residue vector, ®; is a set in which
updated columns are concatenated and a,, is n;th column
vector of dictionary matrix A. According to the given OMP
algorithm, computational complexity calculated and results
are given in Table 3. Where, the A represents the itera-
tion index of the algorithm. Considering at least L iteration
requirement, the complexity of MP and OMP algorithms
can be given as O(4pN., PL) for multiplications and as
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Table 3 Computational

complexity of OMP Steps Complex multiplication Complex addition
Step2 (pNep — 1) P (pNep — W)(P — 1)
Step4 2PA2 4+ 23 4 P AP — DAZ 23+ (P — DA
Step5 P P+ (P—1xr

Table 4 Computational complexity comparison for A = 5

MP & OMP ANN

Multiplication ~ Addition ~ Multiplication  Addition
p =2 288000 216000 256000 256000
p=4 576000 432000 419840 419840
p=28 1152000 864000 747520 747520

O@BpNcp P L) for additions. Where P and L show the num-
ber of the pilots and paths respectively.

In a single layer ANN, while Ny shows the number neu-
ron in the hidden layer, the number of the multiplications are
2PNy and 2Ny pN¢p from input to hidden layer and from
hidden layer to output respectively and the total number of
the multiplications are 2Ny (P + pN¢p). Especially for large
hidden layer numbers, since the complexity of the addition is
almost the same with that of multiplication, the complexity
of ANN can be represented as O(2Ng (P + pN.p)) for both
multiplications and additions. By considering the parameters
shown in Table 1 and 2 , the total number of the multiplica-
tions and additions are given in Table 4 for p values studied
in this work. From Table 4, it can be seen that, the total num-
ber of the multiplications and additions of MP and OMP are
greater than that of ANN, especially for p values greater than
2.

5 Simulation results

In this section, we present computer simulations to evaluate
the performance of the proposed ANN based sparse channel
estimation algorithm. In these simulations the digital modu-
lation schemes are Quadrature Phase Shift Keying (QPSK)
and 16 Quadrature Amplitude Modulation (16QAM).

The total number of sub-carriers are N = 1024 and
after zero-padding the number of used sub-carriers is K =
180N /256. The MSE and SER performances for MP, OMP
and ANN based estimators are studied considering an LTI-
SMP channel with L = 5 paths and the other OFDM system
parameters are presented in Table 2.

Employing Monte-Carlo simulations with these settings,
the MSE and the corresponding SER performance curves of
the proposed ANN based sparse channel estimator are plotted
under different scenarios. While plotting the performance

—HE— ANN
—H—MP

—&— OMP

—O— Equivalent Ch.

—O— Perfect CSI

0 5 10 15 20 25 30
SNR (dB)

Fig.4 SER performance comparisons of MP, OMP and ANN channel
estimators (p = 2)

T
—HE— ANN
—¥k—MP

—&— OMP

—O— Equivalent Ch.

—O— Perfect CSI

Fig.5 SER performance comparisons for MP, OMP and ANN channel
estimators (p = 4)

curves for the perfect CSI cases in these figures, we use the
perfect channel expression in (6).

Figures 4, 5, and 6 show SER versus SNR comparison
of the MP, OMP and ANN estimators for different p val-
ues considering the perfect CSI and equivalent CSI cases as
well. From the figures, it can be seen that, for p values 2
and 4 the ANN outperforms MP and OMP algorithms for
all SNR levels. On the another hand, at the receiver side the
euclidean distance between the location of noisy received sig-

@ Springer



H. Senol et al.

T
—HE— ANN
—k—MmP

—&— OMP

—E&— Equivalent Ch.

—O— Perfect CSI

o
® %
102 ¢ p
:
102k
0 5 10 15 20 25 30

SNR (dB)

Fig.6 SER performance comparisons for MP, OMP and ANN channel
estimators (o = 8)

MSE
7,

57
Z

Vi
/4
W
2]
/
/
W

24
4

I

Ly
N

‘ ‘ ‘ : ‘ 5
0 5 10 15 20 25 30

SNR (dB)

%4

Fig.7 MSE performance comparisons for QPSK signaling and differ-
ent p values

nal and constellation points (every possible transmit signals)
are calculated, and therefore, the constellation point which is
closest to the received signal is decided as the transmit signal.
16QAM, as compared to QPSK, is more susceptible to addi-
tive noise because the constellation points are closer to each
other (i.e.,narrower decision boundary) so that a less power
of noise is required for correct symbol detection. Therefore,
QPSK gives a better SER performance at the same SNR
value.

In Fig. 6 for p = &, we observe a slight loss in the SER
performance of ANN estimator beyond 20dB SNR values.
This is because of the fact that the unnecessarily increasing
number of unknown coefficients with higher p values effects
the estimator performance negatively and dominates after a
certain higher p value. In these figures, perfect CSI plots are
plotted for SER performance benchmark in order to compare
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Fig.8 MSE performance comparisons for 16QAM signaling and dif-
ferent p values

the performances of MP, OMP and ANN channel estimators.
On the other hand, the performance of the equivalent CSI is
a little bit lower than that of perfect CSI since tap locations
are approximated but not exactly expressed by the equivalent
channel. For the sake of the clarity, SER performances for
SNR values greater than 20dB are also given in Table 5.

Figures 7 and 8 show the MSE performance plots of the
proposed ANN based channel estimator for different p val-
ues. From these figures it is clearly seen that for p = 2 and
p = 4 values, ANN outperforms MP and OMP for all SNR
levels. However, for the value of p = 8, there is aslightloss in
the SER performance of ANN estimator beyond 20dB SNR
values. This justifies the slight loss in the SER performance
for p = 8 as stated in the previous paragraph. It is straight-
forward that the computational complexity of ANN is lower
than that of MP and OMP algorithms since offline training
process of the ANN is a precomputation.

6 Conclusions

In this work, a low complexity ANN based channel esti-
mation algorithm is proposed for OFDM systems operating
over sparse multipath channels. For better modeling of sparse
multipath channel, we use the finer delay resolutions to be
able to represent sparse multipath delay positions within one
OFDM symbol duration. Thus, we obtain equivalent multi-
path channel by approximating non-integer tap locations as
accurate as possible with the finer delay resolutions. How-
ever, using finer resolutions to approximate non-integer delay
locations causes higher computational complexity in chan-
nel estimator algorithm since finer resolution increases the
size of delay grid and consequently the dimension of the
delay search space. MP and OMP algorithms, commonly
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Table5 SER values of the

oot SNR (QPSK) SNR (16QAM)
21dB  24dB _ 27/dB__ 30dB 21dB 24 dB 27dB 30 dB

p=2 MP 00167 00139 00125 00119  0.1066  0.0899  0.0817  0.0772
OMP 00135 0.0107 00093 0008 00837 00660 00567 0.0521

ANN  0.0094  0.0068  0.0057 00051 00575  0.0403  0.0319  0.0273

p=4 MP 00107 0.0079 00065  0.0059  0.0769  0.0592  0.0503  0.0459
OMP 0.0096  0.0068  0.0054 00048  0.0641  0.0457  0.0362  0.0315

ANN  0.0084  0.0058  0.0047  0.0041 00542 00370  0.0284  0.0239

p=8 MP 00081  0.0053 00039 00033 00645  0.0461  0.0370  0.0323
OMP 0.0074  0.0046 00032 00026 00537  0.0344  0.0250  0.0201

ANN  0.0079  0.0053 00041 00035 00532 00360  0.0274  0.0227

used in compressed sensing literature, are basically search
algorithms employed for determining the channel tap delay
locations, and therefore, they suffer from the higher computa-
tional complexity due to finer delay resolution. In this work,
in order not to deal with the higher computational load during
estimation process, we propose an ANN based sparse multi-
path channel estimator exploiting its offline training property.
The computer simulations, except a slight performance loss
for p = 8 beyond 20dB SNR levels, have demonstrated
that the proposed algorithm has much better channel esti-
mation and symbol error rate performances than that of the
MP and OMP algorithms as very popular sparse signal recov-
ery methods. As a future work, this slight performance loss
emerging with much higher delay resolutions can be elim-
inated by investigating different ANN structures. Finally,
comparing with MP and OMP algorithms, we conclude that
ANN based sparse multipath channel estimation algorithms
may have pretty much potential to be good candidates to meet
better performance and smaller latency between transmitters
and receivers in sparse channel environment.
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