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Abstract Pareto distributions are very flexible probability models with various forms and
kinds. In this paper, a new bivariate Pseudo-Pareto distribution and its properties are pre-
sented and discussed. Main variables, order statistics and concomitants of this distribution
are studied and their importance for risk and reliability analysis is explained. Joint and
marginal distributions, complementing cumulative distributions and hazard functions of the
variables are derived. Numerical illustrations, graphical displays and interpretations for the
obtained distributions and derived functions are provided. An implementation example on
defaultable bonds is performed.
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1 Introduction

Pareto distributions have been the subject matter of many theoretical and applied studies
in probability and statistics. These distributions are used in a wide perspective from social
and natural sciences to engineering and medicine. Distribution of income between income
groups, lifetimes of individuals, remaining life of a physical system, claim amounts in insur-
ance and loss amounts in finance are the particular topics that Pareto distributions are used
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for probability modeling. Mardia (1962) introduced one of the oldest families of Pareto
distributions which is now known as the multivariate Pareto distribution of the first kind.
Different forms and families of univariate and multivariate Pareto distribution have been
developed afterwards. Kotz et al. (2000) presented an almost complete account of these
developments. A relatively recent review of the Pareto and generalized Pareto distributions
was given by Arnold (2008). To date, research on various Pareto disributions with their
application aspects in many actual life matters have been in continual progress. Application
of the Pareto distributions in financial and actuarial risk areas is of particular concern for the
present paper. In this regard, Papadakis and Tsionas (2010), Asimit et al. (2010) and Ahn
et al. (2012) presented some new theoretical and application oriented results.

We introduce in this paper a new bivariate Pseudo-Pareto distribution that has the
basic properties of the Pareto distribution of the first kind. Variables of this distribution,
(X, Y ), can be described as the main variable of interest X, and the concomitant variable
Y which is associated to X depending upon a particular study goal. A sample of size n,
{(Xi, Yi), i = 1, ..., n}, from this bivariate Psedo-Pareto distribution may come from a
cross-sectional empirical study over an observation period or from a study over a sequence
of periods in an observation time interval. Values in such a sample can be ordered in terms
of the magnitudes of Xi’s. The ordered n-tuple (X1:n,X2:n, ..., Xn:n),obtained in this way,
defines order statistics Xr:n, 1 ≤ r ≤ n, such that Xi:n ≤ Xj :n, i < j , j = 1, ..., n.
Then, each Yi associated to an Xi in the sample becomes connected to the correspond-
ing Xr:n in the ordered n-tuple and we symbolize it with Y[r:n]. The variable pair (Xr;n,
Y[r;n]) formed by such connections is named as the pair of r-th order satistic and r-th
order concomitant and can be used as decision variables in applied studies along with
(X, Y ) pair.

Samples of variable-concomitant variable pairs can be observed in several contexts. For
instance, variable X may represent a household income in a certain location of a country
while Y is defined as a household income in a nearby location. Similarly, X may stand for
loss quantities on returns from a stock of a corporation in a given industrial sector and Y may
stand for a stock return loss of another corporation in the same capital market, both stocks
being in trade simultaneously. It may also be the case that X and Y are monthly precipita-
tion amounts in excess of certain levels at several sites in two distant but climotologically
comparable areas of a geographical region.

Pseudo distribution of a random pair (X, Y ) is obtained as a compound distribution. In
the same line, Pseudo-Pareto distribution FX,Y (x, y) of (X, Y ) is also determined as a
compound distribution. Distribution of the related (Xr;n, Y[r;n]) pair is then obtained from
the parent distribution FX,Y (x, y). Explicit computational procedures in this regard will be
apparent in the following sections of the paper. There is a sound conceptual and method-
ological bacground for these procedures, and we refer to the works of David and Nagaraja
(1998, 2003) for a comprehensive review on the essential theory and methodology in all
aspects of order statistics and their concomitants.

Developments on the pseudo distributions are relatively new in the vast literature on
satistical distributions. The main literature on the pseudo distributions and order statistics
has grown up in the last two decades. Among them, the following are the relevant works
for the subject matter of our paper. Diaz-Garcia et al. (1997) presented a pioneering work
on Preudo-Wishart distributions, Filus and Filus (2006) applied their new class of pseudo-
affine transformations on a set of independent random variables in two cases as Weibull
and Gamma distributed variables and investigated the joint probability densities of the out-
coming random vectors, Shahbaz and Ahmad (2009) proposed a bivariate Pseudo-Weibull
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distribution, Shahbaz et al. (2009) discussed the concomitants of order statistics for a bivari-
ate Pseudo-Exponential distribution, an important paper by Filus et al. (2010) considered
pseudo-Normal multivariate distributions with one coordinate variable having a Normal dis-
tribution and the others being determined by a specific triangular transformation model and
obtained in this way a remarkably flexible family of distribution models, Ahsanullah et al.
(2010) gave new results on the concomitants of upper record statistics for a bivariate Pseudo-
Weibull distribution, Shahbaz and Ahmad (2011) studied a Pseudo-Rayleigh distribution,
Shahbaz et al. (2011) defined afterwards a new bivariate Pseudo-Weibull distribution, and
Yörübulut and Gebizlioglu (2013, 2014) introduced a bivariate Pseudo-Gompertz distri-
bution and focused on its order statistics, upper record statistics and their concomitants.
Lately, another influential paper by Filus and Filus (2013) presented a method of proba-
bility distribution constructions through their parameter dependence models that determine
the conditional density of a random variable in a bivariate setting given any realization on
the other. They discussed the method first for a bivariate Normal case with pseudo Normal
extension and indicated that their paradigm can be generalized for many cases beyond the
class of bivariate normal distributions.

A bivariate Pseudo-Pareto distribution for a random pair (X, Y ) was proposed by Mohsin
et al. (2012) with demonstrations of the moment-, maximum likelihood, and Bayesian meth-
ods for parameter estimations including a case analysis on a drought phenomenon. Their
work has a parallesim to our work since we also introduce here a new bivariate Psedo-Pareto
distribution. However, there are big differences between the two works. They defined the
marginal density function of X as f (x; α, b) = αbα(b + x)−α−1 for x>0 with shape and
scale parameters α >0 and b >0, respectively. Their designation for the marginal distri-
bution of Y contains a parametrization with function �(x) = ηxδ on the scale parameter.
On the contrary, we propose a bivariate Psedo-Pareto distribution with marginal density
function of X defined as f (x; α, b) = αbαx−α−1, α >0, b >0, x > b, and designate
the shape parameter, not the scale parameter, of the marginal density function of Y with
φ(x) = ln(x) specification. Note also that the marginal densities of X and Y in our study
come form the original Pareto density function of Mardia (1962). Furthermore, we focus
deeply on the order statistic-concomitant pair, (Xr;n, Y[r;n]), along with main variables (X,
Y ), derive new bivariate Pseudo-Pareto distributions for each of them, and treat the order
statistic-concomitant pair as an extremely important decision making instrument for risk
analysis. Our Pseudo-Pareto distribution proposal allows X and Y assume only those val-
ues that are larger than the scale parameters of their own marginal densities. This admits
of a shape parameter for Y that depends on X, so the shape of the distribution of Y com-
plies with that of X and makes X and Y positively correlated with each other. Obviously,
all these features are analytically absorbed into the distributions that we obtain for the order
statistic-concomitant variable pair.

The write up of our study is organized in five sections following the bacground, moti-
vation and aim statements of this introduction. Section two introduces our main bivariate
Pseudo-Pareto distribution and presents its distributional properties. Thereafter, section
three shows the derivation of the distribution of order statistics and their concomitants
under our Pseudo-Pareto distribution model. Section four elaborates on the complementing
cumulative distribution functions (complementing CDF), or survival funcions, and hazard
functions for (X, Y ) and (Xr;n, Y[r;n]). An implementation example on defaultable bonds is
provided in section five that not only illustrates how the results of the paper can be applied
but also gives a novel example for the finance area. Section six in the sequel concludes the
paper.
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2 The Bivariate Pseudo-Pareto Distribution

A bivariate Pseudo-Pareto distribution is a compound distribution of a pair of random vari-
ables (X, Y ) whose marginals are Pareto type distributions. In resemblence to the known
bivariate Pareto distribution of the first kind (Mardia 1962), we specify the following
marginal Pareto density function for random variable X with shape parameter a1 and scale
parameter b1

fX(x; a1, b1) = a1b
a1
1 x−a1−1, a1 > 0, b1 > 0, x > b1

and write the conditional Pareto density function below for random variable Y with shape
and scale parameters φ (x) and b2 , respectively,

fY |X=x (y; φ (x) , b2 |x ) = φ (x) b
φ(x)
2 y−φ(x)−1, φ (x) > 0, b2 > 0, y > b2

where φ (x) is a positive real valued function of X. The bivariate Pseudo-
Pareto probability density function of (X, Y ) is obtained from fX,Y (x, y) =
fX (x; a1, b1) fY |X=x (y; φ (x) , b2 |x ) as

fX,Y (x, y) = a1b
a1
1 x−a1−1φ (x) b

φ(x)
2 y−φ(x)−1, φ (x) > 0, a1 > 0, x > b1, y > b2

implying that X and Y are in parameter dependence due to the existence of φ (x) function
in the model for the purpose of shape parameter designations. Several bivariate Pseudo-
Pareto type distributions can be obtained from this density structure by asserting various
appropriate shape parameter functions for the conditional probability density of Y given
a value of X. Distributions with this kind of flexibility can be used for many probability
modeling attempts in bivariate analysis.

We have to refer to some other functions in the literature that are pertinent to the sub-
ject of this paper. Among them, we focus on the cumulative distribution function of the
concomitant of an order statistics which is defined as

FY[r:n](y) =
∞∫

−∞
F(y|x)fXr:n(x)dx , fY[r:n](y) =

∞∫

−∞
f (y|x)fXr:n(x)dx

where F(x |y ) and f (y |x ) are the conditional distribution and density functions of (X, Y ).
The probability density function fXr;n(x) of an r-th order statistic, Xr;n, is computed as

fXr:n(x) = n!
(r − 1)! (n − r)!fX(x) [FX (x)]r−1 [1 − FX (x)]n−r .

Furthermore, determination of the joint distribution of two order statistics, Xr:n ≤ Xs:n,
follows from

fXr:n,Xs:n (x1, x2) = n!
(r − 1)! (s − r)! (n − s)!f (x1)f (x2) [F (x1)]

r−1

× [F (x2) − F (x1)]
s−r−1 [1 − F (x2)]

n−s .

The joint density function of (Xr:n,Xs:n) is obtained from

fY[r:n],Y[s:n](y1, y2) =
∞∫

−∞

x2∫

−∞
f (y1|x1)f (y2|x2)fXr:n,Xs:n (x1, x2)dx1dx2.
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Given all these prescriptions, we can present now a bivariate Pseudo-Pareto probability
distribution for Y with the shape parameter specification a2 ≡ φ (x) = ln (x). Under this
specification, the bivariate probability density and cumulative distribution functions of (X,
Y ) are obtained as:

fX,Y (x, y) = a1b
a1
1 x−a1−1ln(x)b

ln(x)
2 y−ln(x)−1, a1 > 0, x > b1, y > b2, (1)

FX,Y (x, y) =
y∫

b2

x∫

b1

a1b
a1
1 x−a1−1ln(x)b

ln(x)
2 y−ln(x)−1dxdy

= a1b
a1
1

⎛
⎜⎝b

−a1
1 − (ea1)−ln(x)

a1
+ −b

−ln
(

ea1 y
b2

)
1 + x

−ln
(

ea1 y
b2

)

ln
(

ea1 y
b2

)
⎞
⎟⎠ (2)

where FX,Y (x, y) satisfies all the conditions to be a proper cumulative distribution function,
including the most important property that lim

x,y→∞ FX,Y (x, y) = 1.

The marginal Pseudo-Pareto distribution functions of X and Y follow from equation (2):

FX (x) = lim
y→b2

FX,Y (x, y) = 1 − b
a1
1 x−a1 , (3)

FY (y) = lim
x→b1

FX,Y (x, y) = a1b1

⎛
⎜⎝b

−a1
2

a1
− b

−ln
(

yea1
b2

)
2

ln
(

yea1

b2

)
⎞
⎟⎠ . (4)

The respective marginal probability density functions for Xand Y are found from these
equations as:

fX(x) = a1b
a1
1 x−a1−1, a1 > 0, b1 > 0, x > b1, (5)

fY (y) =
∞∫

b1

a1b
a1
1 x−a1−1ln(x)b

ln(x)
2 y−ln(x)−1dx

=
a1b1b

−ln
(

yea1
b2

)
2

(
1 + ln (b2) ln

(
yea1

b2

))

y
(
ln

(
yea1

b2

))2
, (6)

where fY (y) exists only when ln(yea1/b2) > 0, ln(b2) > 0, a1 > 0, b1 > 0, x > b1.
Values of the shape parameter a1 in equation (2) has a direct effect on the right tails of

FX,Y (x, y), FX(x) and FY (y), shown above. That is to say that a1plays the tail index role
for our Pseudo-Pareto distribution. A probability statement for a random event defined on
the right tail of FX,Y (x, y) can be better expressed with the complementing CDF of (X, Y ):

SX,Y (x, y) = Pr{X > x, Y > y} = 1 − FX (x) − FY (y) + FX,Y (x, y) .

Note that complementing CDFs are named also as survival functions in the rich literature
on life sciences and systems reliability analysis. A complementing CDF with a heavy right
tail implies that the probability of large value realizations on its underlying variables is
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considerably high. The complementing CDF of (X, Y ) obtains the explicit expression below
on the basis of distributions given in (2), (3) and (4) above:

SX,Y (x, y) = b
a1
1 x−a1 − a1b1

⎛
⎜⎝b

−a1
2

a1
− b

−ln
(

yea1
b2

)
2

ln
(

yea1

b2

)
⎞
⎟⎠

+a1b
a1
1

⎛
⎜⎝b

−a1
1 − (ea1)−ln(x)

a1
+ −b

−ln
(

ea1 y
b2

)
1 + x

−ln
(

ea1 y
b2

)

ln
(

ea1 y
b2

)
⎞
⎟⎠ . (7)

An essential theory and methodology on the complementing CDFs can be found in the
text of London (1997), among others, where the matters of estimation for complementing
CDFs are shown lucidly with several applications.

Figure 1 below display the plots of fX,Y (x, y) and SX,Y (x, y) functions for different
values of the shape parameter. It is seen in the plots that the complementing CDF function
converges to the (x,y) surface at a faster rate as the value of the shape parameter a1 gets
larger. If the rate of this convergence is faster on X values in comparison to Y , then Y
is considered to be more risky. This implies that, if (X, Y ) here stands for two joint loss
amounts, the risk of loss attributable to Y will be more than what it can be for X, because
of more likely large Y values.

This section completes the derivations of cumulative distribution function, density func-
tion and complementing CDF of (X, Y ). These results enable us next to derive the bivariate
Pseudo-Pareto distribution for the (Xr;n, Y[r;n]) pair.

1 1 21, 1, 1a b b= = =
1 1 23, 1, 1a b b= = =

a Probability density function fX,Y (x,y)

1 1 21, 1, 1a b b= = =
1 1 23, 1, 1a b b= = =

b Complementing cumulative distribution function  SX,Y (x,y) 

Fig. 1 Plots of the density function and cumulative CDF of the Pseudo-Pareto distribution
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3 Probability Functions for the r-th Order Statistic and its Concomitant

We devote this section to the derivation of the complementing CDFs and density functions of
r-th order statistics and their r−th order concomitants. For this purpose, values of the scale
parameters b1 and b2 have to be set larger than 1 in order to ensure a positive φ (x) = ln (x)

under the condition that x > b1.
Density function of the r-th order statistic Xr;n , fr;n(x), and the conditional density

function
fY |X=x (y |x ) = ln(x)b

ln(x)
2 y−ln(x)−1 (8)

have to be used together in order to derive the density function of r-th concomitant:

fY[r:n](y) = a1n!
(r − 1)! (n − r)!

r−1∑
h=0

(−1)h
(

r − 1
h

)

×
∞∫

b1

b
a1(n−r+h+1)
1 x−a1(n−r+h+1)−1ln(x)b

ln(x)
2 y−ln(x)−1dx

= a1n!
(r − 1)! (n − r)!

r−1∑
h=0

(−1)h
(

r − 1
h

)
1

y (a1 (n − r + h + 1) + ln(y))2

= n!
a1y (r − 1)! (n − r)!

r−1∑
h=0

(−1)h
(

r − 1
h

)
1(

h + n − r + 1 + ln(y)
a1

)2
. (9)

Computation of this function requires lenghty summations. So, a computationally easy
form of the function can be written by using the results and methods given in Connon
(2007) and Gradshteyn and Ryzhik (2007). On this pupose, we let a part of the divisor in
the summation component of (9) be denoted by a ≡ n − r + 1(ln(y)/a1) and obtain the
following result for the concerned sum:

r−1∑
h=0

(−1)h
(

r − 1
h

)
1(

h + n − r + 1 + ln(y)
a1

)2
=

r−1∑
h=0

(−1)h
(

r − 1
h

)
1

(h + a)2
.

This result can be put even in a more simplified form. To do this, we let

r−1∑
h=0

(
r − 1
h

)
(−1)h

h + a
= (r − 1)!

a(1 + a)...(r − 1 + a)
≡ ω(a)

= a−1
(

r − 1 + a

r − 1

)−1

, a /∈ (0, −1, ..., −(r − 1)) ,

and notice that function ω(a) has a connection with the well known Gamma function

�(a) =
∞∫

0

ta−1e−t dt = �(a + 1)

a
= �(a + 2)

a (a + 1)
= ... = �(a + r)

a (a + 1) ... (a + r − 1))
, a> 0,

so we proceed with the following expression for the summation:

ω(a) =
r−1∑
h=0

(
r − 1
h

)
(−1)h

h + a
= (r − 1)!

a (a + 1) ... (a + r − 1))
= (r − 1)!� (a)

� (a + r)
.
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This function contains a harmonic number of order n that we denote by H(n) and define
as:

H(n) =
n∑

k=1

1

k
=

n∑
k=1

(
n

k

)
(−1)k+1 1

k .

There exists a particular relation between the differences of H(a+r−1) and H(n)quantities:

H(a+r−1) − H(a−1) = {ψ (a + r) − ψ (a)} =
a+r−1∑
h=a

1

h
,

where ψ(·)’s are the so called digamma functions defined as the derivatives of log �(·):
ψ (a) = d

da
log � (a) = �′ (a)

� (a)
.

Hence, we can express the summation component of equation (9) in a much better way
with

r−1∑
h=0

(
r − 1
h

)
(−1)h

(h + a)2
= ω (a) {ψ (a + r) − ψ (a)}

= (r − 1)!� (a)

� (a + r)

(
H(a+r−1) − H(a−1)

)

and reach to the following re-expression for the density function of Y[r;n]:

fY[r;n](y) = � (n + 1)

a1y� (n − r + 1)

�
(

ln(y)
a1

+ n − r + 1
)

�
(

ln(y)
a1

+ n + 1
)

(
H(

ln(y)
a1

+n
) − H(

ln(y)
a1

+n−r
)
)

.

(10)
The complementing CDF of r-th concomitant is then obtained as shown below:

FY[r:n](y) =
y∫

1

fY[r:n](t)dt

= a1n!
(r − 1)! (n − r)!

r−1∑
h=0

(−1)h
(

r − 1
h

) y∫

1

1

t (a1 (n − r + h + 1) + ln(t))2
dt

= a1n!
(r − 1)! (n − r)!

r−1∑
h=0

(−1)h
(

r − 1
h

) ln(y)∫

0

1

(a1 (n − r + h + 1) + u)2
du

= a1n!
(r − 1)! (n − r)!

r−1∑
h=0

(−1)h
(

r − 1
h

)

× ln(y)

a1 (n − r + h + 1) (a1 (n − r + h + 1) + ln(y))
. (11)

This function can be finally put in a more handy form in terms of the Gamma functions.
Thus, utilizing the equality

r−1∑
h=0

(−1)h
(

r − 1
h

)
1

(h + c)

(
b

(h + c + b)

)
= � (c) � (r)

� (c + r)
− � (c + b) � (r)

� (c + b + r)
,
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with c ≡ n − r + 1 and b ≡ ln(y)/a1 for notational simplicity, we reach to the following
computationally tidy re-expression for (11):

FY[r:n](y) = 1 − �(n + 1)� (n − r + (ln(y)/a1) + 1)

�(n − r + 1)� (n + (ln(y)/a1) + 1)
. (12)

The cumulative distribution and probability density functions that we have produced in
this section are fundamental for further distributional derivations on (Xr:n,Y[r;n]). So, we
pass on the results of this section to the next one where the other essential equations are
derived especially for applications.

4 Complementing CDF and Hazard Function for the r-th Order Statistic
and its Concomitant

Complementing CDFs and hazard functions are the most critical functions for risk analysis
and reliability studies since they can describe with their right tail behaviors the occurrence
probabilities for large and risky amounts. Hazard functions are actually derived from the
complementing CDFs and used to express the conditional intensity of loss generating risk
events. Considering a sample on loss amounts (X, Y ), order r of Xr;n in the sample specifies
an r/n-th sample percentile for FX(x) as a bencmarking loss level in risk assessments. So,
using an r-th order concomitant Y[r;n] corresponding to a specific r-th order statistic Xr;n
allow us to carry out risk analysis on loss amount Y in conjunction with a benchmark value
of order rank r . In this regard, if FY (y) bears a heavier right tail in comparison to a heavy
right tailed FX(x) and a loss amount on Y[r;n] is considered along with a large r value choice
in the analysis, it should mean that the risk of loss with regard to concomitant variable Y is
overwhelmingly threatening.

Complementing CDF of the r-th order concomitant can be computed for any r as follows:

SY[r:n](y) = 1 − FY[r;n] = �(n + 1)� (n − r + (ln(y)/a1) + 1)

�(n − r + 1)� (n + (ln(y)/a1) + 1)
. (13)

Since the hazard function for a random variable W is defined as h (w) =
f (w) [S (w)]−1, we can obtain the hazard function of r-th concomitant accordingly:

hY[r:n](y) = fY[r:n](y)

SY[r:n](y)
= fY[r:n](y)

1 − FY[r:n](y)
= (a1y)−1

(
H(

ln(y)
a1

+n
) − H(

ln(y)
a1

+n−r
)
)

.

(14)
Behavior of the complementing CDF and hazard function of Y[r:n] is important for risk

evaluations and we can show an analytical study on this matter by several partial derivatives.
The most important partial derivatives in this regard are given below:

∂

∂y
SY[r:n] (y) = −�(n + 1)� (n − r + (ln(y)/a1) + 1) [ψ (n + (ln(y)/a1) + 1) − ψ (n − r + (ln(y)/a1) + 1)]

a1y�(n − r + 1)� (n + (ln(y)/a1) + 1)
,

∂

∂y
hY[r:n](y) = −

(
H(

ln(y)
a1

+n
) − H(

ln(y)
a1

+n−r
)
)

a1y2
−

(
H(

ln(y)
a1

+n,2
) − H(

ln(y)
a1

+n−r,2
)
)

(a1y)2

where ψ(·) is a digamma function and H(·) is a harmonic number which we have already
mentioned for the derivation of the probability density function of r-th concomitant. Our
numerical assessments reveal that the instantaneous rate of change (IRC) in the comple-
menting CDF under concern obtains increasing values at each ascending y value, whereas
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Fig. 2 Plots for the complementing CDF and hazard function of r-th concomitant Y[r:n]

the instantaneous rate of change in the hazard function acquires decreasing values at each
inreasing value of y.

It is obvious that r and a1 have similarly strong influences on the instantaneous rate of
changes in the complementing CDF and the hazard function of Y[r;n]. In this regard, partial
derivatives of these functions with respect to r , a1 and y are demonstrated in Appendix
1. Some graphical displays of the marginal situations given there are presented in Fig. 2,
below. The vertical axes of the plots in this Figure bear the values of complementing CDFs
and hazard functions of Y[r;n], while r values are shown on the horizontal axis of each plot.

It is seen in Fig. 2 that the complementing CDFs of Y[r;n] with different parameter value
assignments decline faster as the values of a1 and r increase, and they tend to converge on
each other at large y values. On the other hand, the hazard function for Y[r;n] assumes large
values for large r and shows a faster increment as rgrows larger. We observe that, compared
to the large values of a1, smaller a1 values have a stronger effect on the right tail thicknesses
of the complementing CDFs. Terefore, it is important to recognize that inclusion of a small
valued a1 and a large valued r in the complementing CDF of Y[r;n] , as well as Xr;n , is
actually a sign of high loss amount anticipation for a risk bearing engagement.

Now, we derive the joint complementing CDF and joint hazard function for the pair
(Xr;n, Y[r;n]). In order to perform these derivations, we first need the complementing CDF
and hazard function of Xr;n. Up to this aim, the distribution function of Xr:n is obtained:

FXr:n(x) =
x∫

1

fX[r:n](x)dx = 1 − x−a1(n−r+1)n!2F1
[
n − r + 1, 1 − r, n − r + 2, x−a1

]
(n − r + 1) (n − r)!(r − 1)! .

(15)
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Then, the complementing CDF of r-th order statistic follows:

SXr:n (x) ≡ 1 − FXr:n(x) = x−a1(n−r+1)n!2F1
[
n − r + 1, 1 − r, n − r + 2, x−a1

]
(n − r + 1) (n − r)!(r − 1)! (16)

where 2F1[·] is a Gauss Hypergeometric function (Gradshteyn and Ryzhik 2007) which has
the following general form:

2F1 (a, b; c; z) =
∞∑

k=0

(a)k (b)k

(c)k

zk

k! .

The hazard function ofXr:n follows from definion hXr:n (x) = fXr:n (x) /SXr:n (x) and it
is obtained as:

hXr:n (x) =
a1n!

(r−1)!(n−r)!
r−1∑
h=0

(−1)h
(

r − 1
h

)
x−a1(n−r+h+1)−1

x−a1(n−r+1)n!2F1(n−r+1,1−r,n−r+2,x−a1)
(n−r+1)(n−r)!(r−1)!

. (17)

Derivation of the bivariate complementing CDF and hazard function for (Xr;n, Y[r;n])
requires the use ofSXr:n,Y[r:n](x, y) = S(y|x)SXr:n(x) and hXr:n,Y[r:n](x, y) = h(y|x)hXr:n(x)

functions. On this purpose we have to make use of the joint probability density func-
tions f (x, y) = a1x

−a1−1ln(x)y−ln(x)−1 , fXr:n,Y[r:n](x, y) = f (y|x)fXr:n(x), and the
conditional probability density function fY[r:n](y |Xr:n = x) = f (y|x) for the concerned
variables, given that a1 >0, x >1, y >1. Then, using the following complementing CDF
expressions:

S(y|x) = S (x, y)

S (x)
, S (x, y) = x−a1 − a1

(
x−a1−ln(y) − 1

)
a1 + ln (y)

, S (x) = x−a1 ,

we obtain below the conditional complementing CDF for (X, Y ):

S(y|x) = x−a1 − a1

(
x−a1−ln(y)−1

)
a1+ln(y)

x−a1
, (18)

and using the formal definition SXr:n,Y[r:n](x, y) = S(y|x)SXr:n(x), we come up with the
following joint complementing CDF expression for (Xr;n, Y[r;n]):

SXr;n,Y[r;n](x, y) = x−a1(n−r)n!2F1
[
n − r + 1, 1 − r, n − r + 2, x−a1

]
(n − r + 1) (n − r)!(r − 1)!

×
(

x−a1 − a1

(
x−a1−ln(y) − 1

)
a1 + ln (y)

)
. (19)

Determination of the corresponding joint hazard function for (X, Y ) can be achieved in
connection with the join density function f (x, y) and obtained as:

h (x, y) = a1x
−a1−1ln(x)y−ln(x)−1

x−a1 − a1

(
x−a1−ln(y)−1

)
a1+ln(y)

. (20)

Then, the conditional hazard function for (Xr;n, Y[r;n]) can be produced:

h (y |x ) = h (x, y)

h (x)
= a1x

−a1−1ln(x)y−ln(x)−1

a1x−a1−1

(
x−a1 − a1

(
x−a1−ln(y)−1

)
a1+ln(y)

) = x−a1 ln(x)y−ln(x)−1(
x−a1 − a1

(
x−a1−ln(y)−1

)
a1+ln(y)

)

(21)
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where h (x) = a1x
−1is the marginal hazard function of X. Putting all these results together,

the consequent joint hazard function for (Xr;n, Y[r;n]) is obtained:

hXr:n,Y[r:n](x, y) = h(y|x)hXr:n(x)

= x−a1 ln(x)y−ln(x)−1(
x−a1 − a1

(
x−a1−ln(y)−1

)
a1+ln(y)

)

×
a1n!

(r−1)!(n−r)!
r−1∑
h=0

(−1)h
(

r − 1
h

)
x−a1(n−r+h+1)−1

x−a1(n−r+1)n! 2F1(n−r+1,1−r,n−r+2,x−a1)
(n−r+1)(n−r)!(r−1)!

= ln(x)y−ln(x)−1(
x−a1 − a1

(
x−a1−ln(y)−1

)
a1+ln(y)

)

×
a1

r−1∑
h=0

(−1)h
(

r − 1
h

)
x−a1(n−r+h+1)−1

x−a1(n−r)
2F1(n−r+1,1−r,n−r+2,x−a1)

(n−r+1)

(22)

where 2F1(·) is what we have already defined for the equation in (16).
Having all the required tools and functions ready for implementations, we devote the

next part of our paper to an example on the risky bonds of financial markets.

5 An Implementation Example on Defaultable Bonds

This section presents an application on defaultable bonds and their default generating
events. A brief preminary explanation on the bonds and bond markets will be given first,
then the implementation example that make use of our results will be provided.

Bonds are fixed income securities for investors and debt capital instruments for corpo-
rations and organizations. A bond is identified and specified by its issuer name, par or face
value, coupons, coupon rate and maturity. Maturity of a bond is the length of time from its
issue date to the preset date for its par value redemption. An optional call provision may
also exist on a bond that allows a recall from its issuer prior to maturity. In case of failures
in coupon payments and par value redemption for a bond, bond holders can exercise their
right to put claims on the assets and incomes of its issuer. These claims are generally hon-
ored with a priority over the claims that may come from such securities like common and
preferred stocks. This means that implicit value of a defaultable bond to an investor is also a
function of the assets of its issuer. In this connection, bonds in debt capital markets are rated
by the rating institutions with some standard risk qualifications. A full recovery or even a
partial recovery of coupon payout and par redemption defaults of a high risk rated bond
may not be fulfilled. Therefore, there is always a need for some reliable credit exposure
estimates for the holders and potential investors of risk bearing bonds. In this respect, bond
rating institutions publish some quick indicators for risky bonds. These indicators usually
come out as a ratio of annual interest payout of a bond to its current market price, known
also as the current return on a bond. A sudden and sharp decline in such a ratio is perceived
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as a strong signal for uprising default risks. In a more general perspective, a decreasing firm
value of a bond issuer is a signal of perils for its bond holders. Such a situation is reflected
out by an upward movement of a bond issuer company’s debt-to-equity ratio, or simply debt
ratio, for bond holders’ attention.

It is known that value of a coupon bearing bond at its time of issue, say t0, is expressed by

Vt0 =
T∑

t=1

ct

(1 + k)t
+ m

(1 + k)T
(23)

with t :coupon payout period, T : maturity period, ct: coupon payable at the end of period
t , m: par value of the bond that is redeemable at the end of its maturity period, and k:
required rate of return (RRR) for a bond investor. If k in (23) secures that the value of a
bond equals to its current market price at t0, then kis named yield to maturity (YTM) for
the bond. Coupon payout periods of bonds are given in terms of years, generally. When a
bond’s value at its issue time is equal to its par value, required rate of return and coupon
interest rate values for the bond become the same. In the case that required rate of return of
a bond exceeds its coupon interest rate, value of the bond falls below of its par value and
then it becomes a discounted bond. In the opposite situation, a bonds gains a premium bond
status. Credit rating institutions, like Moody’s and S&P, rate a large number of bond issuers
annually from the highest rating class of “AAA” to the junk bond rating class “D”. Hence,
default proneness of the bonds in a bond market is periodically informed to bond holders
and investors in the way of credit ratings. As a result, a bond with a low rating can find
buyers only at relatively cheaper prices as compared to higher rated ones.

There is a vast literature on defaultable bonds and other defaultable financial securities.
In relation to our implementation example here, we refer to the works of Altman (1989),
Altman and Heather (2000), Kijima (2003, 127-139) and Tapiero (2004). An interesting
and highly informative account of the defaultable US corporate bonds was given lately by
Giesecke et al. (2010) in a 150-year perspective.

Historical and current information on many bonds in debt capital markets come from
the data bases of debt capital market authorities and bond rating institutions. A collection
of bonds in a bond data base is called a bond cohort as long as they are contemporary,
of the same maturity and marketability, and comparable with respect to par values and
coupons they bear. Bond data bases provide information on the bonds usually in terms of
bond cohorts that include in issuer names, risk ratings for issuers, issue dates, maturity dates,
coupon interest rates, par values, primary market prices, realized loss amounts on coupons
and par value redemptions, issuer companys’ debt ratios, and secondary market bond prices.
A bond cohorts data with this content of information in a current and past time perspective
make it possible to conduct reliable bond default studies on the bonds of interest in a bond
cohort given that the data at hand are valid and viable for future time evaluations in a current
year, say year τ .

We assume for our example that investors in one year τ have an interest on “minimum
investment grade-BBB” and “lower grade-BB” rating class bonds with no call provisions,
among the other financial securities that they may have in their portfolios. Investors may
associate a BB rated bond with a BBB rated one in their portfolios upon the rationale that
by doing so the can abide by their budgetary constraints. In this way, investors may help
themselves to optimize their portfolios on the higher priced BBB and lower priced BB rated
bonds while staying within the limits of their investment budgets.
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Bond defaults and loss amounts for BBB and BB rated bonds in a historical bond cohorts
data base with a near past and present time spanning at a given time τ̆ can be described by
the following two-tuples:

{(ϊ,ιc̆t,BBB, ϊ,ιm̆BBB); ι = 1, ..., nBBB−ϊ−τ̆ , t = t1, ..., T )},
{(ν̈,ίc̆BB, ν̈,ίm̆BB); ί = 1, ..., nBB−ν̈−τ̆ , t = t1, ..., T )}

where the cohorts of BBB and BB rated bonds are indicated with indices ϊ =1,... ,NBBB
and ν̈ =1,..., NBB, respectively. Here, τ̆ denotes bond issue year, ι and ί denote unique
bonds in the cohorts, and .,.c̆.,. and .,.m̆. denote respective realized loss amount values on
coupon payouts, ct , and redeemable par values, m. These loss amount observations can be
within the upfront known limits of 0≤ ϊ,ιc̆t,BBB ≤ ϊ,ιct,BBB, 0 ≤ ϊ,ίc̆t,BBB ≤, ϊ,ίct,BBB, 0 ≤
ϊ,ιm̆BBB ≤ ϊ,ιmBBB and 0≤ ν̈,ίm̆BBB ≤ ν̈,ίcBBB. The entirity of such a data can be qualified
as a populaton data with total size NBBB+NBB for the sample studies on BBB and BB rated
defaultable bonds.

Random variables X and Y in the context of our paper are now let to stand for respective
total default loss amounts for BBB and BB rated bond cohorts over the time duration [t0, T ].
So, we let X denote a total loss amount X = �t(c̆t,BBB + m̆BBB) for any BBB rated bond,
and Y a total loss amount Y = �t(c̆t,BB + m̆BB)for anyBB rated bond, wheret1 ≤ t ≤ T .
Probability distributions of Xand Y can be estimated from such a default loss amounts
data that we have described above. Several parametric or non-parametric estimation tech-
niques can be used up to this aim. We refer to London (1997), Altman (1989), Altman and
Heather (2000)) for a good coverage of these techniques. We presume for our implementa-
tion example that the marginal Pseudo-Pareto distributions, given in equations (3) and (4),
come out from such an estimation endeavor as the most plausible loss amount distribution
models for the BBB and BB rated bonds that investors may consider for investment. In
this regard, a sample {(Xi, Yi), i =1,.,n} of size n on the BBB and BB rated bonds under
concern, all with issue year τ̆ , is nothing but a sample from the bivariate Pseudo-Pareto dis-
tribution that we wrote in expression (2). It is clear that the values of Xand Y in this sample
can be the observations from the value intervals 0 ≤ X ≤ �t(c̆t,BBB + m̆BBB) and 0
≤ Y ≤ �t(c̆t,BB + m̆BB) depicting the possible loss totalities on coupon payments and par
values.

An r-th order statistics from the sample {(Xi , Yi), i=1,. . . ,n} is a very important decision
making variable for risk analysis on bond defaults since, as we said in Section 4, it is indica-
tive of an r/n-th percentile for any distribution as well as the Pseudo-Pareto distribution of
X under our concern. Risk positions for Y , being associated to X as a concomitant, are also
indicated by the values of r and r-th order statistics. Hence, inverstors’ choice on r becomes
a sign of their risk taking behavior for the potential loss amounts X and Y because a large
value of r points a large loss amount anticipation for the concerned bonds, especially for the
more risky BB rated ones. Therefore, the pair of the r-th order statistic and its concomitant,
(Xr;n, Y[r;n]), as well as the main pair (X, Y ) itself, are to be perceived in the risk of loss
analysis as very crucial decision factors for defaultable bonds.This need can be satisfied in
the best way by using the marginal distributions, complementing CDFs and joint comple-
menting CDF of (Xr;n, Y[r;n]) given in our expressions (11), (13), (15), (16) and (19), in
respective order.

A further need emerges for the following conditional probabilities about (Xr;n, Y[r;n]) in
order to make the risk generating event probability statements that investors have to consider
for their probable loss amounts:

Pr (Xr:n > x + u |Xr:n > x ) = SXr:n (x + u)

SXr:n (x)
=u px, (24)
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Pr
(
Y[r:n] > y + v

∣∣Y[r:n] > y
) = SY[r:n] (y + v)

SY[r:n] (y)
=v py, (25)

Pr
(
Xr:n > x + u, Y[r:n] > y + v

∣∣Xr:n > x, Y[r:n] > y
) = SXr:n,Y[r:n] (x + u, y + v)

SXr:n,Y[r:n] (x, y)
=u,v px,y .

(26)

The first of these conditional probabilities state the probability that after realizing a loss
amount x on Xr;n for a BBB rated bond, an additional default loss amount may be real-
ized leading to a loss that can be as much as x+u. Similar interpretations can be made for
the other two conditional probability expressions above, the last one being a conditional
joint default loss event probability concerning Xr;n and Y[r;n] in the loss anticipation con-
cerns of investors. Computation of these conditional probabilites can be performed using
the complementing CDF expressions given in (13), (16) and (19).

Along with the above given complementing CDFs, we need the hazard rate functions
for Xr;n, Y[r;n] and (Xr;n, Y[r;n]) that we gave in (14), (17) and (22), respectively. Hazard
functions help us to express the severities of anticipated loss occurrences on BBB and BB
rated bonds. Computation of such severities, as of a given year τ , can be performed by
several present value functions that we will denote by PVτ ( . ), hereafter. Actually, these
present values are expected risk expressions for anticipated future loss amounts. If loss
amount variables Xand Y are continuous random variables, computation of the expected
risks can be achieved by:

PVτ (X) =
CBBB+mBBB∫

0

(g1(u))(upx)(hXr.n (x + u))du (27)

for Xr:n,

PVτ (Y ) =
CBB+mBBB∫

0

(g2(v))(upy)(hYr.n (y + v))dv (28)

for Y[r:n], and

PVτ (X, Y ) =
CBBB+mBBB∫

0

CBB+mBB∫

0

g12(u, v)(u,vpx,y)(hXr,n,Y[r,n](x+u, y+v))dvdu (29)

jointly for (Xr;n, Y[r;n)), where x and y can be be chosen by investors as their already
incurred loss amounts that they stand by in view of future loss amounts. CBBB +mBBB and
CBB + mBB , upper limits of the integrations above, denote the respective sums of coupon
payouts and par values of BBB and BB rated bonds. And, g1(u) , g1(v) , g12(u, v) denote
year τ bound discounted loss amount values for the expected risk computations.

Random loss amounts X and Y are usually apprehended as discrete values in practice.
This is due to the fact that bond value expressions, as shown in (23), contain annual coupon
payout and redeemable par quantities usually in discrete values. Actually, investors may
consider the largest possible integer valued loss amounts in these computations for more
risk aversive decisions. Accordingly, it is a common necessity for investors to apply the
following discrete loss amount counterparts of the continuous value expressions in (27) to
(29):

PVτ (X) =
CBBB+mBBB−1∑

u=0

(g1(u + 1))(upx)(qXr.n (x + u)) , (30)
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PVτ (Y ) =
CBB+mBB−1∑

v=0

(g2(v + 1))(upy)(qY[r.n](y + v)) , (31)

and

PVτ (X, Y ) =
CBBB+mBBB−1∑

u=0

CBB+mBBB−1∑
v=0

(g12(u + 1, v + 1))(u,vpx,y)(qXr.n,Y[r;n] (x + u, y + v))

(32)
where u and v are discrete loss amount values, and q.(.) and q.,.(.,.) are the discrete value

case hazard functions:

qXr.n (x + u) = SXr;n(x + u) − SXr;n(x + u + 1)

SXr;n(x + u)
, (33)

qY[r.n](y + v) = SY[r;n](y + v) − SY[r;n](y + v + 1)

SY[r;n](y + v)
, (34)

qXr;nY[r.n](x + u, y + v) = SXr;n,Y[r;n](x + u, y + v) − SXr;n,Y[r;n](x + u + 1, y + v + 1)

SXr;n,Y[r;n](x + u, y + v)
.

(35)
The first function qXr.n (x + u) in (33) expresses a loss amount severity (x + u+1) that

a BBB rated bond investor may experince immediately after having realized a loss amount
of (x + u). In this sense, this function implies that loss occurrences will be ever going as
u grows larger and as investors continue with a BBB rated bond in hand until its maturity.
Similar interpretations can be made for the other hazard functions in (34) and (35), the latter
being the discrete bivariate case hazard function.

It is better for investors to do these expected risk computations in a year τ that coincides
with the first coupon payment period of the bonds. In this way, investors can do timely
default loss amount evaluations and make effective decisions to mitigate expectable risks
of loss. Outcoming values from these computations can be utilized by investors to make
decisions on whether or not keep the less risky one or both of BBB and BB rated bonds
in hand until the end of their maturity periods. As a result of such decisions, investors may
choose to sell a comparatively more risky bond at once at its prevailing price in secondary
bond markets. It may also be a preference for investors to sell both of the risky bonds
immediately.

A numerical illustration of the example can be presented now using decision variables
(Xr;n, Y[r;n] ) and utilizing the functions expressed in (27) to (35). Let us consider n =10
counts of BBB and BB rated bond pairs that investors possess in year τ . Assume the fol-
lowing quantities for these bonds: Price(BBB)=7.75 with k =0.13, Price(BB)=6.96 with
k =0.15, T =8 years, m =10 and the coupon rate is 10% so ct =1 for each bond. Then,
probable total loss amounts for each bond may extend from 0 to 18 money units over their
lifetime duration [t., T ]. Assume further that coupon and par value payments are made at the
end of each payment year. So, present values of the probable loss amounts can be calculated
by using a discount factor (1+ϑ)t−1, 1≤ t ≤ T , where the discount rate ϑ can be chosen
by investors depending upon their judgement on the year τ cost of future losses. A sensible
choice for ϑ can be the best possible interest rate on a concurrent government bond that is
flat over [t0, T ]. With such a discount rate choice, investors can measure their missed gains
regarding an alternative investment that they could have made on a government bond rather
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than BBB and BB rated bonds. Letting ϑ =0.05 per year, the year τ present values of the
anticipated total losses out of 18 money units, that they at the start hope to receive on each
bond, can be within the discounted values interval of [0, 13) money units since the present
value of the possible total loss amount on a bond can be as much as 18/(1.05)7 ≈13 as of
the end of year τ . Parameters of the parent Pseudo-Pareto distributions of X and Y , given
in (2), (3) and (4), can be determined then with respect to the value range [0, 13) assum-
ing that investors trust these probability distributions as the true probability models for the
probable losses on their current investments. It is implicit in this set up that investors retain
a loss of 1 money unit on each bond since by assumption they are already in the first coupon
payment period and have lost the first coupon payouts. Let the estimated parameter values
of the concerned Pseudo-Pareto distributions be given as a1 =2, b1 > 1, a2 =ln(x)>0,
b2 >1, and X > b1, Y >1. And, suppose that investors choose r =5 as the order rank of
their decision variable Xr;n for risk evaluations. Under these circumstances, we can make
risk assessments for investors by the use of the probability and hazard rate values that we
tabulated in Appendix 2.

Present value expressions for the BBB and BB rated bonds are computed below as of the
end of year τ =1 by applying the equations given in (30), (31) and (32) for the confrontable
discrete and discounted loss amounts {1+, 2,3,...,13}, the first value in the set being close to
one, 1.1/(1.5)≈1.05, as a retained loss amount on each bond. So, the loss amount evaluations
here can made from the stand point of already incurred loss amounts of 1.05 for each bond,
and our explicitly shown calculations produce the following results:

PV1 (X) = 2

(
SXr:n (1.05) − SXr:n (2)

SXr:n (1.05)

)

+
11∑

u=1

(2 + u)

(
SXr:n (1 + u) − SXr:n (2 + u)

SXr:n (1.05)

)
= 1.96078,

PV1 (Y ) = 2

(
SY[r:n] (1.05) − SY[r:n] (2)

SY[r:n] (1.05)

)

+
11∑

v=1

(2 + v)

(
SY[r:n] (1 + v) − SY[r:n] (2 + v)

SY[r:n] (1.05)

)
= 2.37589,

PV1 (X, Y ) = 4

(
SXr:n,Y[r:n](1.05, 1.05) − SXr:n,Y[r:n](2, 2)

SXr:n,Y[r:n](1.05, 1.05)

)

+
11∑

u=1

11∑
v=1

(4 + u + v)
SXr:n,Y[r:n](1 + u, 1 + v) − SXr:n,Y[r:n](2 + u, 2 + v)

SXr:n,Y[r:n](1.05, 1.05)

= 10.0661

where the following computational specifications are used for the discounted loss amount
values; g1(u) = u, g2(v) = v and g12(u+1,v+1) = (u+1)+(v+1).

Net expected payoffs for the final evaluations of investors on the bonds, as of time τ =1,
can be assessed now. Net expected payoff quantities can be computed for each bond in
line of the “present value of written coupons and par value total” net of “expected loss
amount” and “paid bond price” calculation. Performing this calculation, the net expected
payoffs for investor evaluations turn out as “13-2.96078-7.75 ≈2.30” money units on a BBB
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rated bond, and “13-3.37589-6.96≈2.66” money units on a BB rated one. These payoffs are
much less than the price independent expected payoff values that follow from the “present
value of written coupons and par value total” net of “probable loss amount” calculation.
This calculation yields “13-7.75≈5.25” and “13-6.96≈6.04” values for the BBB and BB
rated bonds, respectively. So, investors of the bonds have to decide promptly if they should
sell one or both, or keep both of the bonds for further coupon payment years. Selected
values of k have an obvious effect on the bond prices and investor evaluations. So are the
effects of the values of r , the rank of decision variable Xr;n, and ϑ , the discount rate, on the
computational results and pending investor decisions. Investors may try other rand ϑ values
for their evaluations and see what they may come accross with under such simulations. At
this point, we must mention the effect of another criterion that investor have to consider.
This criterion is the strength of bond issuer companies which is measured in general in terms
of a company’s existing assets and equity amounts. Hence, if it is thought that the strength
of a bond issuing company will not be able to cushion the default amounts that investors
may incur, then selling the bonds of that company may become a prevailing decision for
investors before they lose more.

The use of equation PV1(X, Y ) for integer valued loss amounts is not exemplified here
after all the antecedent results, although it is a useful but a more risk aversive expression for
the expected loss amount calculations on BBB and BB rated bond pairs. Note that, similar
computations like above can be pursued by using the equations in (27), (28) and (29) for
loss amount expectations in continuous value terms. The essence of investor evaluations and
decisions in the continous case stays as what is given for the discrete case and all aforesaid
conclusions remain completely unchanged.

6 Conclusion

Bivariate Pseudo-Pareto distributions and distributions of their order statistics and concomi-
tants can be used in many real life applications that require flexible and well established
probability models. We have shown such a model with our bivariate Pseudo-Pareto distribu-
tion regarding a variable-concomitant variable pair (X, Y ), as main variables, and an order
statistic and its concomitant pair (Xr;n, Y[r;n]), as decison variables. It is worth to go beyond
this bivariate case and create some multivariate extensions of it. Inclusion of multifarious
variable-concomitant variable multiplets in the model can increase its presently available
modeling capacities for the decision making problems in multitude dimensions.

Different types of Pseudo-Pareto distributions can be developed on the grounds of
what we have presented in this paper. Following the Pareto distribution families that
already exist in the literature, several shape and scale parameter functions can be simul-
taneously introduced into this distribution in order to create more versatile versions of
it. It is certain that there will be a need for more sophisticated computational tools in
such endeavors.

Characterization of distributions by complementing CDFs, hazard functions and order
statistics is another area of current research interest in probability. In this respect, character-
ization of the bivariate and multivariate Pseudo-Pareto distributions, given in this paper or
elsewhere, is an appealing future research problem for us.
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Appendix 1

This appendix presents instantaneous rate of change (IRC) expressions for the complement-
ing CDF and hazard function of r-th order concomitant. Note that Polygamma and Riemann
Zeta functions may take place in these expressions. The general definition for a polygamma
function is ψ(m)(z) ≡ dm/dzm(ψ(z)) = dm+1/dzm+1ln(ψ(z)) that we use in Section 3 in
the digamma function form ψ(·). Riemann Zeta function is defined as ζ(h) = �υ(1/υh),
υ >1. This function is convergent as long as the real part of its complex variable h is
greater than 1. We refer to Gradshteyn and Ryzhik (2007) for detailed information on these
functions.

Instantaneous rate of change expressions are listed below with brief explanations and
some numerical value tables:

∂

∂a1
SY[r:n] (y) =�(n+1)� (n− r+(ln(y)/a1) + 1) ln(y) [ψ (n + (ln(y)/a1) + 1) − ψ (n − r + (ln(y)/a1) + 1)]

a2
1�(n − r + 1)� (n + (ln(y)/a1) + 1)

obtains decreasing values at each increasing a1 value (n=10, r =5, y =5),

∂

∂a1
hY[r:n](y) = −

(
H(

ln(y)
a1

+n
) − H(

ln(y)
a1

+n−r
)
)

a2
1y

−
ln(y)

(
H(

ln(y)
a1

+n,2
) − H(

ln(y)
a1

+n−r,2
)
)

a3
1 y

obtains decreasing values at each increasing a1 value (n=10, r =5, y =5),

∂

∂r
SY[r:n] (y) = �(n+1)� (n − r + (ln(y)/a1) + 1) [ψ (n − r + 1) − ψ (n−r+(ln(y)/a1)+1)]

�(n − r + 1)� (n + (ln(y)/a1) + 1)

obtains increasing values at each increasing r value (n=10, a1 =0.5, y =5),

∂

∂r
hY[r:n](y) =

π2

6 − H(
ln(y)
a1

+n−r,2
)

a1y
,

obtains increasing values at each increasing r value (n=10, a1 =0.5, y =5),

∂2

∂a1∂y
SY[r:n] (y) = �(n+1)�(n−r+(ln(y)/a1)+1)

a2
1y�(n−r+1)�(n+(ln(y)/a1)+1)

(ψ (n + (ln(y)/a1) + 1)

− In(y)ψ(n+(ln(y)/a1)+1)2

a1
− ψ (n − r + (ln(y)/a1) + 1) + 2In(y)ψ(n+(ln(y)/a1)+1)ψ(n−r+(ln(y)/a1)+1)

a1

− In(y)ψ(n−r+(ln(y)/a1)+1)2

a1
+ In(y)ψ(1)(n+(ln(y)/a1)+1)

a1
− In(y)ψ(1)(n−r+(ln(y)/a1)+1)

a1

)

obtains decreasing values at each increasing (a1, y) value pair (n=10, r =5),
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)
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a1

+n−r,2
)−H(

ln(y)
a1

+n,2
)
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a1

+n,2
)−H(

ln(y)
a1

+n−r,2
)

a3
1y2

)
− 2ln(y)

(
H(

ln(y)
a1

+n,3
)−H(

ln(y)
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)

a4
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Table 1 Some IRC values for the complementing CDF of r-th order concomitant

n = 10, r = 5 n = 10, a1 = 1

y a1 r

1 1.5 2 1 5 8

2 −0.4169 −0.2221 −0.1370 −0.1091 −0.4169 −0.6308

5 −0.0827 −0.0632 −0.0459 −0.0343 −0.0827 −0.2361

8 −0.0119 −0.0248 −0.0222 −0.0177 −0.0119 −0.1518

obtains abrubtly decreasing values at each increasing (a1, y) value pair and turns to increase
gradually as y gets larger (n=10, r =5),

∂2

∂r∂y
SY[r:n] (y) = �(n+1)�(n−r+(In(y)/a1)+1)

a1y�(n−r+1)�(n+(In(y)/a1)+1)
(−ψ (n − r + 1) ψ (n + (In(y)/a1) + 1)

+ψ (n − r + 1) ψ (n − r + (In(y)/a1) + 1) + ψ (n + (In(y)/a1) + 1) ψ (n − r + (In(y)/a1) + 1)

−ψ (n − r + (In(y)/a1) + 1)2 − ψ(1) (n − r + (In(y)/a1) + 1)
)

obtains increasing values at each increasing (r , y) value pair (n=10, a1 =1.5),

∂2

∂r∂y
hY[r:n](y) = −

π2
6 −H(

In(y)
a1

+n−r,2
)

a1y
2 −

2

(
−H(

In(y)
a1

+n−r,3
)+ζ(3)

)

a3
1y3

obtains decreasing values at each increasing (r , y) value pair (n=10, a1 =1.5),

∂3

∂a1∂r∂y
SY[r:n] (y) = − �(n+1)�(n−r+(ln(y)/a1)+1)

a1y�(n−r+1)�(n+(ln(y)/a1)+1)

(
ψ(n−r+1)

a1
(ψ (n−r+(ln(y)/a1)+1) −ψ (n+ (ln(y)/a1)+1)

+ ln(y)ψ(n+(ln(y)/a1)+1)
a1

(ψ (n − r + (ln(y)/a1) + 1) − ψ (n + (ln(y)/a1) + 1))

− ln(y)ψ(n−r+(ln(y)/a1)+1)
a1

(ψ (n − r + (ln(y)/a1) + 1) − ψ (n + (ln(y)/a1) + 1))

+
ln(y)

(
ψ(1)(n+(ln(y)/a1)+1)−ψ(1)(n−r+(ln(y)/a1)+1)

)
a1

))

− ln(y)

a2
1

(
ψ (n − r + (ln(y)/a1) + 1) ψ(1) (n + (ln(y)/a1) + 1)

+ψ (n + (ln(y)/a1) + 1) ψ(1) (n − r + (ln(y)/a1) + 1) − ψ(2) (n − r + (ln(y)/a1) + 1)

−2ψ (n − r + (ln(y)/a1) + 1) ψ(1) (n − r + (ln(y)/a1) + 1)
)

captures the exemplary values in Table 1 for some (a1, r , y) value triples,
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Table 2 Some IRC values for the hazard function of r-th order concomitant

n = 10, r = 5 n = 10, a1 = 1

y a1 r

1 1.5 2 1 5 8

2 −49.635 −15.652 −0.7002 −76.917 −49.635 −10.468

5 0.2762 0.0377 0.0067 0.4167 0.2762 0.1041

8 0.1569 0.0259 0.0068 0.2218 0.1569 0.0804

and

∂3

∂a1∂r∂y
hY[r:n](y) =

π2

6 − H(
ln(y)
a1

+n−r,2
)

(a1y)2
−

6ln(y)

(
π4

60 − H(
ln(y)
a1

+n−r,4
)
)

a4
1y2

+

(
ζ(3) − H(

ln(y)
a1

+n−r,3
)
)

a3
1y2

(4 − 2ln(y))

captures the exemplary values shown in Table 2 at the given (a1, r , y) value triples.

Appendix 2

Table 3 Distribution and hazard function value points for the implementation example

Bivariate Pseudo-Pareto Distribution n =10, a1 =2, a2 =ln(x), b1 =1, b2 =1, r =5

x y FX (x) FY (y) SXr:n (x) hXr:n (x) SY[r:n] (y) hY[r:n] (y) SXr:n,Y[r:n] (x, y) hXr:n,Y[r:n] (x, y)

2 2 0.7500 0.2574 0.0197 73.9051 0.8035 0.0685 0.0693 4.5119

3 3 0.8889 0.3545 2.6516e-004 29.0324 0.7102 0.0452 0.0018 0.4807

4 4 0.9375 0.4094 1.0047e-004 18.4074 0.6518 0.0336 1.0412e-004 0.0901

5 5 0.9600 0.4459 7.4824e-007 13.6604 0.6105 0.0267 1.1082e-005 0.0223

6 6 0.9722 0.4725 8.7614e-008 10.9360 0.5790 0.0222 1.7494e-006 0.0066

7 7 0.9796 0.4931 1.4138e-008 9.1517 0.5539 0.0189 3.6512e-007 0.0022

8 8 0.9844 0.5097 2.8955e-009 7.8848 0.5333 0.0165 9.3729e-008 8.3865e-004

9 9 0.9877 0.5235 7.1258e-010 6.9351 0.5158 0.0146 2.8213e-008 3.4228e-004

10 10 0.9900 0.5352 2.0289e-010 6.1947 0.5008 0.0131 9.6337e-009 1.4967e-004

11 11 0.9917 0.5452 6.5037e-011 5.6003 0.4876 0.0119 3.6437e-009 6.9361e-005

12 12 0.9931 0.5541 2.2997e-011 5.1120 0.4760 0.0109 1.4998e-009 3.3784e-005

13 13 0.9941 0.5619 8.8322e-012 4.7033 0.4656 0.0100 6.6278e-010 1.7180e-005

Note: “e-w” means 10 raised to power “-w” (e.g.2.6516e-004=2.6516*10−4 =0.00026516
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