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Abstract—The cloud computing supported heterogeneous
cloud radio access network (H-CRAN) is one of the promising
solutions to support cellular IoT devices with the legacy cellular
systems. However, the dense deployment of small cells with
fractional frequency reuse in orthogonal frequency division
multiple access (OFDMA) based H-CRANs increases intra- and
inter-cell interference, turning the resource allocation into a
more challenging problem. In general, the macro cell users are
considered as the legacy users, whereas the cellular IoT devices
and small cell users share the macro cell users’ resource blocks in
an underlaid approach. In this paper, we investigate an underlaid
approach of resource allocation for small and macro cell users
to improve the energy efficiency (EE) in H-CRANs. The solution
approaches are derived with the Dinkelbach, Lagrange and Al-
ternating Direction Method of Multipliers (ADMM) methods by
considering maximum power, resource block allocation, fronthaul
capacity and quality of service (QoS) constraints of macro cell
users. A two-step energy efficient underlaid cellular IoT (UC-
IoT) supported H-CRAN method is proposed and evaluated
with overlaid cellular IoT (OC-IoT) supported H-CRAN and
underlaid H-CRAN without cellular IoT devices. The proposed
method is evaluated in terms of energy efficiency and the Jain’s
fairness index, considering the effect of number of cellular IoT
density in each small cell of the H-CRAN. The simulation results
demonstrate the effectiveness of the proposed approach compared
to earlier approaches.

Keywords: Energy Efficiency, H-CRAN, OFDMA, Resource
Block Allocation, Power Allocation, Cellular IoT Systems.

I. INTRODUCTION

The heterogeneous cloud radio access network (H-CRAN)
is regarded as an emerging technological and architectural
solution for the next generation cellular networks and is
expected to handle 100 times more traffic and user loads
as well as 1000 times higher network capacity [1]. The H-
CRAN consists of remote radio heads (RRHs) in small cells,
a centralized baseband unit (BBU) pool and wired/wireless
fronthaul links. The fronthaul links connect all RRHs to a
BBU pool. The H-CRANs consist of RRHs and macro base
stations (MBSs), where RRHs support IoT applications and
low data rate users, leaving the network control operations
such as interference and handover management, and high data
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Fig. 1: (a) IoT applications, (b) Cloud computing based het-
erogeneous cloud radio access network (H-CRAN) with one
macro cell and multiple small cells, (c) IoT clusters covered
by a small cell, where a cellular IoT device using cellular links
may cause interference to other small cell users.

rate users to the macro cell. In addition, all the BBUs in a BBU
pool are considered as computing servers to perform baseband
signal processing through a cloud computing technology [2].
The integration of computing servers in the BBU pool is
considered as a promising solution to handle the computing
jobs for smart city applications such as smart healthcare, smart
transportation, smart parking, industry automation, etc. [3].
Depending on the application, there are different categories
of IoT devices. Among them, some IoT devices are designed
in such a way that they use the cellular links for data
transmission [4]. For example, in a smart parking system, the
cellular IoT device collects all empty slot data and updates
the parking information to the cloud so that the users can use
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the cloud data to select the parking spot. Autonomous sensor
devices and cellular IoT devices in the industrial IoT (IIoT)
systems are managed by the centralized controller. In the
cloud computing-based H-CRAN, the BBU pool can maintain
computing servers, works as a centralized controller and sends
the data to the cellular IoT to operate the IIoT systems.
In cloud computing-based cellular IoT supported H-CRAN
systems, the cellular IoT device can send/receive data to/from
the computing servers in the BBU pool through the RRHs.
The cellular IoT devices are referred to as IoT cluster heads
or IoT data aggregators [5], which receive data from the other
nodes of the IoT cluster. In the downlink communication, the
cellular IoT devices receive data from the BBU pool through
the RRH and distribute that data to the IoT clusters. The IoT
cluster formation and cluster head selection are considered
in [5], whereas the design of different data aggregators are
discussed in [6]. In this work, we consider a dynamic resource
allocation policy among macro, small cell users and cellular-
IoT devices to avoid intra- and inter-cell interference in a
cellular-IoT supported H-CRAN system.

Deploying a large number of RRHs in a H-CRAN to support
cellular IoT devices and improve the network capacity and
spectrum efficiency of the next generation cellular networks
is a challenging problem [7], [8]. Moreover, the dense de-
ployment of RRHs in a H-CRAN increases the intra- and
inter-cell interference. Therefore, dynamic resource allocation
and scheduling policy are essential to control the interference
level as well as to improve the energy efficiency (EE) and
spectrum efficiency (SE) in the cellular IoT supported H-
CRAN systems. In this paper, we consider the macro cell
users to be the legacy users, which use dedicated orthogonal
radio resources, where the small cell users and cellular IoT
devices share the same radio resources of macro cell users
in an underlaid approach. The underlaid approach of resource
allocation supports two or more users that can share the same
resource under a dynamic resource allocation policy (i.e.,
power control, radio resource management), where secondary
users cannot interfere with the primary user’s communication
[9]. The underlaid approach is applied to wireless commu-
nication when the number of radio resources is limited and
the user density is high. In this paper, the small cell users
and cellular IoT devices are considered as secondary users
and macro cell users are considered as primary users. Also, a
resource scheduling policy is designed to share the same radio
resources among the small cell users and cellular IoT devices
so that if any macro cell radio resource is not used by small cell
users, the cellular IoT devices can utilize those resources for
data transmission. We consider the downlink communication,
where computing servers from BBU pool send data to the
cellular IoTs through cellular links. The energy efficiency
aspect of communication resource sharing in a cellular-IoT
supported H-CRAN is investigated here.

A. Related work

Considering the EE of H-CRANs, the authors in [10]
have proposed an optimal base station sleeping method in a
cloud-edge supported H-CRAN system. Authors in [11] have

considered an energy harvesting module for H-CRAN system
where all the RRHs are powered by energy harvesting. A
mesh adaptive direct search algorithm is proposed to improve
the EE of H-CRAN system. Similarly in [8], the authors
have proposed an EE framework for H-CRAN considering
the fractional frequency reuse in both macro and small cells.
Authors in [12] have considered only small cell users to
maximize EE in H-CRAN via BBU-offloading. However, the
authors in [8] and [12] did not consider different categories of
small cell users and an underlaid approach of resource sharing.
On the other hand, in [8], only energy savings at the BBU pool
side has been considered, which used an iterative process to
optimize the power in a BBU pool during the low traffic load
by switching off the virtual machines inside the BBU pool.

The orthogonal frequency division multiple access
(OFDMA) supported long-term evolution (LTE) and long-
term evolution advanced (LTE-A) networks utilize orthogonal
resources for the users to mitigate the intra-cell interference.
Similarly, OFDMA supported H-CRANs utilize orthogonal
resources for the small cell users [12], [13] which do not
consider the cellular IoT device as a small cell user. The
other challenge involved in OFDMA supported systems is
the OFDMA systems supporting limited number of users
due to the orthogonal radio resource allocation policy for
avoiding the interference. One of the potential solutions is
the underlaid approach of resource sharing, which improves
the spectrum efficiency of the networks as well as the user
density [9]. Considering the interference issues, authors in
[13] have proposed an auction-based distributed resource
allocation with the aim to improve the data rate of small cell
users.

Due to the limited number of orthogonal resources, authors
in [9] have considered an underlaid approach of orthogonal
resource sharing both for macro cell and small cell users,
with the aim to maximize the sum of tolerable interference
levels. Similarly, in this paper, we consider an underlaid
approach of downlink communication resource allocation for
both small cell and macro cell users to improve the EE in a
H-CRAN. Different from the above earlier works, we optimize
the EE performance of H-CRAN while improving the SE by
allocating the same orthogonal resources both for macro and
small cell users. Also, we consider cellular IoT devices as one
of the categories of small cell users who compete in resource
sharing with other small cell users.

B. Contributions and Organization of the paper
This paper considers the downlink communication resources

(i.e., resource blocks and power) allocation in cellular IoT
supported H-CRANs considering both small cell, cellular
IoT devices and macro cell users. In the resource alloca-
tion optimization problem, we consider the maximum power,
resource block allocation, fronthaul capacity and quality of
service (QoS) constraints of macro cell users, with the aim
to maximize the EE of H-CRAN. To solve the optimization
problem, we relax the original problem by replacing non-
convex constraints with convex constraints considering the
time-sharing approach of resource allocation, then we trans-
form the fractional objective function into a subtractive linear
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form. To support the underlaid approach of resource allocation,
we divide the original problem into two sub-problems. A
two-step energy efficient underlaid cellular IoT supported H-
CRAN (UC-IoT) method (i.e., Algorithm 1, Algorithm 2
and Algorithm 3) is proposed. The solution approaches are
implemented with the Dinkelbach and Alternating Direction
Method of Multipliers (ADMM) methods by allocating the
same radio resources to cellular IoTs, small cell and macro
cell users. In the first step, we apply the Dinkelbach theorem
and Lagrange multiplier method (i.e., Algorithm 1) to update
the resource allocation policy for all macro cell users. For
the EE problem, the Dinkelbach approach is very efficient for
solving large scale optimization problems. In our model, a two
tier C-IoT supported H-CRAN is considered, where constraints
are set according to the underlaid approach of RB allocation,
total power, minimum data rate and fronthaul capacity require-
ments. It is proven that for very large scale instances with
up to thousands of constraints and variables, the Dinkelbach
approach can yield the optimal solution while other mixed
integer non-linear programming (MINLP) solvers such as
branch-and-bound, outer-approximation method, would need
more computational (i.e., memory, CPU cycles) requirements.

In the second step, using the macro cell users’ resource
allocation policy, each small cell applies Algorithm 2 and
Algorithm 3 to obtain the optimal EE solution. Algorithm 3
utilizes the ADMM method, which returns the optimal power
allocation solution of each RRH in H-CRAN. The benefit
of using the ADMM method in Algorithm 3 is that it can
solve the EE optimization problem in H-CRAN by breaking
it into smaller sub-problems, where each sub-problem is then
easily handled by each RRH. The effectiveness of the proposed
method is verified through Monte Carlo simulation.

The rest of the paper is organized as follows. In Section II,
the system model for resource block and power allocation in
cellular IoT supported H-CRAN is presented. The correspond-
ing energy efficient resource allocation optimization problem,
objective and constraint sets, and the problem formulation are
presented in Section II. The relaxed problem and proposed
solution approaches are described in Section III. Section
IV provides the simulation results of the proposed method.
Finally, Section V concludes the paper.

II. SYSTEM MODEL AND ASSUMPTIONS

A. Cellular IoT supported H-CRAN

In this paper, we consider an OFDMA-based two-tier cel-
lular IoT supported H-CRAN which consists of the cloud
computing supported BBU pool, one macro cell and remote
radio heads covering small geographical location within the
macro cell base station and end users. The end users are
small cell user equipments (SUE), cellular-IoT (C-IoT) devices
and macro cell user equipment (MUE), as shown in Fig.
1. The H-CRAN user equipments have wireless sensor and
radio interfaces, which transmit or receive data through the
base station to/from the BBU pool. The users are categorized
according to the data rate requirements. The high data rate
users are considered as macro users connected to the macro
BS and low data rate users are SUEs and C-IoT devices. The

TABLE I: List of symbols

Symbol Description
J Number of small cells/RRHs
j Indexing for RRH
I Number of SUEs
i Indexing for SUE
D Number of C-IoTs
d Indexing for C-IoTs
M Number of C-IoTs
m Indexing for MUE
K Total number of H-CRAN users
R Number of RBs
r Indexing for RB
αr

i,j RB allocation variable for rth RB to jth RRH for SUE i
α = [αr

i,j ]I×J×R Matrix of RB allocation for all SUEs

βr
i,j RB allocation variable for rth RB to Bth MBS for MUE

m
β = [βr

m,B ]M×R Matrix of RB allocation for all MUEs

hr
i,j Channel gain from jth RRH to ith SUE on rth RB

P r
i,j Power allocation from jth RRH to SUE i on rth RB

Pj Static power of jth RRH
PI = [P r

i,j ]I×J×R Matrix of power allocation for all SUEs

P r
m,B Power allocation from MBS to MUE m on rth RB

PB Static power of Bth MBS
PM = [P r

m,B ]M×R Matrix of power allocation for all MUEs

Pmax
j Maximum power budget of jth RRH
Pmax

B Maximum power budget of MBS
γr
i,j SINR of ith SUE connected to jth RRH on rth RB

γr
m,B SINR of mth MUE connected to Bth MBS on rth RB
ω0 Additive white Gaussian noise term
σ2 Noise power

C-IoT devices are considered as intelligent devices, sometimes
referred to as the cluster head, IoT gateway or data aggregator
that utilize the cellular links send/receive data to/from the
computing servers in the BBU pool. The IoT cluster formation
and cluster header selection are out of the scope of this
paper. The BBU pool considers a centralized controller which
manages the user association, communication (i.e., spectrum
and power) and computing (i.e., BBU servers, computing
servers, etc.) resource allocation in the coverage area [2].
Using the control channel, the BBU pool collects the channel
state information (CSI), traffic information, users data rate
requirement, and available communication resources infor-
mation. In this work, an energy efficient underlaid resource
allocation policy is investigated and implemented for H-CRAN
based C-IoT systems that optimizes the network performance
by allocating the downlink communication resources to the
end users.

B. Network Model

We consider an OFDMA-based two-tier H-CRAN cellular
IoT system, as shown in Fig. 1, where S number of small cells
having J number of RRHs, indexed by j = {1, 2, ....,J }, are
covered by a single macro cell B with an underlaid approach.
For simplicity, we assume that the system supports a total num-
ber of R resource blocks (RB), indexed by r = {1, 2, 3, ...,R}
jointly assigned by the BBU pool to all end users. The system
supports a total number of users K = I

⋃
D
⋃
M, where

SUEs are indexed by i = {1, 2, 3, ..., I}, C-IoT devices are
indexed by d = {1, 2, 3, ...,D} and MUEs are denoted by
m = {1, 2, 3, ...,M}. Notation αri,j denotes the RB allocation
between SUE i and RB r on RRH j with αri,j = 1 if RB r is
assigned to SUE i in RRH j and otherwise αri,j = 0. Similarly,
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ρrd,j = 1 denotes the RB allocation between C-IoT device d
and RB r on RRH j or otherwise ρrd,j = 0 and βrm,B = 1
indicates that RB r is assigned to MUE m in MBS B.

The channel gain from RRH j to SUE i and C-IoT device d
on RB r is denoted as hri,j and hrd,j , respectively. The power
allocated from RRH j to SUE i and C-IoT device d on RB
r is denoted as P ri,j ∈ (0, Pmaxj ] and P rd,j ∈ (0, Pmaxj ],
respectively, where Pmaxj denotes the maximum power of
RRH j. The transmitted data symbol for user i is denoted
by xi, where E[|xi|2] = 1. The received signal of SUE i on
RB r can be written as:

Y ri =

(
hri,jα

r
i,jP

r
i,j

)
xi︸ ︷︷ ︸

desired signal

+

I
⋃
D∑

k=1,k 6=i

(
hri,jα

r
k,jρ

r
k,jP

r
k,j

)
xk︸ ︷︷ ︸

interference signal from the same cell

+

I
⋃
D∑

l=1,l 6=i

( J∑
n=1,n6=j

hri,nα
r
l,nρ

r
l,nP

r
l,n

)
xl︸ ︷︷ ︸

interference signal from other small cells

+
M∑
m=1

hri,Bβ
r
m,BP

r
m,Bxm︸ ︷︷ ︸

interference signal from the macro cell

+ω0, (1)

where the first term on the right hand side of (1) is the desired
signal for user i from RRH j on RB r, the second and third
terms denote the interference signal coming from other active
SUEs and C-IoT devices of the same and other cells using
the same RB r, respectively. The fourth term determines the

interference signal from all active MUEs using the same RB
r. The term ωo represents the additive white Gaussian noise,
where the noise variance is denoted by σ2. The signal-to-
interference-noise ratio (SINR) achieved by SUE i, attached
to RRH j on RB r can be written as

γri,j =
αri,jP

r
i,j |hri,j |2

Iri,j + σ2
, (2)

where Iri,j represents the aggregated interference power, de-
fined as in [9], [14], i.e.

Iri,j =

I
⋃
D∑

k=1,
k 6=i

αrk,jρ
r
k,jP

r
k,j |hri,j |2

︸ ︷︷ ︸
intra−cell interference from the same small cell

+

I
⋃
D∑

l=1,
l 6=i

J∑
n=1,
n6=j

αrl,nρ
r
l,nP

r
l,n|hri,n|2

︸ ︷︷ ︸
inter−cell interference from all small cells

+
M∑
m=1

βrm,BP
r
m,B |hri,B |2︸ ︷︷ ︸

inter−cell interference from macro cell

. (3)

Similarly, the SINR achieved by the C-IoT device d, attached
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to RRH j on r can be expressed by

γrd,j =
ρrd,jP

r
d,j |hrd,j |2

Ird,j + σ2
, (4)

where Ird,j is defined as

Ird,j =

I
⋃
D∑

k=1,
k 6=d

αrk,jρ
r
k,jP

r
k,j |hrd,j |2

︸ ︷︷ ︸
intra−cell interference from the same small cell

+

I
⋃
D∑

l=1,
l 6=d

J∑
n=1,
n6=j

αrl,nρ
r
l,nP

r
l,n|hrd,n|2

︸ ︷︷ ︸
inter−cell interference from all small cells

+
M∑
m=1

βrm,BP
r
m,B |hrd,B |2︸ ︷︷ ︸

inter−cell interference from macro cell

. (5)

and the SINR achieved by MUE m, attached to MBS B on r
can be expressed by

γrm,B =
βrm,BP

r
m,B |hrm,B |2

Irm,B + σ2
, (6)

where Irm,B represents the aggregated interference power of
macro cell user m observed in RB r, which can be expressed
as

Irm,B =
M∑

k=1,k 6=m

βrk,BP
r
k,B |hrm,B |2︸ ︷︷ ︸

intra−cell interference from other macro cell users

(7)

+

I
⋃
D∑

l=1,l 6=m

J∑
j=1

αrl,jρ
r
l,jP

r
l,j |hrm,j |2︸ ︷︷ ︸

inter−cell interference from all small cells

.

C. Problem Formulation

According to the Shannon theory, the achievable data rate
by SUE i and C-IoT device d from SBS j on RB r are Rri,j =
4f log2(1 + γri,j) and Rrd,j = 4f log2(1 + γrd,j) respectively,
where 4f denotes the bandwidth allocated to each RB, and
the total data rate of all SUEs can be expressed as

RTs
(α,PI) =

I∑
i=1

J∑
j=1

R∑
r=1

αri,jR
r
i,j . (8)

Similarly, the achievable data rate of all C-IoT devices and
macro cell users can be expressed as:

RTd
(ρ,PD) =

D∑
d=1

J∑
j=1

R∑
r=1

ρrd,jR
r
d,j (9)

and

RTm(β,PM) =
M∑
m=1

R∑
r=1

βrm,BR
r
m,B , (10)

respectively. The total allocated powers of small and macro
cell users are denoted by

PTj
(α,PI) =

I∑
i=1

J∑
j=1

R∑
r=1

αri,jP
r
i,j︸ ︷︷ ︸

dynamic

+
J∑
j=1

Pj︸ ︷︷ ︸
static

, (11)

and

PTB
(β,PM) =

M∑
m=1

R∑
r=1

βrm,BP
r
m,B︸ ︷︷ ︸

dynamic

+ PB︸︷︷︸
static

, (12)

respectively. Similar to [15], we assume that each small and
macro cell has dynamic and static power factors. The dynamic
power depends on the resource allocation, whereas the alter-
native current (AC) circuit power is regarded as static power.
The total power of C-IoT device depends on the transmission
power and device activation, sensing and reception (ASR)
power [5].

PTd
(ρ,PD) =

D∑
d=1

J∑
j=1

R∑
r=1

ρrd,jP
r
d,j︸ ︷︷ ︸

Transmission

+
D∑
d=1

Pd︸ ︷︷ ︸
ASR

, (13)

The objective of the resource allocation is to maximize the
EE (i.e., η) in terms of data rate and power. The EE can be
measured by the ratio of total achievable data rate and total
allocated power (bits/W), written as:

η =
RTj

(α,PI) +RTd
(ρ,PD) +RTm

(β,PM)

PTj (α,PI) + PTd
(ρ,PD) + PTB

(β,PM)
,

=
RT (α,ρ,β,PI ,PD,PM)

PT (α,ρ,β,PI ,PD,PM)
(14)

where α,ρ,β,PI ,PD, and PM are the RB association and
power allocation policies for all SUEs, C-IoT devices and
MUEs, respectively.

We define the following constraint sets in order to maximize
the EE in a H-CRAN based C-IoT system. In the constraint
sets, we consider that all users are associated with either the
RRHs or the MBS, utilizing the RBs and power to transmit
the data without causing interference to each other.

RB association and interference mitigation constraints:

C1:
R∑
r=1

βrm,B ≤ 1, ∀m ∈M, (15)

C2:
R∑
r=1

βrm,B(αri,j + ρrd,j) ≤ 1, ∀i ∈ I,∀d ∈ D,∀j ∈ J ,

(16)
C3: βrm,B ∈ {0, 1}, αri,j ∈ {0, 1}, ρrd,j ∈ {0, 1}. (17)

Constraint C1 ensures that each RB is associated with
only one MUE. However, for spectrum efficiency we assume

Authorized licensed use limited to: ULAKBIM UASL - Kadir Has University. Downloaded on May 28,2021 at 17:48:26 UTC from IEEE Xplore.  Restrictions apply. 



0018-9545 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3076825, IEEE
Transactions on Vehicular Technology

6

that an SUE or a C-IoT device can utilize the MUE’s RB
in an underlaid approach. The underlaid approach of RB
allocation increases the intra- and inter-cell interference levels
in H-CRAN as shown in Fig. 2(a). To mitigate the intra-cell
interference, we incorporate constraint C2 which ensures that
each MUE RB is associated with only one SUE or C-IoT in
each small cell. Constraint C3 enforces the binary association
of RB. Fig. 2(b) shows the scenario after applying the C2
and C3 constraints. For the inter-cell interference, we assume
that the centralized BBU pool manages the interference level
among the RRHs.

Maximum power constraint: In this work, we consider
the downlink transmission, where the end users get data
from the BBU pool from a base station. The C-IoT devices
receive instructions through the cellular links from the RRHs.
For downlink transmission, we consider the maximum power
budget of the base station that is allocated to the transmis-
sion links. The constraint C4 ensures the upper limit of the
transmission power of each RRH which is allocated to the
transmission links of SUEs and C-IoT devices. Similarly,
constraint C5 ensures the maximum power budget of MBS
which is distributed among the transmission links between
MBS and MUEs.

C4:
I∑
i=1

R∑
r=1

αri,jP
r
i,j +

D∑
d=1

R∑
r=1

ρrd,jP
r
d,j ≤ Pmaxj , ∀j ∈ J ,

(18)

C5:
M∑
m=1

R∑
r=1

βrm,BP
r
m,B ≤ PmaxB . (19)

Minimum data rate constraint: As the SUE and the C-
IoT device share the same RB with the MUE, the minimum
rate constraint ensures the QoS of MUE in C6 as

C6:
R∑
r=1

βrm,BR
r
m,B ≥ Rmin, ∀m ∈M, (20)

where Rmin is the minimum data rate threshold value for
MUE.

Fronthaul capacity constraint: Constraint C7 ensures the
maximum fronthaul capacity of each RRH, where zmaxj

refers to the maximum limit of the signals transmitted on the
fronthaul link of each RRH, and it is given as

C7:
I∑
i=1

R∑
r=1

αri,j +
D∑
d=1

R∑
r=1

ρrd,j ≤ zmaxj , ∀j ∈ J . (21)

The mathematical formulation of the energy efficient re-
source allocation problem can be described as follows:

P1: max
α,ρ,β,PI ,PD,PM

η (22)

subject to: C1-C7

In (22), the objective is to maximize the EE of the H-
CRAN system by allocating the macro cell users’ radio
resources to small cell users and C-IoT devices considering
the quality of service constraint of macro cell users. The
optimization parameters considered in this problem are : i)

RB allocation for SUEs, CR-IoT devices and MUEs (i.e.,
αri,j ∈ {0, 1},ρrd,j ∈ {0, 1}, βrm,B ∈ {0, 1} and ii) power
allocation for end users (i.e., P ri,j , P

r
d,j and P rm,B).

III. SOLUTION APPROACHES

The objective function in (22) and the constraint C3 turn
the problem P1 into a mixed integer non-convex fractional
programming problem. The optimization problem P1 is com-
putationally intractable and is an NP-hard problem [16], [17].
Therefore, we relax the problem P1 by replacing the non-
convex constraints with the convex constraints and transform
the fractional objective function of P1 to the subtractive linear
form. First, we relax the constraint C3 by assuming the time
sharing approach of the RB allocation [18], i.e., 0 ≤ αri,j ≤ 1,
0 ≤ ρrd,j ≤ 1, and 0 ≤ βrm,B ≤ 1. We introduce three new
variables Γri,j = αri,j ∈ (0, 1] and Θr

d,j = ρrd,j ∈ (0, 1] and
Λrm,B = βrm,B ∈ (0, 1]. Γri,j , Θr

d,j and Λrm,B represent the
time sharing factors of the resource blocks of SUE, C-IoT
device and MUE, respectively. It denotes the portion of time
the RB r is allocated to the user. Let PIri,j = Γri,j × P ri,j ,
PDrd,j = Θr

d,j × P rd,j and PMr
m,B = Λrm,B × P rm,B , where

PIri,j , PD
r
d,j denote the actual transmit power of the SUE

i and C-IoT device d on RB r respectively. PMr
m,B is the

allocated power of MUE m on RB r. Next, according to [8]
and [15], we can transform the fractional objective function
of P1 to the subtractive linear form. The relaxed problem can
be represented by:

P2: max
Γ,Θ,Λ,PI ,PD,PM

RT (Γ,Θ,Λ,PI ,PD,PM)

− q∗PT (Γ,Θ,Λ,PI ,PD,PM)

subject to: (23)

~C1:
R∑
r=1

Λrm,B ≤ 1, ∀m ∈M,

~C2:
R∑
r=1

Λrm,B(Γri,j + Θr
d,j) ≤ 1, ∀i ∈ I,∀d ∈ D,∀j ∈ J ,

~C3: Λrm,B ∈ (0, 1], Γri,j ∈ (0, 1], Θr
d,j ∈ (0, 1],

~C4:
I∑
i=1

R∑
r=1

PIri,j +
D∑
d=1

R∑
r=1

PDrd,j ≤ Pmaxj , ∀j ∈ J ,

~C5:
M∑
m=1

R∑
r=1

PMr
m,B ≤ PmaxB .

~C6:
R∑
r=1

Λrm,BR
r
m,B ≥ Rmin, ∀m ∈M,

~C7:
I∑
i=1

R∑
r=1

Γri,j +
D∑
d=1

R∑
r=1

Θr
d,j ≤ zmaxj , ∀j ∈ J .

where q∗ is the global optimal EE, i.e.,

q∗ =
RT (Γ∗,Θ∗,Λ∗,P ∗I ,P

∗
D,P

∗
M)

PT (Γ∗,Θ∗,Λ∗,P ∗I ,P
∗
D,P

∗
M)

(24)

= max
Γ,Θ,Λ,PI ,PD,PM

RT (Γ,Θ,Λ,PI ,PD,PM)

PT (Γ,Θ,Λ,PI ,PD,PM)
.
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The objective function in (23) is concave, the constraint
( ~C6) is convex and the remaining constraints in ( ~C1)-( ~C5),
( ~C7) are affine. Therefore, the optimization problem P2 is
convex [17]. The relaxed problem P2 satisfies the time-sharing
approach of RB allocation. In [19], the authors showed that
the duality gap is negligible when the time-sharing condition
is satisfied. Therefore, when the number of RBs is sufficiently
large, the solution of the relaxed problem is asymptotically
optimal.

The global optimal solution q∗ in (23) and (24) is difficult
to achieve because an underlaid approach of RB allocation
scheduling polices is assumed in the system model. The RB
and power allocation policy for MUEs (i.e. Λ,PM) needs
to be derived first. Then, using the MUEs resource allocation
information (Λ,PM), the feasible resource allocation solution
for SUEs and C-IoTs will be derived. Therefore, we have
adopted a two-step iterative approach to solve the problem P2.
We have split P2 into two sub-problems: i) resource allocation
for MUEs (P3) and ii) resource allocation for SUEs and C-IoT
devices (P4). The resource allocation problem for MUEs can
be formulated as

P3: max
Λ,PM

RT (Λ,PM)− u∗
(
PT (Λ,PM)

)
subject to: (25)

~C1:
R∑
r=1

Λrm,B ≤ 1, ∀m ∈M,

~C3: Λrm,B ∈ (0, 1],

~C5:
M∑
m=1

R∑
r=1

PMr
m,B ≤ PmaxB .

~C6:
R∑
r=1

Λrm,BR
r
m,B ≥ Rmin, ∀m ∈M.

where u∗ is the optimal EE solution for MUEs, i.e.,

u∗ =
RT (Λ∗,P ∗M)

PT (Λ∗,P ∗M)
= max

Λ,PM

RT (Λ,PM)

PT (Λ,PM)
.

Theorem 1: For RT (Λ∗,P ∗M) ≥ 0 and PT (Λ∗,P ∗M) > 0,
u can reach its optimal value if and only if

max
Λ,PM

RT (Λ,PM)− u∗PT (Λ,PM) = 0

Proof: See Appendix A.

Similarly, the RBs and power optimization problem for

SUEs and C-IoTs can be formulated as

P4: max
Γ,Θ,PI ,PD

RT (Γ,Θ,PI ,PD)− v∗PT (Γ,Θ,PI ,PD)

subject to: (26)

~C2:
R∑
r=1

Λrm,B(Γri,j + Θr
d,j) ≤ 1, ∀i ∈ I,∀d ∈ D,∀j ∈ J ,

~C3: Γri,j ∈ (0, 1], Θr
d,j ∈ (0, 1],

~C4:
I∑
i=1

R∑
r=1

PIri,j +
D∑
d=1

R∑
r=1

PDrd,j ≤ Pmaxj , ∀j ∈ J ,

~C6:
R∑
r=1

Λrm,BR
r
m,B ≥ Rmin, ∀m ∈M.

~C7:
I∑
i=1

R∑
r=1

Γri,j +
D∑
d=1

R∑
r=1

Θr
d,j ≤ zmaxj , ∀j ∈ J .

A. Resource Allocation Policy for MUEs

To perform the power allocation of MUE, we use the
Karush-Kuhn-Tucker (KKT) optimality and define the La-
grangian function in (27), which is given at the top of the
next page. In (27), δM, ζMm are the Lagrange multipliers
for the constraints C5 and C6 of problem P3, respectively.
Differentiating (27) with respect to P rm,B , we obtain the
following power allocation of MUE m over RB r as

P rm,B =

[
1− ηMm

ln(u− δM)
− 1

Grm,B

]+

, (28)

where Grm,B =
|hr

m,B |
2

Irm,B+σ2 and [ε]+ = max(ε, 0), which is
a multi-level water filling allocation [17]. The calculation of
(28) is provided in Appendix B.

Knowing P rm,B and u, we can get the RB for MUE by
taking the derivative of (27) with respect to Λrm,B

∂L
∂Λrm,B

= ∆r
m


< 0, Λrm,B = 0

= 0, 0 < Λrm,B < 1

> 0, Λrm,B = 1

(29)

where ∆r
m = (1−ζMm ) log2(1+γrm,B)+P rm,B(u−δM). (29)

shows the three KKT conditions for the RB allocation to the
MUE. The ∆r

m will be positive when Λrm,B = 1 and the RB
r∗ is allocated to the MUE m with the largest ∆r

m,B , i.e.

Λr
∗

m,B = 1 when r∗ = max ∆r
m∀r (30)

For the variable update, the following equations are used:

δM(t+ 1) = δM(t)− ξt1

{
PmaxB −

M∑
m=1

R∑
r=1

Λrm,BP
r
m,B

}
(31)

ζMm (t+ 1) = ζMm (t)− ξt2
{∑M

m=1

∑R
r=1

{
Λrm,B log2(1 + γrm,B)−Rmin

}}
(32)

The iterative approaches to obtain the optimal EE u∗ and
resource allocation policy (i.e., (Λ,PM)) for MUEs are given
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L(Λ,PM, t, δM, ζMm ) =
M∑
m=1

R∑
r=1

Λrm,B log2(1 + γrm,B)− u∗
{ M∑
m=1

R∑
r=1

Λrm,BP
r
m,B

}
− δM

{
PmaxB −

M∑
m=1

R∑
r=1

Λrm,BP
r
m,B

}
(27)

−
M∑
m=1

R∑
r=1

ηMm
{

Λrm,B log2(1 + γrm,B)−Rmin
}
,

in Algorithm 1. According to Theorem 1, for a given u and
resource allocation policy (Λ,PM), we can iteratively obtain
the solution of u∗. The process is repeated until the EE is
maximized, i.e., RT (Λ,PM) − q(.)PT (Λ,PM) ≤ ε, where
u(.) = RT (Λ,PM)

PT (Λ,PM) is the EE at the iteration (.) and ε is a
small-valued maximum tolerance level.

Algorithm 1: Resource allocation policy (Λ,PM)
for MUEs

1 Initialization: t = 0 and u(t) = 0;
2 Set maximum number of iterations tmax and maximum

tolerance level ε;
3 Initialize Lagrange multipliers δM, ζM and step size ξ1, ξ2 ;
4 Iteration:;
5 while not converged OR t! = tmax do
6 Obtain resource allocation policies (Λ

′
,P

′
M);

7 Given u(t), loop over MUE m ;
8 while m! =M do
9 Obtain P r

m,B using equation (28). ;
10 Obtain Λr

m,B using equation (30). ;
11 Update δM, ζM using equations (31) and (32).;
12 end
13 if RT (Λ

′
,P

′
M)− u(t)PT (Λ

′
,P

′
M) ≤ ε then

14 converge=true;
15 Set (Λ∗,P ∗M) = (Λ

′
,P

′
M)

16 end
17 else
18 converge=false;

19 Set u(t+ 1) =
RT (Λ

′
,P

′
M)

PT (Λ
′
,P

′
M)

;

20 Set t=t+1 ;
21 end
22 end

B. Resource Allocation Policy for Small Cells

As small cell users reuse the macro cell user RBs, the
RB scheduling policy for small cell users must satisfy the
constraints ~C2, ~C3, ~C6 and ~C7. The constraint ~C2 enforces
that each macro cell user RB can be utilized by either the
SUE or C-IoT device. The underlaid approach of RB selection
for SUEs and C-IoTs must satisfy the QoS requirements of
the MUEs (i.e., ~C6) and fronthaul capacity constraint of H-
CRAN (i.e., ~C7). Assuming a fixed power allocation in each
small cell, Algorithm 2 iteratively verifies the constraints ~C2
and ~C3 that each MUE RB is associated with only one SUE
or C-IoT device in each small cell (Line 6 and 14). If the
constraints ~C2 and ~C3 are satisfied, then the MUE minimum
data rate constraint ~C6 is verified in line 8 and line 16 for
the SUE and the C-IoT device, respectively. The fronthaul

capacity constraint ~C7 is verified in line 21. The Algorithm
2 verifies all the constraints of P4 and returns the underlaid
approach of RB allocation of the SUEs and C-IoT devices.
Using this RB allocation solution, we apply the Alternating
Direction Method of Multipliers (ADMM) [20], [21] to update
the power allocation in each small cell. Using the ADMM
method, we can solve the power allocation problem of P4 in
a distributed manner. Each RRH j applies an ADMM based
power update policy (i.e., Algorithm 3) for the SUE and the
C-IoT device. Utilizing ADMM method, the power allocation
problem of SUE and C-IoT devices for RRH j can be defined
as follows:

P5: min
Γ,Θ,PI ,PD

f(Γ,PI) + g(Θ,PD) (33)

I∑
i=1

R∑
r=1

PIri,j +
D∑
d=1

R∑
r=1

PDrd,j ≤ Pmaxj

where

f(Γ,PI) =
I∑
i=1

R∑
r=1

Γri,jR
r
i,j − v1

j

( I∑
i=1

R∑
r=1

Γri,jP
r
i,j + Pj

)

g(Θ,PD) =
D∑
i=1

R∑
r=1

Θr
d,jR

r
d,j−v2

j

( D∑
d=1

R∑
r=1

Θr
d,jP

r
d,j+

D∑
d=1

Pd

)

Lj(Γ,PI ,Θ,PD, χj) =
∑I
i=1

∑R
r=1 Γri,jR

r
i,j − v1

j

(∑I
i=1

∑R
r=1 Γri,jP

r
i,j

+ Pj

)
+
D∑
i=1

R∑
r=1

Θr
d,jR

r
d,j − v2

j

( D∑
d=1

R∑
r=1

Θr
d,jP

r
d,j +

D∑
d=1

Pd

)

− χj

{
Pmaxj −

I∑
i=1

R∑
r=1

Γri,jP
r
i,j −

D∑
d=1

R∑
r=1

Θr
d,jP

r
d,j

}

− ρ

2

(
Pmaxj −

I∑
i=1

R∑
r=1

Γri,jP
r
i,j −

D∑
d=1

R∑
r=1

Θr
d,jP

r
d,j

)2

(34)

variable update:

{PI}t+1 = arg min
PI

= Lj(Γ,PI ,Θ, {PD}t, χjt)

{PD}t+1 = arg min
PD

= Lj(Γ, {PI}t+1,Θ,PD, χj
t)
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χj
t+1 = χj

t − ρ

(
Pmaxj − (

I∑
i=1

R∑
r=1

Γri,jP
r
i,j)

t+1

− (
D∑
d=1

R∑
r=1

Θr
d,jP

r
d,j)

t+1

)
(35)

Algorithm 2: Iterative algorithm for obtaining the
underlaid RB allocation policy (Γ,PL,Θ,PD) for
small cell users

1 Initialization: For the jth RRH, collects CSI of its users
and initialize the parameters R, I, and D ;

2 Resource allocation policy (Λ, PM) obtain from Algorithm
1;

3 Each jth RRH counts the total number of user requests and
sets a fixed power level p =

Pmax
j

I+D for each user so that
constraint ~C4 is satisfied ;

4 for r ← 1 to R do
5 for i← 1 to I do
6 if Λr

m,B == 1 AND Γr
i,j == 0 then // Check

constraints ~C2 and ~C3
7 Considering SUE i, calculate γr

m,B and Irm,B

using equations (6) and (7);
8 if Λr

m,BR
r
m,B ≥ Rmin then // Check

constraint ~C6
9 Γr

i,j ← 1;
10 end
11 end
12 end
13 for d← 1 to D do
14 if Λr

m,B == 1 AND Γr
i,j + Θr

d,j==0 then
// Check constraints ~C2 and ~C3,
Find d where r is not used by SUE

15 Considering C-IoT d, calculate γr
m,B and Irm,B

using equations (6) and (7);
16 if Λr

m,BR
r
m,B ≥ Rmin then // Check

constraint ~C6
17 Θr

d,j ← 1;
18 end
19 end
20 end
21 if

∑∑
Γr
i,j +

∑∑
Θr

d,j > zmax
j then // Check

constraint ~C7
22 break;
23 end
24 end
25 return (Γ,PI ,Θ,PD)

IV. SIMULATION RESULTS

In the simulation model, we consider a 120 m × 100 m area,
where one macro base station is underlaid by 5 to 6 small cell
base stations. The locations of MBS, RRHs and C-IoTs are
fixed. The locations of SUEs and MUEs are modeled using a
spatial Poisson point process with predefined intensity values.
The number of RBs and MUEs are constant and the number
of SUEs and C-IoTs are varied from 1 to 200. For small cell
users, the distance based pathloss model is considered. Also,
we consider the location-aware user association scheme, where
the users are associated with the closest base station depending
on the relative distance and signal strength. The settings for the
simulation parameters are shown in Table II. The simulation

Algorithm 3: Using ADMM method to update the
power allocation for each small cell.

1 Initialization: Initialize the constant parameter
Pmax
j ,v1j , v

2
j , χj and set a threshold value ε, which is a

small positive number ;
2 Initialize RB and power (Γ,PI ,Θ,PD)t using Algorithm 2;
3 for t = 1, 2, .. do // Using Equations

(34)and(35) update power to satisfy the
constraint ~C4

4 Set
{PI}t+1 = arg minPI = Lj(Γ,PI ,Θ, {PD}t, χj

t);
5 Set {PD}t+1 = arg minPD =

Lj(Γ, {PI}t+1,Θ,PD, χj
t);

6 update χj
t+1 using the method (35);

7 If the stopping criteria are satisfied, go to step 9 ;
8 end
9 return (Γ,PI ,Θ,PD)

TABLE II: Simulation parameters

Parameters Values

Total number of H-CRAN small cell users (SUEs & C-IoTs) 1− 200
Total number of RBs 100
Total number of H-CRAN macro cell users (MUEs) 100
RB bandwidth 180 kHz
System bandwidth 20 MHz
Radius of small cell 10 m
Minimum data rate requirements 10-104 bps/Hz
Transmission power of RRH 10− 29 dBm
Transmission power of MBS 30− 43 dBm
Path-loss exponent 4
Path-loss model for macro cell 128.1 + 37.6 log10(d)
Path-loss model for small cell 140.7 + 36.7 log10(d)
Noise power spectral density −144 dBm/Hz

runs are averaged over 1000 iterations. The performance of
our proposed method is evaluated in terms of EE and Jain’s
fairness index in H-CRAN. According to the EE of the entire
H-CRAN system, we define the Jain’s fairness index as:

F =

(∑J
j=1 ηj

)2

J
∑J
j=1 η

2
j

. (36)

The performance of the proposed solution of underlaid C-
IoT supported H-CRAN (i.e., Algorithm 1, Algorithm 2
and Algorithm 3) is compared against that of two baseline
schemes using two different power budgets of macro and small
cell base stations.
• Baseline one - Overlaid C-IoT supported H-CRAN (OC-

IoT): To avoid intra-tier interference, the H-CRAN al-
locates the orthogonal RBs to all MUEs, SUEs and C-
IoTs in a sequential order. At first, all MUEs choose the
RBs based on the minimum data rate requirements (i.e.,
constraint C6). Then, the rest of the RBs are equally
allocated to all small cells. For power control, all base
stations cooperatively optimize the transmit power to
maximize the EE of the H-CRAN system.

• Baseline two - Underlaid H-CRAN without C-IoT (U)
[9]: All the RBs of MUEs are shared by the SUEs.
The optimal power and RB allocation to maximize the
sum of the tolerable interference levels in H-CRAN are
considered as in [9]. The number of users, small cell base
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P1: EE resource allocation in H-CRANs (Non-convex, MINLP) 

P3: RA Policy for MUEs (Convex)

P2: Transforms from P1 using time sharing approach of resource allocation and 
Dinkelbach theory (Convex, global solution)

P4:  RA Policy for SUEs and C-IoT devices
(Convex) 

Solution Approach of P3: 
Algorithm 1 returns the feasible 
RBs for MUEs   (, PM), 

Solution Approach of P4:  
Assuming fixed power allocation and 
using ( , PM),   Algorithm 2 returns 
the feasible RBs for SUEs and  C-IoTs.
Set ( ,PL)

t  and (, PD)t

Solution Approach of P5: Algorithm 3 
using ADMM method adjusts the  
resource allocation policy for SUEs and 
C-IoTs {( ,PL) (, PD) } for each small 
cell.

P5: Transforms from P4 using ADMM 
method 

Fig. 3: Problem transformations and energy efficient underlaid C-IoT supported H-CRAN (UC-IoT) solution method.

stations and their location are the same as in baseline one.
• Proposed scheme - Underlaid C-IoT supported H-CRAN

(UC-IoT): The UC-IoT method sequentially applies the
three algorithms to obtain the underlaid EE solution for
H-CRAN. The sequential flow of problem transforma-
tions and solution approaches is shown in Fig. 3. In
the UC-IoT method, initially Algorithm 1 is applied to
obtain the EE solution for MUEs. Then, Algorithm 2 is
applied which considers an equal power allocation and
utilizes the MUE RBs to find the feasible RBs for SUEs
and C-IoTs. Lastly, Algorithm 3 is applied to adjust the
EE solution for each small cell in a distributed manner.
The number of users, RBs, small cells and locations are
the same as in the baseline one. To verify the underlaid
approach of RB allocation, the total number of RBs and
MUEs are the same and are kept constant.

In the proposed underlaid C-IoT (UC-IoT) method, we utilize
Dinkelbach method in Algorithm 1 to obtain the EE solution
for MUEs. The orthogonal multiple access based geometric
water filling (OMA-GWF) and branch-and-bound (OMA-BB)
algorithms are considered for comparison where each MUE
utilizes the orthogonal RB to avoid intra-cell interference [22],
[23]. Fig. 4 shows the comparison result among these three
algorithms. The upper limit of MBS power (i.e. PmaxB =
30dBm) is considered as the water level and the inverse
relationship of distance between MUEs and MBS is considered
as step depth in the GWF method [22]. In the branch-and-
bound method, the total number of branches is equal to the
total number of MUEs. For each branch, the boundary is
set according to total power (C5) and minimum data rate
(C6) constraints. It is shown that the OMA-GWF method and
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UC-IoT (Algorithm 1)
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Fig. 4: EE performance comparison of Algorithm 1 (Dinkel-
bach) with Geometric water filling (GWF) and branch-and-
bound (BB) algorithms when the upper limit of macro base
station power is PmaxB = 30dBm.

Algorithm 1 return the most optimized EE performance of
MUEs. The OMA-GWF performs better than Algorithm 1
because it allocates more power to the closest proximity MUEs
and that increases the total data rate of the macro cell in H-
CRAN system. On the other hand, Algorithm 1 iteratively
optimizes the total power depending on the optimal setting
of the Lagrange multipliers, step size values and maximum
tolerance level. The OMA-BB method shows the least EE
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Fig. 5: EE performance of H-CRAN with different number of
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Fig. 6: EE performance of H-CRAN with different minimum
rate requirements of MUEs.

performance due to the imposed constraints C5, C6 in the
BB method.

The EE performance of the UC-IoT method is compared
against that of the overlaid with C-IoT (OC-IoT) and un-
derlaid without C-IoT (U) method as shown in Figs. 5 and
6 respectively, where we have considered one MBS that
consumes maximum 43 dBm power and each RRH has 29
dBm maximum power budget [8]. In the UC-IoT method,
the Algorithm 1 allocates the power to the RB during the
resource allocation to MUE. Algorithm 2 considers equal
power levels for the RBs to find the feasible RB lists for
the SUEs and C-IoTs so that the data rates of the MUEs
are not changed. Lastly, Algorithm 3 optimizes each RRH
power to provide the EE solution in H-CRAN. Similarly,
the underlaid approach of resource allocation in H-CRAN is
considered in [9], where an underlaid H-CRAN is considered
without C-IoT system, with the objective to maximize the
tolerable interference level so that the SUEs and MUEs can
share the same RBs without violating the QoS constraints of
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Fig. 7: Impact of different minimum rate requirements of
MUEs to the percentage of user association in small cell of
H-CRAN.

the MUEs and SUEs. The difference between UC-IoT and
U-method is that the U-method considers both the SUE’s
and MUE’s data rate requirements. Maintaining these two
requirements and underlaid approach of RB allocation, the U-
method restricts fewer number of SUEs to be admitted to the
system than the UC-IoT method. On the other hand, the UC-
IoT method relaxes the SUE’s data rate requirement, considers
the MUEs as legacy users, and maintains the minimum data
rate requirement of these users in finding a solution for the
RB allocation for the SUEs and C-IoTs.

Fig. 6 and Fig. 7 show a comparison of the EE performance
and user association percentage of H-CRAN using these
methods in terms of different minimum data rate requirements
of the MUEs. It is shown that the underlaid approach of
resource (i.e., RBs and power) allocation methods (i.e., UC-
IoT and U) are always better than the overlaid method (OC-
IoT). This can be explained by each user using orthogonal
RBs to avoid interference in the OC-IoT method. The total
number of user association depends on the total number of
RBs available in the system. Due to the limited number of
RBs, the user association percentage and the sum data rate of
the OC-IoT method is less than that obtained for the UC-IoT
method, which reduces the EE of the H-CRAN since EE is
estimated as the ratio of the sum data rate to the total allocated
power to the RBs.

The sum data rate and convergence behavior of the UC-IoT
method are investigated with three different power budgets;
i) Pmaxj = 10 dBm, PmaxB = 30dBm, ii)Pmaxj = 15 dBm,
PmaxB = 35dBm, and iii) Pmaxj = 29dBm, PmaxB = 43dBm.
Fig. 8 shows the performance of the sum data rate performance
of the UC-IoT method for the C-IoT density in each small cell.
It can be observed that the sum data rate performance of the
UC-IoT method gives better results when more power is used
for RRHs and MBS. This is due to the fact that in the location
based user association, the user i connects to the base station
j based on the maximum received channel state information
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Fig. 9: Convergence behavior of Algorithm 2 and Algorithm
3.

(CSI). Considering equal transmission power in each small
cell and the noise factor, according to the distance dependent
pathloss model, the SINR of each user becomes maximum
when the distance between the user and base station becomes
minimum.

Similar to [24] and [25], the convergence behavior of
Algorithm 2 and Algorithm 3 is shown with the fairness index
versus iteration number in Fig. 9. We consider C-IoT density
in each small cell to be 50. Using the results of Algorithm 1
and equal power budget for each RRH, we apply Algorithm
2 and Algorithm 3 to find the EE solution of each RRH.
According to the definition of the Jain’s index in (36), a higher
value of J represents a fair allocation of resources in H-CRAN
in the perspective of EE solution for each small cell (i.e.,
RRH). It is apparent from Fig. 9 that the EE solution for
RRHs (i.e., Algorithm 2 and Algorithm 3) for different power
budgets shows non-decreasing EE and convergence within a

fair resource allocation within 20 to 40 iterations.

V. CONCLUSION

In this paper, we proposed an energy efficient underlaid
resource allocation method for two-tier OFDMA-based cellu-
lar IoT supported H-CRAN systems, where users in a small
cell uses the same radio resources with the macro cell in an
underlaid approach. The proposed underlaid C-IoT supported
H-CRAN (UC-IoT) resource allocation method (i.e., Algo-
rithm 1, Algorithm 2 and Algorithm 3) have been shown to
satisfy the resource allocation and maximum power constraints
for both macro and small cell base stations, as well as the
interference, fronthaul capacity and QoS constraints of macro
cell users. Simulation results have shown that the proposed
UC-IoT method converges and also improves the EE in C-
IoT supported H-CRAN through the underlaid approach of
resource allocation. The tradeoff between EE and throughput
in the proposed (UC-IoT) resource allocation method will be
considered in a future work.

APPENDIX

Proof of Theorem 1: Let the feasible solution of (25) be
denoted as (Λ,PM). Since (Λ∗,P ∗M) is the optimal solution
to the problem,

RT (Λ∗,P ∗M)− u∗PT (Λ,PM) ≥
RT (Λ,PM)− u∗PT (Λ,PM),

and RT (Λ∗,P ∗M)−u∗PT (Λ,PM) = 0, and RT (Λ,PM)−
u∗PT (Λ,PM) ≤ 0, where PT (Λ,PM) is the H-CRAN
power consumption which is greater than zero. Therefore,

RT (Λ,PM)

PT (Λ,PM)
≤ u∗.

Hence,
RT (Λ,PM)

PT (Λ,PM)
≤ RT (Λ∗,P ∗M)

PT (Λ∗,P ∗M)
.

Thus, (Λ∗,P ∗M) maximizes

RT (Λ,PM)

PT (Λ,PM)

while satisfying all the constraints in the relaxed optimization
problem P3. 2

B. Calculation of Power Allocation for MUE

L(Λ,PM, u, δM,ηM) =
M∑
m=1

R∑
r=1

Λrm,B log2(1 + P rm,BG
r
m,B)

−u
{∑M

m=1

∑R
r=1 Λrm,BP

r
m,B

}
− δM

{
PmaxB −

∑M
m=1

∑R
r=1 Λrm,BP

r
m,B

}
−
M∑
m=1

R∑
r=1

ηMm
{

Λrm,B log2(1 + P rm,BG
r
m,B)−Rmin

}
,

(37)
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Differentiating (37) with respect to P rm,B , we obtain the
following power allocation of MUE m over RB r as

∂L
∂P rm,B

= 0

Λr
m,BG

r
m,B

ln(1+P r
m,BG

r
m,B) − uΛrm,B + δMΛrm,B −

ηMm Λr
m,BG

r
m,B

ln(1+P r
m,BG

r
m,B) = 0

Λrm,BG
r
m,B(1− ηMm )

ln(1 + P rm,BG
r
m,B)

= Λrm,B(u− δM)

(38)

Therefore, P rm,B can be obtained as

P rm,B =

[
1− ηMm

ln(u− δM)
− 1

Grm,B

]+

.
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