
Vol.:(0123456789)1 3

Molecular Diversity 
https://doi.org/10.1007/s11030-021-10221-7

ORIGINAL ARTICLE

Potential inhibitors of methionine aminopeptidase type II identified 
via structure‑based pharmacophore modeling

Safana Albayati1 · Abdullahi Ibrahim Uba1,2 · Kemal Yelekçi1 

Received: 2 January 2021 / Accepted: 30 March 2021 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract
Methionine aminopeptidase (MetAP2) is a metal-containing enzyme that removes initiator methionine from the N-terminus of 
a newly synthesized protein. Inhibition of the enzyme is crucial in diminishing cancer growth and metastasis. Fumagillin—a 
natural irreversible inhibitor of MetAP2—and its derivatives are used as potent MetAP2 inhibitors. However, because of their 
adverse effects, none of them has progressed to clinical studies. In search for potential reversible inhibitors, we built structure-
based pharmacophore models using the crystal structure of MetAP2 complexed with fumagillin (PDB ID: 1BOA). The phar-
macophore models were validated using Gunner–Henry scoring method. The best pharmacophore consisting of 1 H-bond 
donor, 1 H-bond acceptor, and 3 hydrophobic features was used to conduct pharmacophore-based virtual screening of ZINC15 
database against MetAP2. The top 10 compounds with pharmacophore fit values > 3.00 were selected for further analysis. 
These compounds were subjected to absorption, distribution, metabolism, elimination, and toxicity (ADMET) prediction and 
found to have druglike properties. Furthermore, molecular docking calculations was performed on these hits using AutoDock4 
to predict their binding mode and binding energy. Three diverse compounds: ZINC000014903160, ZINC000040174591, and 
ZINC000409110720 with respective binding energy/docking scores of − 9.22, − 9.21, and −817 kcal/mol, were submitted to 
100 ns (MD) simulations using Nanoscale MD (NAMD) software. The compounds showed stable binding mode over time. 
Therefore, they may serve as a scaffold for further computational and experimental optimization toward the design of more 
potent and safer MetAP2 inhibitors.
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Introduction

Methionine aminopeptidase (MetAPs) is a metal-contain-
ing enzyme that cleaves the N-terminal initiator methionine 
from a number of newly synthesized protein—this step is 
required for a correct protein folding and function [1]. There 
are three known mammalian MetAPs: MetAP1, MetAP2, 
and MetAP3 (MAP1D). MetAP1 and MetAP2 are found 
in eukaryotes, while MetAP1 is expressed in procaryotes. 
MetAP2 plays a critical role in the growth of new blood 
vessels (angiogenesis) in cancers [2], and regulation of adi-
pose tissue in obesity through vasculature [3]. Fumagillin 
and its derivative TNP-470 are potent and selective natural 
inhibitors of MetAP2. Fumagillin and TNP470, potent and 
selective natural inhibitors of MetAP2, covalently bind to 
MetAP2 and block neovascularization via endothelial cell 
cycle arrest in the late G1 phase [1, 2, 4]. However, the U.S. 
Food and Drug Administration (FDA) found the biomol-
ecule inadmissible in clinical trials due to its toxicity. To 
date, no drugs have been approved targeting MetAP2, hence 
active search for MetAP2 inhibitors is needed.

Studies have shown that rational drug design approach 
could be successfully applied to specifically target the 
enzyme for the treatment of cancers [5, 6], obesity [7–9], 
and other diseases. Toward this goal, combinations of com-
putational and experimental methods have proven to be fast 
and effective [10, 11]. To treat obesity condition, Cheruval-
lath and coworkers employed a combination of fragment-
based and structure-based drug discovery methods to design 
potent (< 10 nM) indazoles that showed reversible MetAP2 
inhibition at nanomolar concentration [12]. In continuation 
with their studies, the group derived more potent, selective, 
and orally available MetAP2 inhibitors from pyrazolo[4,3-
b]indole core using SAR and accelerated knowledge-based 
fragment growth; and treatment with these inhibitors led to 
robust and sustainable body weight loss in DIO mice [13]. A 
potent and reversible MetAP-2 inhibitor, M8891, discovered 
via structure-based hit optimization, impeded the growth of 
primary endothelial cells and showed antitumoral activity 
in mouse models [14]. Recently, using a combined com-
putational molecular design approach, our group identified 
potential MetAP2 inhibitors [15]. Therefore, these studies 
and more [16] show that computational methods are pow-
erful tools that aid in the search for potent, selective, and 
reversible MetAP2 inhibitors; and their potential use to treat 
a variety of cancers, and obesity condition.

Here, in search for reversible inhibitors of MetAP2, 
structure-based pharmacophore models were built from 
the crystal structure of MetAP2 complexed with fumagillin 

(PDB ID: 1BOA)[17], and validated using Güner–Henry 
scoring method [18]. The best model (hypothesis 1) was 
used to conduct pharmacophore-based virtual screen-
ing of ZINC15 druglike database. Top hits with pharma-
cophore fit values > 3.00 were studied using molecular 
docking. To examine the stability of ligand binding mode, 
MetAP2 complexes with fumagillin and diverse com-
pound (ZINC000014903160, ZINC000040174591, and 
ZINC000409110720) from the top 10 hits were submitted 
to molecular dynamic simulation. These compounds were 
found to be stable in the active site of MetAP2, with similar 
orientation to that of the cocrystal ligand fumagillin. There-
fore, we suggest these compounds to be potential MetAP2 
inhibitors, subject to further computational and experimental 
optimization.

Methods

Structure‑based pharmacophore generation

Crystal structures of MetAP2 complexed with angiogenesis 
inhibitor fumagillin (PDB ID: 1BOA; Resolution: 1.80 Å 
[17] was retrieved from the protein data bank (PDB) [19]. 
The complex was prepared using the “Protein preparation 
toolkit” available in Biovia Discovery Studio 4.5. Subse-
quently, 10 structure-based pharmacophore models (hypoth-
eses) were built using “Receptor-based pharmacophore” 
generation toolkit of Biovia Discovery Studio 4.5. The phar-
macophore models were subjected to evaluation as described 
in the following section.

Pharmacophore model validation

A total of 39 known MetAP2 inhibitors, whose experi-
mental activity values and sources are shown in Table S1, 
were retrieved [20–32]. A total of 1842 inactive (decoys) 
compounds were generated using the Directory of Useful 
Decoys-Enhanced (http://​dude.​docki​ng.​org/) [33]. Hence, a 
database containing 39 active and 1842 inactive molecules 
was built and used to evaluate the discriminative ability of 
the pharmacophore model in distinguishing active com-
pounds from the inactive compounds. The database screen-
ing was performed using the pharmacophore database search 
available in Biovia Discovery Studio 4.5. The Güner–Henry 
scoring method was used to evaluate the ability of the gen-
erated models to selectively retrieve active molecules from 
a dataset containing known active and inactive molecules. 

http://dude.docking.org/
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The following equation was used to compute the goodness-
of-hit score:

The total hits is (Ht), number of active molecules (A), 
number of active hit (Ha), % active of actives (%A), yield 
of actives (%Y), enrichment factor (E), and goodness-of-hit 
score (GH). The GH score ranges from 0 to 1, which indi-
cates a null model and an ideal model, respectively [18, 34].

Pharmacophore‑based virtual screening

Hypo1 consisting of 1 H-bond donors, 1 H-bond accep-
tors, and 3 hydrophobic features (ADHHH) and Hypo2 
consisting of 2 H-bond acceptors and 3 hydrophobic fea-
tures (AAHHH), both from 1BOA complex, were found to 
have the highest GH score (0.92). A GH score between 0.6 
and 1.00 suggests robustness of a pharmacophore hypoth-
esis [18]. Hypo1 was selected based on feature diversity 
and used to conduct pharmacophore-based virtual screen-
ing of ZINC15 database containing over two hundred and 
230,000,000 commercially available compounds, freely 
accessible for download [35]. To reduce this huge data-
base to a manageable number, filtration was done based on 
“Lipinski’s rule of 5”: logP ≤ 5, molecular weight: 250 to 
500 Da, number of H-bond donors ≤ 5; number of H-bond 
acceptors ≤ 10; [36], and number of rotatable bonds ≤ 4 
[37]. A reduced database containing 6,000,000 compounds 
was built in Biovia DS 4.5, and Hypo1 was run against it. 
The top 10 compounds—all with pharmacophore fit value 
of > 3.00—were saved for further analysis.

Molecular docking

AutoDockTools [38] was used to assign partial charges to 
each atom to generate “protein.pdbqt”. The Zinc charge in 
this file was manually modified to + 2. Energy grid boxes 
of dimensions 70, 70, and 70 Å were used to cover the 
entire binding site of MetAP2 and its neighboring residues. 
The grid dimension was adopted from our previous study 
on computational identification of MetAP2 inhibitor [15]. 

%A =
Ha

A

%Y =
Ha

Ht
∗ 100

E =
Ha∕Ht

A∕D

GH =

(

Ha(2A + Ht)

4HtA

)

(

1 −
Ht − Ha

D − A

)

.

AutoDock 4.2′s Lamarckian genetic algorithm in Auto-
Dock4 [38] was used for ligand conformational search, with 
20 independent runs and 20,000,000 energy evaluations for 
each ligand.

Druglike and ADMET prediction

Even though the database was initially developed based on 
Druglikeness, further prediction based on Lipinski’s “Rule 
of 5” [36, 37], AdmetSAR server was used again to evaluate 
the top 10 hit compounds. This server calculates ADMET 
properties based on substructure pattern recognition using 
support vector machine algorithm [39].

Molecular dynamics simulation

The MetAP2 docking complexes with the pharmaco-
phore best-fitting compounds (ZINC000014903160, 
ZINC000040174591, and ZINC000409110720) were pre-
pared for MD simulation. As a control, the crystal structure 
of MetAP2 complexed with fumagillin (1BOA) was also 
prepared for MD simulation. Input files were generated 
using CHARMM-GUI server (http://​www.​charmm.​org)[40], 
via which the ligands were parameterized using CHARMM 
General Force Field (CGenFF) server (https://​cgenff.​param​
chem.​org/) [41]. MD simulation was performed using 
Nanoscale MD (NAMD) software [42]. For each system, 
the following simulation protocols were applied: 1000 steps 
of minimization by steepest descent method; 5 ns equilibra-
tion in standard number of particles, volume, and tempera-
ture (NVT) ensemble; and unrestrained 200 ns-production 
MD simulations in standard number of particles, pressure, 
and temperature (NPT) ensemble. The simulation was car-
ried out at 2 fs time scale, and the trajectory frame was col-
lected every 20 ps. To identify the most populated structure 
representing each system, the trajectories were clustered 
using RMSD cutoff of 2.5 Å in Chimera [43]. The stability 
of each system was assessed by computing the root mean-
square deviation (RMSD) and root mean-square fluctuation 
(RMSF) over the entire simulation period.

Results and discussion

Redocking of the cocrystal ligand

To validate the docking algorithm employed, the cocrys-
tal ligand fumagillin was redocked into the active site of 
MetAP2 using docking procedure described in molecular 
docking subsection above. The docked and crystal poses of 
fumagillin overlaid in the active site of MetAP2, aligned 
well with each other with RMSD value of 0.92 Å (Fig. 1).

http://www.charmm.org)
https://cgenff.paramchem.org/
https://cgenff.paramchem.org/
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Pharmacophore models generated

The 10 pharmacophores hypotheses generated, their fea-
tures, selectivity, and GH scores are given in Table 1. 
Hypothesis 1 (Hypo1) and hypothesis 2 (Hypo2) were found 
to have same GH score, despite consisting of different set 
of features. Hyop1 consists of 1 H-bond donors, 1 H-bond 
acceptors, and 3 hydrophobic features (ADHHH) and dis-
played the highest selectivity (Fig. 2). A pharmacophore 
model with high selectivity tends to retrieve compounds that 
fit well protein binding pocket [44, 45].

Predicted binding affinity of best‑fitting compounds

The top 10 compounds were found to have pharmacophore 
fit values > 3.00. Compounds with pharmacophore fit val-
ues > 3.00 have been shown by our previous data [45] and 
those of others [46] to have good inhibition potential against 
respective targets. The predicted binding affinities of the top 
10 hit compounds are ranked from highest to lowest—in 

comparison with that of the cocrystal ligand, fumagillin. 
The chemical structures of the diverse compounds are avail-
able in the supplementary materials (Table S1). The binding 
affinity of the best pose out of 20 generated docking poses 
for each compound is presented in Table 2. Compounds sub-
mitted to MD simulations were selected based on binding 
affinity and scaffold diversity.

Protein–Ligand interaction

Figure 2 shows the detailed interactions between MetAP2 
and ZINC000014903160 (Fig. 3a), ZINC000040174591 
(Fig. 3b), and ZINC000409110720 (Fig. 3c). The 3D and 
2D representations are provided in the left and right pan-
els, respectively. ZINC000014903160 spanned the active 
site of MetAP2 by forming strong metallic interaction with 
Co2+ ion via thiophene group; phi–cation interactions with 
His231 and His331; H-bond with Glu364, several hydro-
phobic interactions, and a couple of other interactions. 
The binding orientation of ZINC000014903160 and its 

Fig. 1   Molecular overlay of the 
cocrystal ligand (Fumagillin) 
(Pink) with its docked pose 
(Green) in the active site of 
MetAP2. The RMSD between 
the crystal and docked poses is 
found to be 0.92 Å

Table 1   Pharmacophore models 
and validation

H-bond donor (D); H-bond acceptor (A), Hydrophobic feature (H), total hits (Ht), number of active mol-
ecules (A), number of active hit (Ha), % active of actives (%A), yield of actives (%Y), enrichment factor 
(E), and goodness-of-hit score (GH). The GH score ranges from 0 to 1, which indicates a null model and an 
ideal model, respectively

Hypothesis Features Selectivity D A Ht Ha %A %Y E GH

1 ADHHH 8.9325 1881 39 31 30 76.92 96.77 46.674 0.917615711
2 AAHHH 8.0189 1881 39 31 30 76.92 96.77 46.674 0.917615711
3 ADHH 7.4177 1881 39 31 29 74.36 93.54 45.119 0.886546701
4 ADHH 7.4177 1881 39 38 31 79.49 81.57 39.346 0.80747975
5 ADHH 7.4177 1881 39 39 31 79.49 79.48 38.337 0.791419583
6 DHHH 7.4177 1881 39 39 30 76.92 76.92 37.101 0.765472313
7 AAHH 6.5041 1881 39 38 31 79.49 81.57 39.346 0.80747975
8 AAHH 6.5041 1881 39 34 28 71.79 82.35 39.719 0.79453771
9 AAHH 6.5041 1881 39 38 31 79.49 81.57 39.346 0.80747975
10 AHHH 6.5041 1881 39 34 30 76.923 88.23 42.557 0.852217735
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interactions may be correct enough to stabilize the com-
plex. In case of ZINC000409110720, the Co2+ ion was 
engaged with imidazole group via metal–acceptor inter-
action. Other types of interaction include a H-bond with 
His331, a couple of hydrophobic and van der Waal’s inter-
actions, phi–phi T-shaped and phi–sigma interactions. Fore 
MetAP2- ZINC000409110720 complex, Co2+ ion was not 
involved interactions—rather a strong H-bond was formed 
between the sulfonyl group and Asn329, and a phi–cation 
interaction between the central aromatic linker and His331. 
Other interactions include several hydrophobic interactions, 
a phi–phi T-shaped and a phi–sigma interaction. These inter-
actions added up to give the overall strong binding affinity 
observed in these ligands.

Predicted ADMET and druglike properties

The top 10 hit compounds showed potentialities to be drug-
like having obeyed Lipinski’s “Rule of 5” [36] and other 
physicochemical properties. All the physicochemical param-
eters were found to be within the range of orally available 
drug molecules (Table 3). Caco-2 cells permeability is a 
model of human intestinal absorption of drugs and other 
compounds [47]. Aqueous solubility is an important phys-
icochemical property that determines the uptake, and the 
distribution, metabolism, and elimination (ADME) charac-
teristics of a molecule [48].

Figure 4 shows ADMET plot of PSA (polar surface 
area) versus AlogP98 (n-octanol–water the logarithm of 
the partition coefficient). The ellipses enclose regions 
where well-absorbed compounds are expected to be 
found. About 95 and 99% of well-absorbed compound 
are expected to be within the ellipses colored in red and 

green, respectively, for intestinal absorption. Similarly, for 
the blood–brain barrier penetration, 95 and 99% of well-
absorbed inhibitors are expected to fall within the ellipses 
colored with magenta and aqua, respectively. Here, all the 
10 hits are enclosed inside all four ellipses, satisfying the 
conditions for absorption by the intestines and the brain.

Predicting and assessing the bioactivity of the 10 
compounds

Bioactivity of a compound is essential for assessing 
lead-likeness of a compound. Bioactivity prediction was 
recently applied to study potential inhibitors of MetAP2 
[15]. In this study, the following parameters were calcu-
lated: ligand efficiency (LEF), LEF scale, fit quality (FQ), 
and LEF-dependent lipophilicity (LEFDL) (Table 4) [49].

NHA is the number of heavy atoms in a molecule. BF 
is the ratio of the binding affinity.

Scaling function (LEF scale) is derived by fitting an 
exponent function for maximizing LEF values observed 
for a given NHA count:

LEFScale = 0.873 × e−0.026×NHA – 0.064.
FQ is the quotient of the observed LEF and the LEF 

scale and is given by:

LEFDL is the ratio of the log p to the LEF computed as:

LEF =
−BF

NHA
.

FQ =
LEF

LEF scale
.

Fig. 2   The best pharmacophore hypotheses generated using 1BOA complex: H-bond donor (Purple); H-bond acceptor (Green); Hydrophobic 
feature (Cyan). Hyop1 consists of 1 H-bond donors, 1 H-bond acceptors, and 3 hydrophobic features (ADHHH)
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Table 2   Calculated binding affinity of the best 10 compounds

Compound Structure Pharmacophore fit value ΔG (Kcal/mol)

Fumagillin

 

4.21  − 9.20

ZINC000048988425

 

3.98  − 10.01

ZINC000064968449

 

3.95  − 9.24

ZINC000014903160

 

3.92  − 9.22

ZINC000040174591

 

3.86  − 9.21

ZINC000095431249

 

3.84  − 8.49

ZINC000409110720

 

3.65  − 8.37

ZINC000066256921

 

3.33  − 8.19

ZINC000046087785

 

3.30  − 8.13
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When LEF > 0.3, FQ score increases and the affinity 
of the final compound approaches near optimal state. An 
LEFDL value > 3 suggests optimal compound [49].

Molecular dynamics simulation

A total of 4 systems (MetAP2 complexes with fuma-
gillin, and with 3 compounds: ZINC000014903160, 
ZINC000040174591, and ZINC000409110720) were 
submitted to unrestrained 200 MD simulation. These 3 
hit compounds were selected from the top 10 best-fitting 
compounds based on structural diversity.

RMSD is a commonly used measure of similarity 
between two protein structures, which in turn suggests 
structural stability [50]. Here, all frames were aligned 
with the initial structure and the resulting RMSD was 
computed. The RMSD of the 4 systems varied between 
0 and 4.2 Å until around 100 ns, and then converged to 
about 2.8 to 3.4 Å for the MetAP2 complexes with the 
3 hit compounds until the end of the simulation. On the 
other hand, the MetAP2-fumagillin complex reached 
RMSD convergence (between 3.2 and 4.0  Å) beyond 
130 ns (Fig. 5a). The backbone root mean-square fluc-
tuation (RMSF) is a measure of the displacement of a par-
ticular atom, or group of atoms (residue), relative to the 

LEFDL =
log p

LEF
.

reference structure, averaged over the number of atoms 
[51]. The RMSF is another parameter used to assess pro-
tein structural stability. The RMSF profiles of all the sys-
tems showed similar trends with the RMSD variations, 
although few residues away from the active site showed 
increased fluctuation (Fig. 5b). Therefore, these results 
suggest potentialities of the proposed compounds to form 
stable complexes with MetAP2.

Conclusion

Inhibition of MetAP2 has been shown to be promising for 
the treatment of cancers and obesity condition. In search for 
reversible MetAP2 inhibitors, structure-based pharmaco-
phore models were developed and used to screen a ZINC15 
database. The top hit compounds were filtered based on phar-
macophore fit criteria (Fit value > 3.00). The 10 best-fitting 
compounds subjected to ADMET and bioactivity predic-
tions were found to be druglike and efficient. Henceforth, 3 
compounds (ZINC000014903160, ZINC000040174591, 
and ZINC000409110720) selected from the best-fitting com-
pounds based on diversity were docked to the active site of 
MetAP2 and then subjected to all-atom MD simulation, with 
the crystal structure of MetAP2-fumagillin complex (1BOA) 
as positive control. These compounds demonstrate potential 
stability in the active site of MetAP2 over time. They may 
therefore serve as additional scaffolds for further optimization 
toward the design of more potent and safer MetAP2 inhibitors.

Table 2   (continued)

Compound Structure Pharmacophore fit value ΔG (Kcal/mol)

ZINC000015870630

 

3.21  − 8.11

ZINC000015831093

 

3.01  − 8.10
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Fig. 3   Interaction between MetAP2 and ligands. a ZINC000014903160. b ZINC000040174591. c ZINC000409110720. 3D and 2D interaction 
representations are shown in the left and right panels, respectively
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Table 3   Predicted ADMET and druglike properties of the top 10 hit compounds

LogP (Octanol–water partition coefficient) ≤ 5; Molecular weight ≤ 500  Da; H-Bond Donor ≤ 5. H-Bond Acceptor ≤ 5. T_PSA (Topological 
polar surface area) ≤ 140 Å2. P(BBB +) (Probability for blood–brain barrier penetration). Aqueous solubility (LogS ≥  − 5.7). Caco-2 permeabil-
ity > 22 nm/s

Compound Mol. Weight (Da) LogP TPSA (Å2) Rotatable 
Bonds

H-Bond 
Donor

H-Bond 
Acceptor

Aqueous solu-
bility (LogS)

Caco-2 perme-
ability (LogPapp, 
cm/s)

ZINC000048988425 425.9 2.965 91 4 2 5  − 4.057 0.7462
ZINC000064968449 393.5 3.643 68 8 2 4  − 2.84 0.6965
ZINC000014903160 383.5 3.987 87 4 2 6  − 3.48 0.5895
ZINC000040174591 337.5 3.649 79 5 2 5  − 3.317 0.6380
ZINC000095431249 312.4 2.699 93 5 2 6  − 2.461 0.5625
ZINC000409110720 381.5 4.992 55 6 1 4  − 4.012 0.5648
ZINC000066256921 332.4 2.907 87 7 0 8  − 2.899 0.6259
ZINC000046087785 319.37 2.958 84 4 2 6  − 3.13 0.5784
ZINC000015870630 391.5 4.159 63 6 1 4  − 3.662 0.6356
ZINC000015831093 324.8 2.578 87 4 2 5  − 3.681 0.5174

Fig. 4   Predicted ADMET and 
druglike properties of the top 
10 hit compounds. All the 10 
hits are enclosed inside all 
four ellipses, satisfying the 
conditions for absorption by the 
intestines and the brain
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