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Abstract: One of the most encouraging sorts of renewable energy is ocean wave energy. In spite
of a large number of investigations in this field during the last decade, wave energy technologies
are recognised as neither mature nor broadly commercialised compared to other renewable energy
technologies. In this paper, we develop and optimise Power Take-off (PTO) configurations of a
well-known wave energy converter (WEC) called a point absorber. This WEC is a fully submerged
buoy with three tethers, which was proposed and developed by Carnegie Clean Energy Company in
Australia. Optimising the WEC’s PTO parameters is a challenging engineering problem due to the
high dimensionality and complexity of the search space. This research compares the performance of
five state-of-the-art metaheuristics (including Covariance Matrix Adaptation Evolution Strategy, Gray
Wolf optimiser, Harris Hawks optimisation, and Grasshopper Optimisation Algorithm) based on the
real wave scenario in Sydney sea state. The experimental achievements show that the Multiverse
optimisation (MVO) algorithm performs better than the other metaheuristics applied in this work.

Keywords: wave energy converter; power take-off system; optimisation; evolutionary algorithms;
metaheuristic

1. Introduction

The recent uprising demand for more energy resources is imposing huge pressure on
energy supply industries [1]. The most sustainable solution to offset the current depletion
of fossil energy resources is using renewable energy technologies. Marine wave energy
has been considered as a reliable source for coastal demands since 1799 [2]. Thus, its
development has occurred vastly—compared to the other resources—due to the following
benefits: (i) It is another source of sustainable energy contributing to the mix of energy
resources that leads to more diversity and attraction for coastal cities and suppliers [3].
(ii) Wave energy could be exploited offshore and does not need any land, resulting in a
lower cost of in-land site selection and reducing unfavourable visual impact [4]. (iii) By
considering the best layout and offshore site location, the permanent generation of energy
will be accessible (compared to solar energy, for instance, which is time-dependent) [5]. By
taking all the mentioned reasons into account, recent studies have focused on enhancing the
performance of wave energy technologies by developing optimisation-based solutions in
the section of geometric design, PTO parameters, and layout. The second division proved
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to have a crucial role in energy transmission and exploitation in electricity networks [6].
While the energy sector is developing different technologies in this area, some challenges
still need to be dealt with, such as design limitations [7], operation and maintenance
difficulties in offshore area, power take-off efficiency under heavy currents, etc. [8]. Hence,
it is not far-fetched to assume that optimal solutions are always required to achieve better
performance. A summary of recent studies has been classified in Table 1.

Table 1. A brief survey of the recent investigation on the optimisation of the layout of WECs, parameters, and design
of PTO.

Objective WECs Mode Approach Reference

both shape and PTOs submerged Experimental observations [9]
both shape and PTOs fully-submerged Hybrid evolutionary algorithm [10]
both shape and PTOs heaving converters GA and Evolutionary [11]

both shape and Layout cylindrical heaving WECs GA [12]
both layout and PTOs fully-submerged Hybrid evolutionary algorithm [13]
both layout and PTOs fully-submerged metaheuristics [14]
both layout and PTOs submerged hybrid GA [15]
both layout and PTOs fully-submerged Cooperative optimisation method [16]

Layout wave surge converter (oscillating) Numerical and GWO [17,18]
PTOs wave surge converter (oscillating) GA [19,20]
PTOs water column–based (oscillating) Water cycle algorithm [21]
PTOs hinged-type WECs Experimental observations [22]
PTOs oscillating wave surge converter both GA and neural model [23]
PTOs freely floating EAs [24]
PTOs submerged Hidden GA [25]
Shape sloped-motion WEC Heuristic optimisation [26]
Shape hinge-barge WEC gradient-based method [27]
Shape fully-submerged both PSO and GA [28]
Shape submerged flat plate GA [29]
Shape submerged GA [30]

In the following, this article is classified into five sections. We describe a summary of
the hydrodynamic interaction model and wave resource, and present the computation of
the produced power in Section 2. Section 3 shows the optimisation strategies and manifests
the details of the Multiverse optimisation (MVO) algorithm. In Section 4, we discuss the
power take-off optimisation results in terms of efficiency and produced power output.
Finally, in Section 5, we summarise the major findings of this comparative study, and give
our suggestion for future studies.

2. Model Setup

In this section, we introduce the wave scenario in the selected site on the eastern coasts
of Australia. Then, we describe the geometry of the converter and analyse the governing
equation of the motion of the converter’s body. Finally, by considering all implied forces
into account, the power output of the WEC is numerically simulated.

2.1. Wave Resource

In this study, a site on the eastern coast of Australia (Sydney) is investigated according
to the 2016 real wave dataset [31]. One of the main ways to represent wave climate is the
wave rose, which is a graphical demonstration of significant wave height over its various
directions [16].

For instance, the dominant sea state specifies Sydney with a peak period (Tp) around
9 s and a Significant Wave Height (Hs) of 2 m; the Pierson–Moskowitz wave spectrum
is helpful for identifying the probability distribution of the wave frequency ( fw). In fact,
the zone of plausible incident wave angle (β) at Sydney is 180. Due to the diversity
in directional distributions and probable cumulative energy, wave regimes may have
differences with one another. Therefore, Sydney has been chosen to assess the performance
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of optimisation methods. In this research, a modified spectrum called Bretschnider is
used, which needs two parameters (Tp and Hs) to model irregular waves. It is worth
considering the fetch length and the storm’s location together along with wind speed and
wind direction as they can change the spectrum on a different level.

S( f ) =H2
m0
4 (1.057 fp)

4 f−5exp
[
−5

4
(

fp
f )

4
]

(1a)

A =
H2

m0
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4 ≈ 5
16 H2

m0 f 4
p , (1b)

B = (1.057 fp)
4 ≈ 5

4 f 4
p . (1c)

In Equation (1), fp and Hm0 are peak wave period and significant wave height, respectively.

2.2. Wave Energy Converter Modelling

A fully submerged, symmetric and spherical buoy is used as the WEC in this study.
To keep the buoy in location with specific tolerances against both severe storm load and
normal load conditions, the buoy has equipped with three tethers, each one is connected
to a mooring point on the seabed with an angle of 55 degrees (α). Details of the buoy
parameters can be seen in Table 2 and Figure 1 demonstrates the buoy perfectly [16].

Table 2. Parameters of the spherical WEC.

Parameter Unit Value

Radius, a m 5
Water depth m 50

Submersion (top of the buoy) m 8
Volume, V m3 524

Figure 1. lSchematic of submerged wave energy converter, including three tethers and PTO system
attached to the sea bed.

The Frequency-domain simulation provides a faster approximation, which is applied
in this research. This simulation enjoys a significant advantage when it comes to running
many model evaluations in designing different scenarios. In the frequency-domain, a linear
PTO model is applied. We require modelling of only translational degrees of freedom sway,
surge, and heave. The buoy can harness energy from all modes of tethers [16,32].
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The buoy’s three tethers have power take-off mechanisms, which can be modelled
as an electric generator or a hydraulic circuit. A PTO system is connected to each tether
and the loading force from each of them is assumed to have a linear spring and a damping
effect relating to the tether lengthening and rate of change of its lengthening [33].

The fully submerged buoy bears forces that play important roles in numerical mod-
elling. It includes exerted force from the PTO system and excitation force. The excitation
forces are felt when the body stands in front of incoming waves, while radiation forces are
sensed when the body moves in a steady-state. To calculate the excitation force, incident
and scattered waves in hydrodynamic pressure need to be summed up. On the other side,
Radiation forces arise on account of body motions, and the radiation resistance, which
may be presumed as wave damping force, also has a relation with the average energy
exchanging among the WEC’s body and sea. This force informs us about the amount
of harnessed energy from incoming waves. Another force is added-mass, which is the
inertia of water entrained with body motion. It should be considered that the optimal
device parameters contingent upon the wave frequency would change relentlessly [4].
The mooring system is designed according to the linear wave theory, considering small
motion amplitude compared with tethers’ length. The following Si indicates the spatial
arrangement of tethers.

Si = r + Rni − di, i = 1 · 3, (2)

where in the reference coordinate frame Oxyz, r is the vector of buoy’s position and R is the
radiation matrix. The position vector of the anchor point of tether i is related to G, which
is the centre of mass, and di is the position vector of the anchor point of tether i on the
seafloor in Oxyz. The length of tether can be calculated as

li = ||si|| =
√

sT
i si, i = 1 . . . 3, (3)

and the change of the length is modelled as ∆li = li − l0 [34]. The below equation is used
for modelling the PTO force.

Fpto,i = (Cpto − Dpto∆l̇i − Kpto∆li), i = 1 . . . 3, (4)

where Dpto and Kpto are the damping and stiffness matrices, respectively. Cpto is a counter-
acting force of hydrostatic force, which is obtained from the following equation:

Cpto = −
(mw −mb)g

3 cos α
, (5)

where mw is the mass of displaced water, mb is the mass of the buoy, g is the gravitational
acceleration constant, and α is assumed to be 55 degrees as proposed in [34]. The buoy
velocities can be mapped in a Cartesian coordinate frame considering the change rate of
the tether length, which is provided by the inverse kinematic Jacobian in [34]. Other forces
including viscous forces and the end stop forces are neglected and kinematics are linearised
in this research. Among the discussed forces, the most important one is the excitation force,
which is calculated by Equation (6) [16].

F̂exc =

(
(M + A(ω))jω + B(ω)−

Kpto

ω
j + Dpto

)
Ẍ (6)

M = mI3

Kpto = Kpto I3

Dpto = Dpto I3,

where Fexc is the frequency-dependent vector of excitation forces, M is the mass matrix,
and I is the identity matrix. We use a constant 3 value because there are three degrees
of freedom. Ẍ is a vector of body acceleration in the surge, heave, and sway directions.
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Added-mass and radiation forces are defined through A and B matrices, respectively.
There are three tethers attached to the buoy modelled as an oscillating spring. There are
50 individual Kpto and Dpto parameters; therefore, in each tether, there are 100 individuals,
and in total it will be 300 for a buoy. Hydrodynamic reactions can be calculated according
to the semianalytical solution described in [35].

P =
1
4
(

F̂∗excẌ + ẌF̂exc
)
− 1

2
Ẍ∗BẌ∗. (7)

The power output of the buoy is calculated in an irregular wave frequency domain
according to Equation (7) [16]. In this study, the applied wave energy converter simulator
was developed and published by Sergiienko on Matlab-R2019b [36].

3. Optimisation

In this section, we describe the general formulation of the problem regarding the
optimisation viewpoint, then, we briefly introduce optimisation algorithms. Finally, the
MVO optimiser has been reviewed as a novel, population-based optimiser in the application
of WEC’s PTO assessment.

3.1. Optimisation Formulation

The applied formulation of the optimisation problem in order to maximise the pro-
duced power output of the WEC can be seen in the following:

Power = argmaxKpto,Dpto
Power(Kpto, Dpto), (8)

where Power represents the annual average power generated for given PTO settings
of a WEC where the location is fixed: Power Take-off settings incorporating ~Kpto =

{[T1
k1

, . . . , T1
k50

], [T2
k1

, . . . , T2
k50

], [T3
k1

, . . . , T3
k50

]} and ~Dpto = {[T1
d1

, . . . , T1
d50

], [T2
d1

, . . . , T2
d50

],
[T3

d1
, . . . , T3

d50
]}, where T is the ith tether of WEC. It is considered that the WEC is in-

stalled in the ocean at a depth at 3 (m) with a uniform depth of 30 (m). The PTO constraints
are on the coefficients of spring and damping parameters at dl = 5× 104, du = 4× 105,
and kl = 1, ku = 5.5× 105. If a candidate solution does not satisfy the constraint values, it
is recognised as an infeasible solution. In order to handle the boundary PTO constraints,
infeasible solutions are limited to the most nearby feasible areas.

3.2. Optimisation Algorithms

In this study, we use five metaheuristic swarm optimisation algorithms to achieve the
optimal values of power take-off parameters in terms of either damping or stiffness vari-
ables. These algorithms have been chosen based on recent reviews of their application in
WECs’ power take-off performance assessments [37,38]. The collected algorithms include
the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [39], Gray Wolf opti-
miser [40], Harris Hawks optimisation [41], and Grasshopper Optimisation Algorithm [42].
More specifically, we go through the application details of another recently released meta-
heuristic optimisation algorithm called Multiverse optimiser. All algorithms have been
used for 10,000 total evaluations, carried out by 25 search agents at 400 iterations. We
replicate each experiment ten times to find the minimum, maximum, mean, and standard
deviation for each optimiser in this problem. Table 3 presents the settings of the five
employed algorithms.
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Table 3. The settings of optimisation approaches. The maximum evaluation number is 105.

Algorithms Settings

CMA-ES [39] with the default settings and nPop = 25;

MVO [43] with nPop = 25, (decreased with a damping ratio w f = 0.99
exponentially);

GWO [40] with nPop = 25 and the de , α = 2 (linearly decreased to zero)
GOA [42] with nPop = 25, and the default settings
HHO [41] with nPop = 25, and the default settings

As the application of CMA-ES, GOA, HHO, and GWO algorithms have been studied
individually in the previous works [17,44], we will go through details of the state-of-the-art
Multiverse optimiser for this problem as follows.

3.3. Multiverse Optimiser (MVO)

In a recent released study [43], a promising and novel population-based optimisation
algorithm is introduced entitled “Multiverse optimiser (MVO)” that divides the search mode
toward the principal two steps: exploration and exploitation. In the MVO method, the
main inspiration is related to the theories of black holes and, inversely, white holes to
perform the exploitation and exploration processes, respectively. Furthermore, wormholes
are effective in order to develop the search abilities as a local search strategy. In spite of
what preceded, some distinct concepts are implemented in the MVO including a universe
that represents a solution, an individual in the universe corresponds to each variable of
the solution, and the inflation rate accords with the value of the fitness function. The main
strategies of the MVO algorithm can be seen in the following:

1. The larger values of the inflation rate are regarded as performing a white hole with a
higher probability rate than that of a black hole appearing.

2. A universe with a large inflation degree leads to transfer candidates. However, a low
inflation rate results in receiving candidates within black and white spirits.

3. Total elements in the universe will stochastically turn around the best candidate
within the wormhole, notwithstanding the statistical values of the inflation rate.

In each generation of the MVO approach, a roulette-wheel technique is applied to
choose a white hole from the total universes based on the inflation rate. The main objective
of this mechanism is to improve candidates transfer in various universes and also to
develop exploration abilities. Thus, the MVO scheme assumes that, as follows:

U =


x1

1 x2
1 . . . xd

1
x1

2 x2
2 . . . xd

1
...

...
...

x1
n x2

n . . . xd
n

, (9)

where n is the number of solutions in the population and d is the length of decision variables.
Therefore, each solution can be defined as follows:

xj
i =

{
xj

k r1 < NI(Ui),

xj
i r1 ≥ NI(Ui).

(10)

In Equation (10), r1 shows a random number in the interval of [0, 1], xj
i symbolises the

jth variable of ith universe, where xj
k shows the jth variable of kth universe chosen by a

roulette-wheel selection algorithm. Meanwhile, Ui explains the ith universe and NI(Ui)
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denotes the rate of normalised inflation of the ith universe, so updating the new location of
the candidates is as follows:

xj
i =



xj + TDR×(ubj − lbj)× r4 + lbj

−→ if (r3 < 0.5) & (r2 < WEP)
xj − TDR×

(
ubj − lbj

)
× r4 + lbj

−→ if (r3 ≥ 0.5) & (r2 < WEP),

xj
i if (r2 ≥WEP),

(11)

where r2, r3, and r4 are generated random numbers within [0, 1], xj
i mentions the jth

variable of ith universe, and xj intimates the jth variable of the best universe developed so
far. Both TDR and WEP are applied as the coefficients, lbj determines the lower bound
of jth variable and ubj denotes the upper bound of jth variable. In the MVO algorithm,
there are two significant coefficients including wormhole existence probability (WEP)
and travelling distance rate (TDR). Both coefficients are developed as adaptive formulas
as follows:

WEP = min+iter ∗
(

max−min
Maxiter

)
, (12)

where min and max are constant values at 0.2 and 1, respectively. In the original MVO, iter
is the current iteration and Maxiter is the maximum number of iterations.

TDR = 1− iter1/ρ

Max1/ρ
iter

. (13)

Finally, ρ implies the exploitation accuracy beyond the iterations, which is chosen as 6
in the original MVO paper. Where the ρ value progresses higher, it is likely to receive more
advanced and precise exploitation. Moreover, the Quick-sort algorithm is proposed to sort
the universe after each iteration. This process facilitates finding optimal answers in this
optimisation problem in terms of power take-off variables.

4. Experimental Optimisation Results

In this section, the experimental results of optimising parameters are presented. The
output records of the model revealed the convergence curve of the converter’s power
output to the maximum value. Then, the minimum, maximum, mean value, and standard
deviation of the experiments have been calculated. Furthermore, the overall trend of PTO
coefficient changes has been recorded, followed by statistical analysis of achieved results
based on the PTO’s coefficient configuration. As mentioned in Section 3.2, each experiment
comprises 105 evaluation numbers. The numerical analysis has been carried out using
five different metaheuristic promising optimisation algorithms, including MVO, CMA-ES,
GWO, GOA, and HHO. To begin with, Figure 2 tracks the convergence of WEC’s power
output to its maximum amount using five above mentioned optimisation algorithms over
105 iterations.

By looking at Figure 2, we can perceive the competence of each algorithm to optimise
this parametric problem. As it can be easily seen, the Multiverse optimiser succeeds
other algorithms to extract higher power. According to the search process attributes of
the HHO algorithm, it seems to be stuck in local optima, thereby losing its chance to
perform an exhaustive search throughout the whole search space. Second to the MVO, the
CMA-ES approach achieves the best results, followed by the other three algorithms by a
non-negligible distance. In brief, both MVO and CMA-ES were observed to be the most
productive methods of optimising in this problem.



J. Mar. Sci. Eng. 2021, 9, 490 8 of 12

Figure 2. A comparison of convergence curve of five metaheuristics to optimise the configuration of
power take-off parameters.

In order to examine the performance of studied methods to find the optimal number
of PTO coefficients, we analyse the trajectory of damping and spring coefficients for each
of the three PTO systems in three different frequency samples—including 1, 25, and 50—in
Figure 3.
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Figure 3. The trajectory of damping and spring coefficient optimisation from three PTO systems in the three different
frequency samples: (a) frequency sample 1, (b) frequency sample 25, and (c) frequency sample 50.

Looking at Figure 3, we can observe that the parameter coefficients for each PTO
stiffness of the damping system change nonmonotonically over the course of iterations as its
frequency changes. Moreover, high chaotic fluctuations are observed at the beginning of the
search process in all frequencies, specifying the exploration phase of the searching process.

Having a closer look at variables, most damping coefficients tend to reach higher
values than stiffness coefficients in lower frequencies, like 1 and 25. On the other hand, this
trend is vice versa in the 50th frequency. Having said that, the maximum changes from the
initial amount are experienced by the stiffness coefficient. This leads us to the fact that the
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objective function is affected by this variable more than those related to the damping part
of the PTO system.

Figure 4 presents the box-and-whisker plot for the power output of the best solution
per run for all search metaheuristic algorithms for the Sydney wave scenario on the eastern
Australian coasts.

Figure 4. Statistical results of five optimisation algorithms to optimise the configuration of power
take-off parameters.

Considering Figure 4, a comparative–statistical analysis can be found. The best mean
power output of the WEC is observed using the MVO method. It is followed by the
CMA-ES, GWO, GOA, and HHO methods, respectively. Furthermore, the dispersion of the
achieved data over the mean value is high in the GWO and HHO methods compared to
CMA-ES and GOA. Overall, as the power output is just under 300 kW considering MVO,
this method is found to be the most compatible algorithm for this optimisation problem.

Finally, Table 4 summarises the mean, minimum, maximum, and standard deviation
of each algorithm’s results over 10 runs.

Table 4. Experimental optimisation results of five applied optimisation algorithms.

Method CMA-ES GWO HHO MVO GOA

Mean 2.545 × 105 1.965 × 105 1.242 × 105 2.725 × 105 1.451 × 105

Min 2.446 × 105 1.809 × 105 9.799 × 104 2.556 × 105 1.356 × 105

Max 2.606 × 105 2.204 × 105 1.733 × 105 2.935 × 105 1.581 × 105

STD 5.021 × 103 1.220 × 104 2.285 × 104 1.574 × 104 7.434 × 103

Table 4 reveals that the maximum power output of the converter can be produced
by letting the MVO algorithm use optimum PTO coefficients. This maximum result is
followed by the results of CMA-ES, GWO, HHO, and GOA, respectively. Regarding the
mean and minimum amount of power outputs, these trends are found to be repeated. As
for the standard deviation of the results, we can sort the algorithms in order as HHO, MVO,
GWO, GOA, and CMA-ES. Additionally, the convergence of the results is more precise
in HHO and MVO while, on the other hand, results from GWO, GOA, and CMA-ES are
much more spread out.
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5. Conclusions

In this paper, we developed a comparative optimisation framework in order to evalu-
ate and optimise the Power Take-off (PTO) settings of a fully-submerged three-tether wave
energy converter (WEC). This WEC was introduced and developed by Carnegie Clean
Energy Company in Australia.

Due to a large-scale dimension of PTO parameters and complex interactions among
three tethers, optimising the WEC’s PTO parameters is a challenging engineering prob-
lem. In this way, we developed and compared the effectiveness of five state-of-the-art
metaheuristic algorithms on the Sydney wave scenario, Australia. The preliminary results
confirm that the Multiverse optimisation (MVO) algorithm can considerably outperform
the other four optimisation algorithms applied in this paper. Second to the MVO, the
highest mean value and maximum value of the WEC’s power output were achieved using
CMA-ES, GWO, GOA, and HHO, respectively. As another concluding remark of this study,
it worth mentioning that the stiffness coefficients proved to have more effect on objective
functions than damping coefficient in the studied converter’s power take-off system.

In future work, we will develop a more comprehensive comparative framework to
analyse the performance of a wide range of Genetic, Evolutionary, and Swarm optimisation
algorithms in order to optimise the PTO settings. Furthermore, developing and assessing
the impact of hybridisation, alternating, and cooperative optimisation techniques can
be considered.
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