
KADĠR HAS UNIVERSITY

SCHOOL OF GRADUATE STUDIES

 PROGRAM OF COMPUTER ENGINEERING

IMPROVING THE QUALITY OF RECOMMENDER

SYSTEMS IN E-COMMERCE PLATFORMS

MUHĠTTĠN IġIK

PROF. DR. HASAN DAĞ

PHD DISSERTATION

ĠSTANBUL, JUNE, 2021

M
u
h
ittin

 Iġ
IK

P

h
D

 D
issertatio

n

2
0
2

1

IMPROVING THE QUALITY OF RECOMMENDER

SYSTEMS IN E-COMMERCE PLATFORMS

MUHĠTTĠN IġIK

PROF. DR. HASAN DAĞ

PHD DISSERTATION

A THESIS SUBMITTED TO THE GRADUATE STUDIES WITH THE AIM TO

MEET THE PARTIAL REQUIREMENTS REQUIORED TO RECEIVE A PhD IN

THE DEPARTMENT OF ENGINEERING AND NATURAL SCIENCE

ĠSTANBUL, JUNE, 2021

APPENDIX B

NOTICE ON RESEARCH ETHICS AND

PUBLISHING METHODS

I, MUHĠTTĠN IġIK;

 hereby acknowledge, agree and undertake that this PhD Dissertation that I have

prepared is entirely my own work and I have declared the citations from other

studies in the bibliography in accordance with the rules;

 that this PhD Dissertation does not contain any material from any research

submitted or accepted to obtain a degree or diploma at another educational

institution;

 and that I commit and undertake to follow the "Kadir Has University Academic

Codes of Conduct" prepared in accordance with the "Higher Education Council

Codes of Conduct".

In addition, I acknowledge that any claim of irregularity that may arise in relation to

this work will result in a disciplinary action in accordance with the university

legislation.

ACCEPTANCE AND APPROVAL

This study, titled IMPROVING THE QUALITY OF RECOMMENDER

SYSTEMS IN E-COMMERCE PLATFORMS, prepared by the MUHİTTİN IŞIK,

was deemed successful with the UNANIMOUS as a result of the thesis defense

examination held on the 03.06.2021 and approved as a PHD THESIS by our jury.

JURY: SIGNATURE:

Prof. Dr. Hasan DAĞ (Advisor) (Kadir Has University) ____________

Prof. Dr. Songül VARLI (Co-Advisor) (Yıldız Technical University) ____________

Assoc. Prof. Dr. Tamer DAĞ (Co-Advisor) (Kadir Has University) ____________

Assoc. Prof. Dr. Taner ARSAN (Kadir Has University) ____________

Prof. Dr. Mustafa BAĞRIYANIK (Ġstanbul Technical University)_ ____________

I confirm that the signatures above belong to the aforementioned faculty members.

(Title, Name and Surname)

Director of the School of Graduate Studies

APPROVAL DATE: …/…/…

i

TABLE of CONTENTS

ABSTRACT .. vi

ÖZET ... viii

ACKNOWLEDGEMENT .. x

LIST OF TABLES .. xii

LIST of FIGURES ... xiv

1. INTRODUCTION ... 1

1.1 Problem Definition .. 3

1.2 Aim and Objectives ... 5

1.3 Contributions ... 6

1.4 Thesis Outline .. 8

2. COLLABORATIVE FILTERING RECOMMENDER SYSTEM 10

2.1 User-based Collaborative Filtering ... 14

2.2 Item-based Collaborative Filtering ... 16

2.3 Exploring Similarity Metrics ... 19

2.3.1 Pearson Correlation-based Similarity ... 19

2.3.2 Euclidean Distance Similarity ... 20

2.3.3 Cosine Similarity ... 20

2.3.4 Spearman Similarity .. 20

2.3.5 Tanimoto Similarity .. 21

2.3.6 Log-likelihood Similarity .. 21

2.4 Challenges in Collaborative Filtering ... 22

2.4.1 Cold Start Problem .. 22

2.4.2 Sparsity Problem ... 23

2.4.3 Scalability Problem ... 23

2.4.4 Overspecialization Problem .. 24

2.4.5 Robustness Problem .. 25

3. IMPROVING THE QUALITY OF RECOMMENDER SYSTEMS

THROUGH THE TRUST RELATIONSHIP .. 26

3.1 Related Work ... 27

ii

3.1.1 Studies in Collaborative Filtering Recommender Systems 28

3.1.2 Studies in Trust and Reputation Based Recommender Systems 35

3.2 Prepare Background and Context ... 42

3.2.1 Mathematical Background .. 43

3.2.2 Directed Graphs .. 47

3.2.3 A glimpse of PageRank Computation ... 48

3.2.4 Matrix Representation to Compute Page Score .. 51

3.2.4.1 Random Walk on the Web Graph ... 53

3.2.4.2 Dangling Nodes Problem in the PageRank Algorithm 53

3.2.4.3 Rank Sink Subgraphs Problem in the PageRank Algorithm 55

3.2.4.4 Computation of the PageRank Vector... 57

3.2.5 Markov Chains in PageRank Computation ... 61

3.2.5.1 Graph Theory of Markov Chain .. 62

3.2.5.2 Formulizing Web Graphs with Markov Chains 63

3.3 Dataset .. 65

3.4 Recommender Model Based on Trust Relationship 66

3.4.1 Creating User Matrix for Creating the Trust Relationship.......................... 66

3.4.2 Specify Relationship Between Users .. 67

3.4.3 Sharing the Trust Values Between Trustee of the Trustor “H” Matrix....... 67

3.4.4 Solving Dangling Nodes Problem “S” Matrix .. 68

3.4.5 Solving Rank Sink Subgraphs Problem .. 69

3.4.6 Computation of “G” Matrix .. 70

3.4.7 Computation of the PageRank Vector: ... 70

3.4.8 Findings after Computation of the PageRank Vector 71

3.4.9 Calculation of Items‟ Ratings Based on Trusted Users via Iem-based

Recommendation... 72

3.4.10 Calculation of Items‟ Ratings Based on Trusted Users via User-based

Recommendation... 74

3.5 Conclusion .. 77

4. A RECOMMENDER MODEL BASED ON TIME DECAY 78

4.1 Related Work ... 79

4.2 Prepare Background and Context ... 80

iii

4.2.1 Time Decay of a Rating .. 81

4.2.2 Calculation Rating Score of a Product Based on Time Decay.................... 82

4.2.3 Calculation Rating Score of a Product Based on Helpfulness Votes 83

4.2.4 Calculation Rating Score of a Product Based on True Bayesian Estimate . 84

4.3 Experimental Results .. 84

4.3.1 Rating Score Based on Trust Values ... 85

4.3.2 Rating Score Based on Time Decay.. 87

4.3.3 Rating Score Based on Trust Values and Time Decay 88

4.3.4 Rating Score Based on Helpfulness Votes .. 88

4.3.5 Rating Score Based on True Bayesian Estimate ... 89

4.3.6 Comparison of all Weighted Averages with each other.............................. 89

4.4 Conclusion .. 90

5. THE IMPACT OF TEXT PREPROCESSING ON THE PREDICTION OF

REVIEW RATINGS ... 92

5.1 Related Work ... 94

5.2 Prepare Background and Context ... 97

5.2.1 Tokenization .. 98

5.2.2 Effect of Emoticons, Removing Punctuation and Urls 99

5.2.3 Expanding Abbreviation and Acronyms ... 100

5.2.4 Word Correction and Multiword Expressions .. 100

5.2.5 Stopwords Elimination .. 101

5.2.6 Stemming .. 102

5.2.7 Lemmatization... 103

5.2.8 Lowercasing .. 105

5.2.9 Removing Common Words .. 105

5.2.10 N-grams ... 105

5.3 Dataset Description ... 106

5.4 Experimental Results .. 107

5.4.1 Performance of the Classifiers Based on Different Tokenizers 108

5.4.2 Classifier Performance Based on Replaced Emoticons and Removing

Punctuations .. 109

iv

5.4.3 Classifier Performance Based on Expanding Abbreviations and Acronyms

 110

5.4.4 Classifier Performance Based on Word Correction 110

5.4.5 Classifier Performance Based on Stopwords Elimination 111

5.4.6 Classifier Performance Based on Stemming ... 111

5.4.7 Classifier Performance Based on Lemmatization 112

5.4.8 Classifier Performance Based on Lowercasing... 112

5.4.9 Classifier Performance Based on Removing Common Words 113

5.4.10 Classifier Performance Based on Removing N-grams 113

5.4.11 Classifier Performance Based on Preprocessing Order 114

5.5 Conclusion .. 115

6. CALCULATING OVERALL STAR RATINGS BASED ON REVIEWS ... 117

6.1 Related Work ... 119

6.2 Prepare Background and Context ... 124

6.2.1 Sentiment Analysis ... 125

6.2.1.1 Machine Learning Approach... 126

6.2.1.2 Lexicon Based Approach .. 127

6.2.2 Data Preprocessing .. 128

6.2.2.1 Tekonization .. 129

6.2.2.2 Lowercasing .. 129

6.2.2.3 Removing Punctuation and Digits .. 129

6.2.2.4 Removing Stopwords .. 129

6.2.2.5 Lemmatization... 130

6.2.3 N-grams Feature Extraction .. 130

6.2.4 Dimensionality Reduction ... 132

6.2.5 Existing Classification Methods ... 132

6.2.5.1 Decision Tree .. 133

6.2.5.2 K-Nearest Neighbors ... 134

6.2.5.3 Random Forest .. 135

6.2.5.4 Multinomial Naïve Bayes ... 135

6.2.5.5 Logistic Regression ... 136

6.2.5.6 Support Vector Machines .. 136

v

6.3 Dataset Description ... 137

6.4 Empirical Observation ... 138

6.5 Conclusion .. 144

7. CONCLUSIONS ... 145

REFERENCES .. 148

vi

IMPROVING THE QUALITY OF RECOMMENDER SYSTEMS

IN E-COMMERCE PLATFORMS

ABSTRACT

Especially Covid-19 pandemic process, which has taken the world by storm, has shed a

clear light on the place of e-commerce, which is already increasing its influence with

the globalizing world, in the future world of commerce. This pandemic process has

shown that companies that can carry out their business on the internet, regardless of

their sector, may survive, and the rest may suffer a great deal. As people choose the

way to meet even their daily needs online, it caused the majority of companies to

quickly turn to and analyze this field and start to take their place in the e-commerce

world as soon as possible. As such, the tricks of e-commerce systems gained great

importance. The most prominent of these tricks are product ratings and reviews that

completely change the shopping idea of users. The scope of this research consists of

experimental studies on how to calculate these product rating systems, which change

the profit margin of the companies in the world of e-commerce, more effectively. Our

study suggests different methods for the calculation of product rating score to prevent

fake accounts, biased or malicious users and companies that make guiding or deceptive

interventions for their products and services. That is to say, our study includes

alternatives to the primitive calculations used in such systems that can be used in

different e-commerce platforms, which can perform various calculations based on

reliable users, time factor and reviews of products. In our experimental studies, we have

reached various results that can prevent both the deceptive and guiding effect of fake

accounts and the primitive and inadequacy of calculation methods in e-commerce

systems. In this way, it is aimed that individuals who shop in various e-commerce

platforms can reach real information and values and help companies that offer products

and services to mirror themselves and create intelligent business ideas.

vii

Keywords: E-commerce, Recommender Systems, Trust Rank, Time Decay, Rating

Score, Trustful Users, Review Rating, Quality Star Rating

viii

E-TĠCARET SĠSTEMLERĠNDE

TAVSĠYE SĠSTEMLERĠNĠN KALĠTESĠNĠ ARTTIRMAK

ÖZET

Tüm dünyayı kasıp kavuran Covid-19 pandemisi, globalleĢen dünya ile birlikte zaten

etkisini her geçen gün artıran e-ticaretin, gelecek ticaret dünyasındaki yerine net bir ıĢık

tutmuĢtur. Bu pandemi süreci, hangi sektörde olunursa olunsun iĢlerini bir nebze de olsa

internet üzerinden yürütebilen Ģirketlerin ayakta kalabileceğini, geriye kalanların ise

büyük bir hezimete uğrayabileceklerini gösterdi. Günümüzde insanlar günlük

ihtiyaçlarını bile internet üzerinden giderme yolunu seçince, Ģirketlerin büyük bir

kısmının bu alana yönelmesine, bu alanı çözümlemesine ve bir an önce e-ticaret

dünyasındaki yerini almaya çalıĢmasına yol açmıĢtır. Hal böyle olunca e-ticaret

sistemlerinin püf noktaları büyük bir önem kazandı. Bu püf noktalarının en göze

çarpanları ise kullanıcıların alıĢveriĢ fikrini tamamen değiĢtiren ürün puanları ve

yorumları olmuĢtur. Bu araĢtırmamızın kapsamı da e-ticaret dünyasında bulunan

Ģirketlerin kâr marjını değiĢtiren bu ürün puanlama sistemlerinin nasıl daha sağlıklı

hesaplanacağına dair deneysel çalıĢmalardan oluĢmaktadır. ÇalıĢmamız ürün puanlama

sistemlerindeki kötü ve ön yargılı kullanıcıları, sahte hesapları ve kendi ürün ve

servislerine yönelik yaptıkları yönlendirici veya aldatıcı müdahalelerde bulunan

Ģirketleri önlemek amacıyla birbirinden farklı yöntemler önermektedir. Bir baĢka

deyiĢle, çalıĢmamız güvenilir kullanıcılar, zaman faktörü ve ürünlerin yorumlarından

yola çıkarak çeĢitli hesaplamalar yapabilen, farklı e-ticaret ortamlarında ürün puanlama

sistemleri için kullanılan temel hesaplamalara alternatif yöntemler içermektedir.

Yaptığımız deneysel çalıĢmalarda e-ticaret ortamlarındaki ürün puanlama sistemlerinde

yaĢanan gerek sahte hesapların aldatıcı ve yönlendirici etkisini gerekse hesaplama

yöntemlerinin ilkelliğini ve yetersizliğini önleyecek çeĢitli sonuçlara ulaĢılmıĢtır.

Böylece hem çeĢitli e-ticaret ortamlarında alıĢveriĢ yapan bireylerin gerçek bilgi ve

değerlere ulaĢması hem de ürün ve hizmet sunan Ģirketlerin kendilerine ayna tutmasına

ve yeni iĢ fikirleri oluĢturmasına yardımcı olunması hedeflenmiĢtir.

ix

Anahtar Sözcükler: E-ticaret Sistemleri, Tavsiye Sistemleri, Güven Oranı, Oylama

Puanı, Güvenilir Kullanıcılar, Yorum Puanlama, Yıldız Puanlama

x

ACKNOWLEDGEMENT

I would like to express my deep and sincere gratitude to my advisor Prof. Hasan DAĞ

for his guidance, encouragement, patience, and continuous support throughout the work

of this research. I would not have been able to do the research and achieve learning in

the same manner without his help and support. His recommendations and instructions

have enabled me to assemble and finish the dissertation effectively.

xi

Anneme…

xii

LIST OF TABLES

Table 2.1 User – Item Rating Matrix .. 12

Table 2.2 The data set structure used in the research .. 13
Table 2.3 Scores given by the users to the movies ... 15
Table 2.4 Scores given by the target user to the movies ... 18
Table 2.5 Similarities between movies ... 18
Table 2.6 Ratings for each movie from each user ... 20

Table 3.1 First few iterates using on Figure 3.8 .. 51

Table 3.2 Calculation of each page score at each iteration ... 60
Table 3.3 Passing probability of Random Walker between nodes 63

Table 3.4 Passing probability of Random Walker after two steps 64
Table 3.5 Rating Dataset ... 65
Table 3.6 Trust Network Dataset .. 65
Table 3.7 Dangling Users .. 68

Table 3.8 Trustworthiness of users in order .. 70
Table 3.9 Comparing Average Rating Score and Weighted Rating Score Based on

Trustworthiness ... 71
Table 3.10 Trustworthiness of the User who rated item 4 .. 72
Table 3.11 Changing the distance between ARS and WRSBT by the different range of

users .. 72

Table 3.12 ARS and WRSBT by first the 500 trusted users ... 73
Table 3.13 Comparing Similarity Measures on Items .. 74
Table 3.14 WRSBT by the first 10 trusted users via user-based recommender 76

Table 3.15 Comparing Similarity Measures on Users .. 76
Table 4.1 Information about product 2 ... 82

Table 4.2 Currency of each rating ... 82
Table 4.3 Appearance of the rating dataset ... 85

Table 4.4 Appearance of the trust network dataset ... 85
Table 4.5 Trust values of some users .. 85
Table 4.6 Average ratings based on trust values ... 86

Table 4.7 Trust values of each user who rated item 2 ... 86
Table 4.8 Average difference between AR and WARTV ... 87

Table 4.9Average ratings based on time decay ... 87
Table 4.10 Average ratings based an time-decay and trust value 88

Table 4.11 Average rating based on helpfulness votes ... 88
Table 4.12 Average rating based on True Bayesian Estimate .. 89
Table 4.13 Comparison the difference between average and all other weighted averages

 ... 89
Table 5.1 Difference between stemmer and lemmatizer ... 104

Table 5.2 Appearance of review dataset ... 106
Table 5.3 Appearance of business dataset... 107
Table 5.4 Performance of the classifier based on different tokenizers 108
Table 5.5 Classifier performance based on replaced emoticons and removing

punctuations .. 109

xiii

Table 5.6 Classifier performance based on stopwords eliminations 111
Table 5.7 Classifier performance based on stemming .. 111

Table 5.8 Classifier performance based on lemmatization ... 112
Table 5.9 Classifier performance based on removing N-grams 113
Table 5.10 Classifier performance based on preprocessing order 114
Table 6.1 Tf-Idf vector space model ... 131
Table 6.2 Appearance of the review dataset ... 138

Table 6.3 Appearance of the business dataset ... 138
Table 6.4 Classifier performance .. 139
Table 6.5 The average distance between real ratings and review ratings based on first

approach .. 141
Table 6.6 Another example for the distance between real ratings and review ratings

based on first approach.. 142
Table 6.7 The distance between real ratings and review ratings based on second

approach .. 142
Table 6.8 Precision values of each method based on Support Vector Machines 143
Table 6.9 Precision values of hybrid-based method based on second approach using

Support Vector Machines .. 144

xiv

LIST of FIGURES

Figure 2.1 The Structure of Collaborative Filtering.. 10

Figure 2.2 Visual representation of the user-based CF ... 14
Figure 2.3 Similarity rates according to the each other .. 19
Figure 2.4 Vectors for each user ... 20
Figure 2.5 Illustration of Tanimoto coefficient .. 21
Figure 3.1 Relationship between rows and columns in a matrix 43

Figure 3.2 Adding and subtracting matrices ... 43

Figure 3.3 Scalar multiplication .. 44
Figure 3.4 Matrix multiplication ... 44

Figure 3.5 Transpose of a matrix .. 44
Figure 3.6 A matrix with transpose ... 46
Figure 3.7 Directed graph with four nodes ... 47
Figure 3.8 A graph with four nodes .. 50

Figure 3.9 A graph with six nodes .. 52
Figure 3.10 Directed graph with four nodes ... 57

Figure 3.11 A graph with six nodes .. 58
Figure 3.12 The conditional probability of occurrence ... 62
Figure 3.13 A four-node graph given with passing probability 63

Figure 3.14 User vector with Trust-relationship Matrix ... 66

Figure 3.15 The appearance of first user's vector in trust-relationship matrix................ 67
Figure 3.16 Sharing the trust value of user 1 between trustee .. 67
Figure 3.17 Sharing trust value of user 155 between all users.. 68

Figure 3.18 Rank sink part in G formula .. 69
Figure 3.19 "G" Matrix after solution of rank sink problem ... 70

Figure 4.1 Currency-time graph .. 81
Figure 6.1 Sentiment analysis techniques .. 126

Figure 6.2 Flow of the proposed model .. 128
Figure 6.3 A simple Decision Tree ... 133
Figure 6.4 Optimal and Possible Hyperplanes .. 137

file:///E:/Muhittin_IŞIK/PHD/X/TEZ/Muhittin_IŞIK_20121111001_TEZ_KHAS_Bil_Müh_Doktora_24_04_2021.docx%23_Toc72275691
file:///E:/Muhittin_IŞIK/PHD/X/TEZ/Muhittin_IŞIK_20121111001_TEZ_KHAS_Bil_Müh_Doktora_24_04_2021.docx%23_Toc72275692
file:///E:/Muhittin_IŞIK/PHD/X/TEZ/Muhittin_IŞIK_20121111001_TEZ_KHAS_Bil_Müh_Doktora_24_04_2021.docx%23_Toc72275693
file:///E:/Muhittin_IŞIK/PHD/X/TEZ/Muhittin_IŞIK_20121111001_TEZ_KHAS_Bil_Müh_Doktora_24_04_2021.docx%23_Toc72275694
file:///E:/Muhittin_IŞIK/PHD/X/TEZ/Muhittin_IŞIK_20121111001_TEZ_KHAS_Bil_Müh_Doktora_24_04_2021.docx%23_Toc72275695
file:///E:/Muhittin_IŞIK/PHD/X/TEZ/Muhittin_IŞIK_20121111001_TEZ_KHAS_Bil_Müh_Doktora_24_04_2021.docx%23_Toc72275696
file:///E:/Muhittin_IŞIK/PHD/X/TEZ/Muhittin_IŞIK_20121111001_TEZ_KHAS_Bil_Müh_Doktora_24_04_2021.docx%23_Toc72275697
file:///E:/Muhittin_IŞIK/PHD/X/TEZ/Muhittin_IŞIK_20121111001_TEZ_KHAS_Bil_Müh_Doktora_24_04_2021.docx%23_Toc72275698
file:///E:/Muhittin_IŞIK/PHD/X/TEZ/Muhittin_IŞIK_20121111001_TEZ_KHAS_Bil_Müh_Doktora_24_04_2021.docx%23_Toc72275699
file:///E:/Muhittin_IŞIK/PHD/X/TEZ/Muhittin_IŞIK_20121111001_TEZ_KHAS_Bil_Müh_Doktora_24_04_2021.docx%23_Toc72275700
file:///E:/Muhittin_IŞIK/PHD/X/TEZ/Muhittin_IŞIK_20121111001_TEZ_KHAS_Bil_Müh_Doktora_24_04_2021.docx%23_Toc72275701
file:///E:/Muhittin_IŞIK/PHD/X/TEZ/Muhittin_IŞIK_20121111001_TEZ_KHAS_Bil_Müh_Doktora_24_04_2021.docx%23_Toc72275702
file:///E:/Muhittin_IŞIK/PHD/X/TEZ/Muhittin_IŞIK_20121111001_TEZ_KHAS_Bil_Müh_Doktora_24_04_2021.docx%23_Toc72275703
file:///E:/Muhittin_IŞIK/PHD/X/TEZ/Muhittin_IŞIK_20121111001_TEZ_KHAS_Bil_Müh_Doktora_24_04_2021.docx%23_Toc72275704
file:///E:/Muhittin_IŞIK/PHD/X/TEZ/Muhittin_IŞIK_20121111001_TEZ_KHAS_Bil_Müh_Doktora_24_04_2021.docx%23_Toc72275705
file:///E:/Muhittin_IŞIK/PHD/X/TEZ/Muhittin_IŞIK_20121111001_TEZ_KHAS_Bil_Müh_Doktora_24_04_2021.docx%23_Toc72275706
file:///E:/Muhittin_IŞIK/PHD/X/TEZ/Muhittin_IŞIK_20121111001_TEZ_KHAS_Bil_Müh_Doktora_24_04_2021.docx%23_Toc72275707
file:///E:/Muhittin_IŞIK/PHD/X/TEZ/Muhittin_IŞIK_20121111001_TEZ_KHAS_Bil_Müh_Doktora_24_04_2021.docx%23_Toc72275708

1

1. INTRODUCTION

With the increasing time spent by the people in the electronic environment with each

passing day, the trade has changed its direction. E-commerce, which we can roughly

describe as the online version of traditional trade, increases its market share day by day

with many alternatives it offers. Whether it is due to the limited time of today‟s people

or because it contains more options and convenience, it makes e-commerce more

attractive and preferred. These advantages have been applied not only to users or

customers but also to companies that provide products or services. Thanks to e-

commerce, small businesses have had the opportunity to survive by reaching more

masses in a short period of time against dominated conglomerates that it has not been

able to fight with traditional ways. The biggest advantages of e-commerce are that it

can be accessed by users 24/7, requires less labor and expense costs for companies

compared to traditional commerce, brings a wide variety of products, less costly than

traditional shopping, transparent business systems, personalized customer experiences,

accessible from all over the world, which are the signals that trade will shift in this

direction over time.

With the increasing market share of e-commerce, it has led companies to invest more in

this area, whether to reach more audiences or retain existing customers. For this

purpose, companies have tried many ways such as adding their website to search

engines‟ databases, advertising on social media, providing quality customer service,

creating simple, understandable, authentic and reliable content, and the most important

one is to make new, interesting, user-specific, and reliable recommendations which are

the main subject that we work on in this thesis. Let‟s explain roughly recommendation

systems to understand the concept of the thesis.

Recommendation systems have become an indispensable building block for companies

to be successful in e-commerce platforms because they have the advantage to offering

the right product at the right time to the right person by using them. Recommendation

engines are roughly software tools for providing next best offer, next best decision or

next best activity suggestion for a particular customer. These suggestions, decisions or

offers help customers or users to make a decision in numerous fields such as when

2

choosing a music to listen, when buying an item, when selecting a movie for watching

or when trying to find a book similar with one before. Amazon, Netflix, eHarmony,

Pandora, TripAdvisor are probably the most well-known examples that use

recommendation systems [1] .

There are a couple of techniques in recommendation systems such as non-personalized

recommenders, content-based recommenders, collaborative filtering recommenders etc.

In this thesis, we focus on content-based recommenders and collaborative filtering

recommenders which are used especially in e-commerce systems.

Content-Based Filtering: “Content-based recommender systems base recommendations

on user ratings and similarity between items” [2]. Actually, this approach comes from

information retrieval. Namely, it is based on content analysis. This content can be a

document or a website, or it can be defined as a movie, music, or a restaurant. It tries to

provide items that are similar to those that users preferred before. In order to

recommend new items, this algorithm compares attributes of items by looking for a user

profile in which preferences are pre-existed in the database. In other words, it is actually

based on the prosperities of the products and a profile of the customer‟s personal

preferences or interests.

This algorithm usually uses the Term Frequency & Inverse Document Frequency (tf-

idf) weighting in order to summarize the features of an item in databases. The tf-idf

value reflects how important a word in a document or in other words how many times a

word appears in a document. It is often used by search engines to calculate how much a

document is related to a given query [3].

Collaborative Filtering: Collaborative Filtering is a technique in recommendation

systems, especially used by the biggest websites like Amazon, Netflix, Pandora and

others, that uses user behavior such as purchases, clicks, and ratings. In this way, it

provides recommendations to users using user items such as movies, music, books, etc.

Collaborative filtering has a couple of algorithms to provide recommendations. In this

thesis, we focus on especially user-based and item-based algorithms. These two ways of

generating recommendations are typical.

3

1.1 Problem Definition

As the number of people shopping on the internet increases, the number of investments

and researches in this area has also increased. In particular, the companies try to develop

new strategies to increase their sales by examining the behavior of the people using their

sites. For instance, according to the report [4], 95% of the respondents stated that they

consulted customer reviews before buying any products. They also stated that product

reviews are very important especially in products such as electronics (82%), appliances

(80%), and computers (80%) that have high prices. Again, in the same research, 80% of

users stated that they examined especially negative reviews while buying any products.

According to the research results of [5], when purchasing any product, the product score

and the number of the people scoring to the related product are taken into consideration

by the users. Especially if a product has above 4.5 stars and reviewed by many people,

the rate of buying that product increases even more. Interestingly, if a product has

received a low rating, it is not preferred by users regardless of the number of reviews,

even if the product is rated by only two people. According to the results of another

study in [6], 98% of the users stated that they checked the reviews when they thought

about buying a product and 60% of them checked often or quite often. Many types of

research and reports that examine the behaviors of users on e-commerce platforms while

purchasing a product or service have been examined in certain parts of our thesis.

When researches and reports have shown that users pay close attention to product

ratings and reviews when purchasing a product or service, this has prompted both

companies and users to manipulate the results of recommender algorithms. Some

companies started to create fake accounts on their respective e-commerce platforms and

give high scores to their products or services, especially this is a problem for many

recommender systems which have databases that suffer from sparsity problem.

Likewise, biased bloggers or malicious users have tried similar ways to lower the

ratings of companies they dislike. Apart from this, there are also errors arising from

traditional recommender systems. Since some recommender algorithms prefer

traditional methods when calculating product score, it is realized that products or

services do not get the values they deserve. The reason for this may be some challenges

such as cold start, sparsity, scalability, overspecialization, robustness problems

encountered by recommender systems as well as logical errors . For example, as we

4

explain in the related Chapter 4 of our thesis, the values of some products or services

may change over time. For instance, when calculating the star rating of a hotel, it may

be a problem to keep a rating that was given ten years ago, and a rating given yesterday.

Although the hotel has renovated itself completely over time, it may seem to be a hotel

that offers bad services since it could not get rid of the stars given years ago and

because of that it may not get the value it deserves. The opposite is also true. A very bad

hotel due to the high stars it collected years ago can get high scores, which will affect

the users most.

In order to be a solution to the problems mentioned above in the recommendation

systems, we suggest three different models that can be used in different e-commerce

platforms in calculating the product or service rating score.

The first one is to find reliable or trusted users based on the relationship between users

and calculate the product rating score considering the trust values of users. In other

words, as the trust value of a user who rated the related product increases, the effect of

that user on the product rating score increases.

The second one is based on time decay. As we mentioned above, the structure or value

of some products may change over time. Perhaps the value of a movie or a piece of

music may not change over time, but the quality of the companies offering services such

as hotels, restaurants, may change over time. Namely, the red-hot ratings and reviews

made to such businesses enable us to access the healthiest information about their

products or services. In this model, which is considered for such e-commerce platforms,

the score of the product changes according to the date of the user rating. In other words,

as the user‟s rating date gets closer to the present day, its effect on the product rating

score also increases.

Our third model is about the reviews made on the products carefully examined by the

users as we mentioned, that is on sentiment analysis. We find the rating score of the

products based on the reviews made on the products. After investigating the effect of

many texts preprocessing to accomplish this, a hybrid model is proposed in addition to

already existing models such as review-based, sentence-based, and dictionary-based.

5

1.2 Aim and Objectives

The main goal of this thesis is to research alternative methods to improve the quality of

traditional product star ratings used in recommender systems in e-commerce platforms.

In order to achieve this, there are three distinctive objectives.

The first objective is to overcome the negative effects of fake accounts on e-commerce

platforms. As we know that because of the sparsity problems in databases, fake

accounts can easily affect the results of recommender algorithms especially a product

that does not have enough votes by users. This situation represents a great sense for e-

commerce platforms especially when considering that majority of companies have less

than 1% density of databases [7]. For this purpose, it is proposed a recommender model

which finds the users who are trustful and have a great effect on other‟s opinion by

analyzing the relationship between users. With the proposed model, the recommender

systems are expected to provide recommendations to customers based on trustful users‟

opinions to improve the quality of the recommender system in e-commerce platforms.

In this way, customers may be less regret if the product doesn‟t have good quality as

expected when they buy or consume a product. Besides that, some products don‟t have

enough ratings in order to calculate their real rating score. Sometimes products get very

high or very low rating scores. Therefore, we can get the real rating score of a product

by looking at trustful users‟ opinions.

The second objective is to calculate the product rating score based on time decay of

users‟ ratings which is another proposed alternative method in place of the traditional

calculation of the product rating score. As we know that the quality of some products or

services changes over time and hot ratings give us more reliable information about the

related products or services. For this reason, when the rating score of any product is

calculated, the time decay of the ratings of each user who rated to product is considered.

In this way, the effects of the old ratings given to the relevant product are broken.

The third objective, which is another proposed alternative method in place of the

traditional calculation to overcome the negative effects of the fake accounts and to

improve the quality of product rating score, is to calculate the product rating score based

on sentiment reviews analysis. For this purpose, the reviews are first processed in a

series of preprocessing methods with explaining each preprocessing method‟s effect on

the calculation of the rating score. Then, besides traditional sentiment analysis methods,

6

the scores of the products are tried to be calculated with the proposed hybrid model and

comparisons are made between the related methods such as review-based, sentence-

based, and dictionary-based sentiment analysis. Besides, the classifiers that best adapt to

the sentiment analysis methods used are tried to be determined.

1.3 Contributions

The main contributions of the thesis are as follows:

In Chapter 3, the rating scores of the products are tried to be calculated by finding

reliable or called trustee users in the system. Thus, it is tried to show how both fake

accounts affect e-commerce platforms and how to overcome these types of problems

with the relevant method. For this purpose, it is analyzed the relationship between users,

and it is calculated a trustworthiness value for each of them. In this way, the rating score

of each item is calculated by a weighted average of users‟ ratings according to their

trustworthiness values instead of getting a direct average of the users‟ ratings.

According to the results, there is a great difference rating score between average rating

score and weighted rating score based on trustee users on the items, which are rated by

between 2-20 users. On the other hand, when the number of users increases, especially

more than 100 people, the difference between the average rating score and weighted

rating score based on trustee users decreases almost “0”. It means that when the number

of users who rated the item decreases, the effect of the fake accounts goes up.

Consequently, if we think databases that are suffering especially from the sparsity

problems, this model can be a nice solution. By this model, items may get a deserved

rating scores more than in the traditional models.

In Chapter 4, besides the trust-based calculation, to improve the quality of product

rating score and reducing the effects of old ratings, the rating scores of the products in

the dataset are tried to be calculated by finding time decay of users‟ ratings when

creating the list of recommendations by the recommender. After introducing the concept

time decay of users‟ ratings by explaining its mathematical definition, the product rating

scores are calculated, and the effects of time decay of the users‟ ratings are analyzed via

experimental results. In this way, we try to overcome some weaknesses of the

traditional rating score calculation since ratings of the users given to the related

products can be too old or vice versa. This is important because some products or

7

services may change over time and hot ratings can be more important when calculating

the rating score of those products. Besides this, both time-based and trust-based

methods are executed together to analyze the results. According to the results, if a

product is rated by trustee users and their ratings‟ date is up to date enough, this

indicates that the product received the score it deserves.

Chapter 5 focuses on the impact of simple text preprocessing decisions in order to

predict fine-grained review rating stars. The aim of this chapter is to analyze

preprocessing techniques and their influence, at the same time explain the interesting

observations and results on the performance of a five class-based review rating

classifier. According to the experimental results, a simple stopwords elimination,

lowercasing, removing common words, and lastly the combination of 1-to-3 Ngrams

perform better than other preprocessing methods for improving the classification

accuracy of the five class-based review rating stars on the restaurant reviews. Besides

this, results show that the effects of the preprocessing methods can change in any

domain. For this reason, all the possible preprocessing methods should be considered to

apply before used in any application. And applying the order of the preprocessing

methods can also be important. For instance, the effects of abbreviations, acronyms,

stemming and lemmatization might be higher after executing lowercasing to the related

text.

In Chapter 6, it is tried to overcome the quality of multi-class star rating challenges,

specifically on restaurant reviews, to calculate the overall star ratings via sentence-

based, review-based, dictionary-based, and proposed hybrid-based sentiment analysis

methods. It is observed that the Support Vector Machines classifier gives better results

compared to other classifiers in determining the star ratings of the restaurants based on

the text of the reviews. In fact, the point to be considered is which classifier performs

better according to the sentiment analysis approach chosen. Otherwise, according to the

experimental results, the Logistic Regression and Multinomial Naïve Bayes also

performed closely, without selecting the sentiment analysis approach. When we come to

sentiment analysis approaches, we see that the Dictionary Based method gives worse

results compared to other methods, except that it gives the best result in the Decision

Tree classifier. The Sentence Based method seems good in terms of the number of

reviews correctly it classifies, but it is not successful in distributing this number equally

8

to each class. The Review Based method gives the best results in classifiers such as

Random Forest and Logistic Regression compared to other methods. In addition, the

number of correct predictions and the almost equal division of this number into each

class shows that this method is successful than the Dictionary Based and Sentence

Based methods. Similarly, Hybrid Based method gives the best results in Multinomial

Naïve Bayes and Support Vector Machines classifiers compared to other methods. With

its result in the Support Vector Machines classifier, it gives the best result among all

other classifiers. It also gives the best result in the average error rate of all classifiers.

Apart from this, it gives the best result in the number of correct predictions and the

success of distributing this number almost equally to each class.

1.4 Thesis Outline

Chapter 1 presents the possible solutions and roughly the results we obtained via

experimental studies by shedding light on the reasons and needs in the emergency of the

current thesis.

Chapter 2 describes the building blocks, the most used methods, and the working

principle of the Collaborative Filtering recommender system, which is one of the most

used methods in recommendation systems. It also examines the most used similarity

metrics in this field and the most common challenges.

Chapter 3 describes an alternative method that can be used to calculate product rating

score in recommendation systems. The mathematical background of the method, which

we define as trust-based calculation, is explained first, and then the experimental results

are shared by clarifying how this method is applied to the recommendation systems.

Chapter 4 describes another alternative method that can be used to calculate product

rating score in recommendation systems. First of all, the studies in this field are

examined and then the mathematical background of the method, which we define as the

time-based method, is explained. Then, the implementation of this method to the

recommendation systems is explained, and also the experimental results are shared by

combining with the trust-based method.

Chapter 5 deals with product reviews which we can use in sentiment analysis to

calculate product rating scores. However, before making the calculations, it explains the

text pre-processing methods and experimental results are shared showing how the text

9

pre-processing methods affect the success of the classifiers used to calculate product

rating score.

Based on the previous section, Chapter 6 examines the existing methods of sentiment

analysis and presents a hybrid model based on these methods in calculating the product

rating score. In addition, the classifiers used in applying with these methods are

examined and their success in calculating the product rating score is compared.

10

2. COLLABORATIVE FILTERING RECOMMENDER SYSTEM

Collaborative Filtering (CF) recommender systems are based on the logic that similar

groups exhibit similar behaviors as in real life. Mankind may exhibit far more

exceptional situations rather than other living groups due to human complex behaviors,

but this does not impair general perception. People tend to be divided into different

groups in many fields ranging from the football team held among themselves, the style

of music listened to, the type of movie watched, the style of dress worn, etc. In other

words, people most likely show the same behavior as the group they are in. Based on

this logic, CF recommender systems try to find similar users and similar products from

the data set obtained from any platform to advise users. For example, when trying to

find similar users, it analyzes users' behaviors, such as clicks, ratings, or purchases

starting from the products chosen by similar groups of users. As a result, CF

recommender systems perform a series of analysis operations based on users' past

behavior, calculate similarities between users and their behavior, and advise users in the

next step. Before explaining the methods used in

CF recommender systems, Let‟s explain the

general working structure.

CF consists of some basic components as shown

in Fig. 2.1. You can see this structure, especially

in Mahout‟s Taste library. The Taste library has a

fast and flexible structure and offers many options

for user-based and item-based recommender

systems. These basic structures that makeup CF

can be briefly described as follows:

DataModel: The memory created for preferences,

products, and users.

User-Similarity: The interface that defines the

similarity between users.

Item-Similarity: The interface that defines the

similarity between products.

Figure 2.1 The Structure of

Collaborative Filtering

11

Recommender: The interface for providing recommendations.

UserNeighborhood: The interface that enables neighboring relationships of similar

users to be used by the recommender.

The CF recommender has the opportunity to compare items and users with the help of

the UserNeighborhood interface obtained through the DataModel. It uses these

similarity results to offer target users as recommendations. These recommendations can

be a numerical value called prediction like predicting a score of a movie in a movie

dataset or can be a list of top N movies called recommendation that the target user may

like to watch. As it is seen from the Fig. 2.1, CF recommender uses three kinds of

objects: users, items, and preferences which are the relationship between users and

items.

Items can be any objects that are recommended such as books, movies, songs,

computers, cars, mobile phones, etc., or services such as hotels, restaurants,

supermarkets, transportation. Therefore, the item data may include different

features/attributes that identify these products or services like genre, movie title,

director, actors, year released, IMDB score of a movie.

Users are those who evaluate, criticize, rate the items, or express their feelings about the

products or services. Therefore, the user data may contain a lot of personal information

that identifies users such as age, gender address, educational status, socioeconomic

status, occupation, etc.

Preferences express users‟ opinions about relevant products or services. The

recommender engine can explicitly or implicitly obtain users‟ ideas about items. If the

recommender engine tries to understand one‟s opinion through actions on the platform

without prompting the user, then the implicit method is used. For example, starting

from the products that the user navigates through the relevant platform, it perceives

what kind of products the user likes, and then it offers similar products to that user.

However, in the explicit method, the recommender engine asks the user directly to

express his opinion/feelings about the item on a certain scale. The type of the used scale

(called a rating) may vary like:

Binary ratings: The system asks users to give a negative or positive opinion about an

item, whether it is good or bad, like or dislike.

12

Ordinal ratings: The system asks users to comment on an item with rated expressions

such as very bad, bad, neutral, good, very good, excellent.

Numerical ratings: The system prompts users to rate an item with a numeric rating. For

example, rating a movie out of 10 on a movie platform like Netflix, or rating hotels

from 1 to 5 stars on a travel agency platform like TripAdvisor.

Knowing how these three different types of objects that the recommender system uses

are related to each other and how they look like on the data set can help us to

understand how the CF recommender works.

Our data set has a structure as in Table 2.1. The location of the rows and columns can

be changed, and multiple categories can be included. As it is realized, columns

represent users, while rows represent products. To give an example, the second user

rates the first item with the value 2. Similarly, the first user does not rate the item 1 but

rates the second item with the value 4. By the way, each individual rating is within a

numerical scale, 1 means the user doesn‟t like the relevant item while 5 means the user

likes a lot, and 0/- means that the user has not yet rated the relevant item. In our study,

we use a similar data set, based on the ratings given by users, similarities are found,

item recommendations are presented, and lastly, results are examined.

Table 2.1 User – Item Rating Matrix

Users

It
em

s

 U1 U2 U3 U4 U5 … Un

I1 - 2 - 3 5 … 3

I2 4 - 5 - 3 … 5

I3 5 - 3 - 4 … -

I4 - 2 5 - - … -

I5 3 1 - 5 - … 2

I6 5 1 4 - 5 … 2

… … … … … … … …

Im - 2 3 - 5 … mn

To understand the basic logic of the CF recommender, we can give a small example

from the Table 2.1. For example, when we look at the second item carefully, we see that

the users U1, U3, U5 rate the item I2. Likewise, we see the same users, U1, U3, U5, rate

the items I3, I6. The CF recommender makes meaning out of these three products “If a

13

group of similar users rates three different items together, they are likely to be similar.

The same logic can be considered for the opposite of this situation. If different items are

rated by two or more similar users, there is a high likelihood of similarity between those

items. CF recommender applies these types of similarity techniques between items and

users in order to build a recommender system. Now let‟s take a look at the raw state of

the data set that we use in our study before creating the item-user matrix.

Table 2.2 The data set structure used in the research

User_id Item_id Ratings

1 1 3

1 2 4

1 3 4

1 4 5

… … …

Usern Userm Ratingrnm

Table 2.2 shows the score given by each user in the dataset to items that they rated for.

For example, the first user rate the first item in the dataset with 3 points out of 5.

Likewise, the first user rate the second item in the dataset with value 4. The CF

recommender makes use of this table to create the user-item rating matrix and it

calculates similarities between users or items, then gives item recommendations to

users.

Collaborative filtering recommender systems can be further subdivided into two main

categories which are model-based and memory-based approaches. The model-based CF

approach uses data mining techniques such as dimensionality reduction, regression, and

clustering to make item recommendations. That is, this approach calculates the

relationship between items through the user-item rating matrix and creates a model to

estimate the user‟s scores for the items. Since model-based CF recommender uses data

mining methods, this approach has also been a solution to the sparsity problems

associated with recommender algorithms. The memory-based approach is also called

neighborhood-based CF. As the name implies, it makes calculations by looking at the

relationships between users or items and then makes recommendations to the users

based on these calculations. This approach uses mostly two techniques: User-based and

Item-based CF. In this section, we give some details about these two techniques.

14

2.1 User-based Collaborative Filtering

The basic logic of the user-based CF is to

search out the other users that are most similar

(nearest-neighbors) to a target user and

drawing conclusions from their experiences

based on their close proximity in order to

recommend some items in any fields such as

games, movies, books, songs, etc. Namely, “a

subset of users is chosen based on their

similarity to the active user, and a weighted

combination of their ratings is used to

produce predictions for this user” [8]. User-

based CF is the most common technique in

recommender systems and the general

operating principle of the User-based CF is as

shown in Fig. 2.2 [9];

Algorithm 2.1:

For every other user W

Compute a similarity s between u and W

Retain the top users, ranked by similarity, as a neighborhood N

Figure 2.2 Visual representation of the user-

based CF

15

For every item i that some user in N has a preference for,

 But that u has no preference for yet

For every other user V in N that has a preference for i

Compute a similarity s between u and V

 Incorporate V‟s preference for i, weighted by s, into a running average

As you can see from Algorithm 2.1, there are three nested loops. In the first loop, we

calculate the similarities (s) between our target user (u) and all other users (symbolized

as “W”) in our dataset. We then select the users (symbolized as “N”) that are the most

similar to our target user in the amount we previously determined (this amount can be a

certain number of users, or it can be the sum of users exceeding a certain similarity

threshold.). In the second loop, we select the users who experience the products we

intend to recommend to the target user among the most similar users we have selected

(“N”), and we eliminate the rest. In the last loop, we have users (symbolized as “V”)

who are familiar with the product we intend to offer, and they are similar to our target

user. We calculate the weighted score of the products, and we recommend based on the

similarity rates of the nearest neighbors (“V”). Assuming similarities between users

have been calculated, let us take an example with Formula (2,1) given below.

()

()

| |

i

ui

i

uv vi

v u

uv

ЄV

uЄVv

W r

r

W







(2.1)

In the Formula (2,1), user-based CF tries to estimate the rating (rui) of the target user (u)

for the new item (i). Accordingly, user-based CF multiplies the score (rvi) given to the

relevant item by the similar users (nearest-neighbor) with the similarity rate (Wuv)

between our target user and similar users and then divides the result by the sum of the

similarity rates. Let‟s clarify this with a small example.

Table 2.3 Scores given by the users to the movies

 Gladiator Godzilla Troy King Kong Braveheart

Sheldon 4 1 5 2 ?

Maria 2 5 2 4 1

Rena 3 2 4 4 -

Uygar 5 2 4 1 4

16

Our question is whether or not user-based CF should recommend to Sheldon to watch

the movie “Braveheart”, which he has not seen before. Let‟s take a look at Table 2.3

before finding the answer to this question with the Formula 2.1. As it is seen, the user

Sheldon and the user Uygar both watched the movies in Table 2.3 and had similar

tastes. Both users gave high ratings for the movies “Gladiator” and “Troy”, while low

ratings for the movies “Godzilla” and “King Kong”. According to this observation, if

Uygar has rated the movie “Braveheart” with value “4”, Sheldon will probably love the

movie and give it a high score. We can also think of the opposite. Sheldon and the user

Maria, for example, gave completely different scores to the same movies. Sheldon rated

the movie “Godzilla” with value “1”, Maria rated with value “5”, or Sheldon rated the

movie “Troy” with the value “5”, while Maria rated with value “2”. This situation

shows us that Sheldon and Maria are two opposing characters about movie tastes. Based

on this situation, if Maria rated with the value “1” to the movie “Braveheart”, Sheldon

would probably give a high score. Let‟s calculate with the given Formula 2.1.

Suppose that the similarities between Sheldon and neighbors are already calculated

(how the similarity can be calculated are explained in Section 2.3) and they are 0,85

with Uygar, 0,15 with Maria respectively.

0,85*4 0,15*1
3,55

0,85 0,15
r


 



As a result, Sheldon would likely give a high score to this movie. In fact, as we

explained before, we try to find the most similar users and then apply this formula. In

this example, we had to take user Maria, who is not very similar to our target user,

because we have a limited number of users. Therefore, the result is below than the score

given by user Uygar. If we had calculated over much more similar users, this value

could have risen.

2.2 Item-based Collaborative Filtering

The basic logic of this technique is that if a product similar to the products that a user

has previously chosen is recommended, she/he will most probably like it. Namely, it‟s

like recommending a new horror movie to someone who likes to watch horror movies.

Item-based CF recommender and the content-based recommender shouldn‟t be

17

confused with each other. In the content-based approach, the contents of the products

are similar, namely attributes/features of the products that are similar. But the content of

the products may not be similar in the item-based CF approach. For instance, those who

buy smart television, they also buy a TV unit. Whereas one product is in the digital

field, the other is in the field of furniture. Like the story you may have heard before in

market basket analysis, it is found that an unexpected correlation between the sales of

diapers and beer in the same transaction. As a result, item-based CF calculates the

similarity between items instead of users in order to make recommendations. Thus,

instead of finding similar users when giving a recommendation to a user, it tries to find

out similar items by using his/her likes. The general operating principle of the item-

based CF is as follows [9];

Algorithm 2.2:

For every item i that u has no preference for yet

 For every item j that u has a preference for

 Compute a similarity s between i and j

 Add u‟s preference for j, weighted by s, to a running average

Retain top items, ranked by weighted average

As shown in Algorithm 2.2, in the first loop, we first identify the products (i) that our

target (u) user has not experienced before. Then, in the second loop, we calculate the

similarities (s) between the products our target user experiences (j) and not experiences

(i) before. Then we offer the products that are ordered according to the weighted

average calculated by the similarities to the target user respectively. To illustrate this,

suppose that the similarities between items have been calculated, let us take an example

with the given Formula 2.2 below.

()

()

| |

u

ui

u

ij uj

ij

ij

ЄV

ijЄV

W r

r

W







(2.2)

In Formula (2.1), user-based CF tries to estimate the rating (rui) of the target user (u) for

the new item (i). Accordingly, in Formula (2.2), item-based CF multiplies the score (ruj)

given to the relevant item by the target user with the similarity rate (Wij) between items

and then divides the result by the sum of the similarity rates. Let‟s clarify this with a

small example.

18

Table 2.4 Scores given by the target user to the movies

 Gladiator Godzilla Troy King Kong Braveheart Kingdom of

Heaven

Sheldon 4 1 5 2 ? ?

As it is seen from Table 2.4, Sheldon has not watched both the movie “Braveheart” and

the movie “Kingdom of Heaven”. The answer we‟re trying to find is which movie

should be the first to recommend to our target user. In other words, which one of these

movies we should recommend first that our target user is more likely to click on it to

watch. This time we use the item-based CF technique. As we mentioned earlier, we first

find the weighted average of each movie based on the similarities between the products

and order them according to the results. For this purpose, suppose that the similarities

between the movies to be recommended and the other movies in our dataset are already

calculated (how the similarity can be calculated is explained in Section 2.3) and are

shown below in Table 2.5.

Table 2.5 Similarities between movies

 Gladiator Godzilla Troy King

Kong

Braveheart Kingdom of

Heaven

Gladiator 1 0,2 0,8 0,1 0,9 0,8

Godzilla 1 0,1 0,9 0,2 0,2

Troy 1 0,2 0,7 0,9

King Kong 1 0,2 0,1

Braveheart 1 0,7

Kingdom of

Heaven

 1

Let‟s predict the ratings with given Formula (2.2).

0,9*4 0,2*1 0,7*5 0,2*2
3,85

0,9 0,2 0,7 0,2
Braveheartr

  
 

  

0,8*4 0,2*1 0,9*5 0,1*2
4,05

0,8 0,2 0,9 0,1
KingdomofHeavenr

  
 

  

As a result, Sheldon would likely give a high score to both movies. But according to the

results, it seems that the movie “Kingdom of Heaven” is more preferable. In fact, as we

19

explained before, we try to find the most similar items and then apply the Formula

(2.2). In this example, we had to take the movies “Godzilla” and “King Kong”, which

are not very similar to our target movies, because we have a limited number of items. If

we had calculated over much more similar movies, we could have achieved more

satisfactory results.

2.3 Exploring Similarity Metrics

The most important part of the recommender algorithms is the similarity

implementations. Both content-based and collaborative filtering (user-based and item-

based) use several types of similarity metrics. It is very important to determine the right

similarity metric according to your data otherwise these approaches may fail. Since

these components are quite important, we explain their basics briefly.

2.3.1 Pearson Correlation-based Similarity

Pearson correlation is a technique for finding out the relationship between two

continuous variables. To understand this linear correlation between two continuous

variables, we can draw a scatter plot of these two continuous variables otherwise it

shouldn‟t be calculated [10].

So, the Pearson correlation is a number between -1 and 1. “1” means that either variable

increase or we can say decrease at the same time, and “-1” means that when one

increases, so the other decreases or we can say one decreases, so the other increases.

And zero means that there is no relationship between two variables.

Figure 2.3 Similarity rates according to the each other

20

2.3.2 Euclidean Distance Similarity

It measures the actual distance between users. Users in recommendation systems are

considered as points in a space of many dimensions which are items. In other words,

Euclidean distance is the square root of the sum of squared distance between

corresponding items of the two users [11]. And as the distance value gets smaller, the

similarity of the two users increases.

2.3.3 Cosine Similarity

In this similarity measure technique, items are represented as u-dimensional vectors

over user space. The similarity is the cosine of the angle between two vectors. And the

cosine score ranges between 1 and -1. If the cosine value is 1 (small angle), it means

similarity is perfect. In other case, -1 (large angle) means two users are totally different

[12].

Table 2.6 Ratings for each movie from each

user

 U1 U2

A 0.8 0.45

B 0.4 0.8

C 0.3 0.3

For instance, as indicated above, we have two users (U1 and U2) and three movies (A,

B, and C). If we want to use cosine similarity for computing similarity between two

items, the algorithm will look at the angle between two movies. If the angle between the

two movies is smaller than the other, it means they are more similar. As in our example,

the angle between movie A and C is smaller than the angle between movie B and C. So,

we can say that movie A is more similar to movie C than movie B.

2.3.4 Spearman Similarity

It is a type of Pearson correlation similarity measure. In recommendation systems, it

tries to find the least preferred item by the user. It gives “1” as the preference value for

Figure 2.4 Vectors for each user

21

this item. After that, it executes the algorithm again to find the next least preferred item.

In the same way, it gives “2” as the preference value for the second item, and so on.

Lastly, it uses the Pearson correlation to compute the similarity on those converted

values. Actually, because of expensive calculations, Spearman correlation is not

preferred much.

2.3.5 Tanimoto Similarity

Instead of considering preference value whether is high or not for an item, it takes into

account that the user has a preference or not to that item. It is also known as the Jaccard

coefficient. So, the Tanimoto coefficient cares about the ratio of the size of the

intersection between two users. That is how many items that are preferred by those two

users. Hence, if the two users‟ items are exactly the same, in other words, if they

completely overlap, it means that they are totally similar [9].

2.3.6 Log-likelihood Similarity

Its logic is similar to the Tanimoto coefficient or the Jaccard similarity. It does not also

care about preference value whether is high or not. There are a couple of problems in

the Tanimoto coefficient when computing the similarity ratio. For Instance, when both

two users have only seen several movies which are the same movies, the ratio of the

size of the intersection between these two users will be high. But are they similar?

Because of this kind of problem, Log-likelihood tries to compute the overlap between

Figure 2.5 Illustration of Tanimoto coefficient [9]

22

users without a chance. Although it looks for the number of items in common between

two users, the log-likelihood is computing the similarity a bit different [9]. Namely, it

checks dissimilarity between two users as well.

2.4 Challenges in Collaborative Filtering

To better understanding the aims of the research and compare the collaborative filtering

recommender with other methods, we should take a quick review of the challenges in

CF recommendation systems such as “cold start problem”, “sparsity problem”,

“scalability”, “overspecialization”, “robustness”, etc.

2.4.1 Cold Start Problem

The cold start problem defines that the recommender does not have sufficient similarity

measurements or ratings to make some product or service recommendations to the target

user. Naturally, as long as these values do not exist, or the absence of these values

increases, the operating performance of the CF recommender gradually decreases. In

general, three scenarios are generally emphasized in the realization of this situation.

New User Problem: This happens when a new user registers on the respective platform.

In order to CF recommender advise the target user, at least some items are expected to

evaluate or experience by the user. Thus, the CF recommender can find the users that

are similar to the target user or products that are similar to the target user's preferred

items. However, when a new user subscribes to the system, the CF recommender cannot

calculate efficiently and cannot make recommendations. A few solutions are proposed

to overcome this problem [13]. For example, the user can rate certain products or

services without using the system, or providing non-personalized recommendations

until the user is able to spend enough time on the system and score enough products, or

asking the user directly about some information like "What kind of movies do you

like?", or by providing demographic information within the capabilities of the system,

to make some recommendations through similar users.

New Item Problem: Just as in the new user problem, when a new item is entered into

the system, the CF recommender cannot make the necessary similarity measurements

since it is not experienced by any user. Since the added new items are difficult to

23

discern by the system users, the CF recommender suffers from the advice of these new

products. Different methods can be tried to prevent this situation. For example, it is

advisable to present and experience the newly added item on the home screen or make

use of the content-based recommender to calculate the items that are similar to the

content of the new product.

New System Problem: The biggest and most complex cold start problem occurs when a

new system is installed. In this case, the CF recommender cannot work because there is

no information about both users and products. To overcome this situation, either a

sufficient time is allowed for users to use the system and then CF recommender is used,

either a small group of active users is encouraged to rate items in the system, or wait

until sufficient data is generated using non-Collaborative Filtering recommenders.

2.4.2 Sparsity Problem

One of the problems that the CF recommender suffers most is the sparsity problem.

Users that have not rated many items especially in large datasets give cause for empty

cells in the user-item matrix. The CF recommender cannot work fully efficient in

calculating user or item similarities before these empty cells are filled. As a result, the

performance of the CF recommender decreases. To overcome the sparsity problem,

there are a couple of approaches such as one of the techniques of dimensionality

reduction, Singular Value Decomposition (SVD), or Latent Semantic Indexing. For

instance, SVD actually uses an intenser user-item matrix that includes only the most

relevant users and items [14] and removes insignificant users or items in order to

decrease the dimensionalities of the user-item rating matrix. Some recommender

systems use content-based filtering with CF filtering together to overcome the sparsity

problem. Because content-based filtering uses the attributes/features of the items which

don‟t need to rate. But these techniques do not always enhance the performance of the

recommender systems, even sometimes may affect their performance worse.

2.4.3 Scalability Problem

Another problem associated with recommendation systems is scalability which means

that “how quickly a recommender system can generate a recommendation and the

24

second is to ameliorate the quality of the recommendation for a customer” [15]. A good

recommender system is expected to continue to operate in spite of rapidly increasing

users and items in the dataset. Although the recommender system initially offers quick

and effective recommendations, if it starts to stumble with an increasing volume of a

dataset, it means that it suffers from scalability and decreases the quality of the

recommender system. The scalability problem can be resolved by cleaning noisy data

with pre-processing and clustering. As in Sparsity, SVD can also provide a solution for

scalability, although it requires expensive matrix operations. In addition, this problem

can be solved with item-based CF to some extent. That is, rather than calculating all

similarities between all product pairs, similarities can only be calculated with the items

co-rated by the target user [16].

2.4.4 Overspecialization Problem

Overspecialization problem occurs when the CF recommender system recommends

only items that have a high score based on sales or ratings [17]. This means that the

recommendations which are similar to the products in the user‟s profile are repeated in

the same order. In this case, the user will be constantly exposed to items with the

highest likelihood of his/her profile. A good CF recommender should be able to

recognize such situations and create alternatives. For example, if the user does not click

on the recommendation items list for a certain period of time, CF recommender can

change the list according to the order, it can filter the items recommended continuously,

present similar products randomly or offer different alternatives with the help of other

recommenders such as content-based recommenders. For the sake of example, while the

user likes drama movies, CF can also recommend different types of movies with the

characters he likes in the movies he watches (with the help of the content-based

recommender). To give another example, a user who is constantly exposed to

recommendations from Italian cuisine will not be aware of Greek or Turkish cuisine.

However, the food used by these countries in the Mediterranean band is likely to be

similar and food tastes are also likely to be similar. That is, the recommender should

notice some points that the user cannot see in the system and make the user realize the

other options. Otherwise, users may be constantly exposed to the same

recommendations by the CF recommender and this situation may bore users after a

25

while. This problem is more common in the content-based recommender. Because

content-based recommender rates the items according to their content and features, each

time an item is searched according to the user's profile, the relevant items that cover the

most sought-after content will come to the forefront.

2.4.5 Robustness Problem

In today's e-commerce environments, the usage of recommender systems is increasing

day by day due to the convenience provided to the users. But as e-commerce began to

compete with the traditional trade, the value that the business world gave to

recommender systems began to increase. With this increase, the number of fake

accounts who want to take advantage of this situation has also increased. Namely, the

number of malicious users, biased bloggers, and even the owner of the products that are

trying to influence the systems have started to increase day by day. Malicious users who

cannot get the service they expect, open multiple accounts and run a smear campaign on

the relevant platform, while biased bloggers sometimes try to inflate a product or a

service most of the time, sometimes scribbling a product or a service, sometimes for

money, sometimes completely for pleasure. In addition to that, some users are the

owner or provider of the product on the relevant platform, they open more than one fake

account and give high scores to their products or offer positive opinions about their

services. When such product or service owners swell the scores of their products, we

call push attacks, to reduce the score of competitors' products, or to make scribbles of

their services, we call nuke attacks. According to the research results [18], in order to

overcome this problem, using item-based CF recommender that is thought better than

user-based CF recommender, observing the results of the recommender and check for

sharp changes, observing whether the newly added product to the data set is obtained

from a trusted source or whether it is evaluated by reliable users, are the some

suggested solutions.

26

3. IMPROVING THE QUALITY OF RECOMMENDER

SYSTEMS THROUGH THE TRUST RELATIONSHIP

In this chapter, we propose a trust-based method for improving the quality of the

recommender systems in e-commerce platforms. The proposed method is expected to

provide a certain extent of the solution especially to the sparsity and robustness

problems mentioned as in the previous chapter. Therefore, in order to overcome

especially negative effects of the fake accounts in e-commerce platforms, the proposed

recommender model finds the users who are trusted and have a great effect on other

users‟ opinions by analyzing the relationship between them. With the proposed model,

recommender systems are expected to provide better recommendations to users based

on trusted users‟ ratings.

The greater number of the customers shopping online increases with developed secure

e-commerce systems, the more companies start to work on this field. Moreover, it is

speculated that the amount of commerce done on e-commerce systems, will soon pass

the amount in the traditional commerce [19]. But to be successful in this field, it is

necessary to determine customers‟ behaviors for improving the quality of recommender

systems. For this purpose, e-commerce companies of today analyze the click and

purchase history of users or customers. Unfortunately, the feedback of users is

insufficient for analyzing customers better. Even most of the companies state that the

density of their database is less than 1% [7]. This is really a major obstacle in front of

the further success of the companies.

Today, when buying a product online, the product score is very important when making

our last decision but due to the sparsity problems in databases, fake accounts can easily

affect results of recommender algorithms especially when the product doesn‟t have

enough votes by consumers. Generally, fake accounts are created either by the owner of

the product in order to raise their product score or by the ill-wishers who want to

denigrate a product or a company. For instance, on average 100 fake accounts can

easily identify the score of a hotel on TripAdvisor if that hotel does not have too many

votes. Thus, in order to overcome the negative effects of the fake accounts in e-

commerce platforms, we try to create a recommender model finding the users who are

trusted and have a great effect on other users‟ opinion.

27

On the other hand, some products or items do not have enough ratings in order to

calculate their real rating value or score. Sometimes items get very high or very low

rating value because of this reason. Therefore, we can get the real rating values of

items by looking at trusted users‟ opinions. The relationship between customers is

revealed via the PageRank algorithm in order to find out trustful customers and

recommendations are provided to customers based on those trusted users.

The significance and implications of the proposed method can be listed as follows:

-It is a different recommender model which is based on trusted users‟ ratings, unlike the

current recommender systems.

-It breaks down the power of the fake accounts on recommender algorithms in order to

get a real score of a product.

-It helps to overcome the sparsity problem of recommender systems in e-commerce

platforms.

-The system is based on trust relationships between users, but it is different from the

existing trust-based recommender models since the trustworthiness value of a user is

calculated by the consensus about an item not the similarity between target users to

others.

-It can be used for comparing with the traditional average score when buying or

consuming an item to confirm the quality. This is really a big problem for the users

because they generally buy the items by trusting the average score, and most of them

are boomed values.

Before starting to explain the background of the proposed method, it would be healthy

to have a look at the recent studies conducted in the areas of CF recommender and trust-

based recommender, especially for comparison with the proposed study.

3.1 Related Work

In this section, to better understand the subject, we present the recent researches in the

field of CF and trust-based recommender under two separated headings.

28

3.1.1 Studies in Collaborative Filtering Recommender Systems

Traditional CF recommenders present some platforms to users analyzing their ratings,

clicks, purchase histories, the relationship between items and users, or demographic

information on the system in order to provide preferable products, information,

services, people, etc. But nowadays, it is a necessity to develop personalized

recommender systems due to the ever-increasing product range and intercompany race

in e-commerce platforms, social networks, and search engines, etc. Therefore, in this

part of the section, we review some related studies especially on social network-based

recommenders that largely depend on one of the demographic information, influential

ranking algorithms, content-based filtering, and especially collaborative filtering.

Trujillo et al. [20] carried out research in order to work up the performance of the

recommender system based on multi-features such as demographic and psychographic

information to calculate the similarity between users. Demographic information defines

the user‟s information such as age, gender, education, etc., while psychographic

information defines user‟s interests and documents downloaded by the user. The

similarity between users is calculated adding firstly based on demographic features,

secondly based on interest areas, and lastly based on downloaded documents,

respectively. According to the results, in order to cope with the main drawbacks of the

CF recommender, all this information should take into account when providing

recommendations.

In order to overcome some challenges that every recommendation system suffers from

such as sparsity, scalability, and prediction accuracy, Ma et al. [21] presented a novel

approach called SoRec (Social Recommendation) integrating users‟ social network

information with rating matrix. According to the authors, users are affected by their

social connections, and recommender systems can deal with missing values using these

relationships efficiently. In order to use users‟ social network information with a user-

item rating matrix, the authors use the conditional distribution on the social graph and

the conditional distribution on ratings. According to the authors, trust value decreases

when the target user trusts lots of users and it also increases when a user is trusted by

the lots of users.

In order to increase the performance of recommender systems, Shin et al. [22] proposed

a context-aware recommendation system by clustering context information of a user. In

29

order to achieve this goal, firstly the authors obtain raw data and then they resume raw

data to the conceptual level. After that, they aggregate user conceptual context

information to create a better recommendation. According to the authors, the time of

consuming an item is an important factor for the recommendation system. User

preferences can be changed according to the time of the day or the day of the week or

the season of the year. To provide a better-quality recommendation, firstly the authors

calculate the similarity between the current context of the target user and clustered

context by using cosine similarity. Secondly, they calculate the similarity between an

item and clustered context and lastly, they multiply both results together in order to get

the expected preference of a user for an item. Results verify that the performance

improve with only context information if it is compared to conventional

recommendation approaches.

Jamali and Ester [23] analyzed and compared the importance of social influence

network and similarity network in order to get rating prediction. They investigate

whether user rates after exposed an item rated by the target user‟s neighbors in time or

not. The authors explored both item adoption and ration adoption in social network and

similarity network applied on Epinions and Flixster dataset. According to the

experiment results, the influence of neighbors (direct neighbors) or rating items in the

social network is higher than in the similarity network on both datasets when the user

exposed to an item at a time.

In order to provide better-personalized recommendations in social tagging systems,

Zheng and Li [24] proposed a new computational approach using tag and time

information. For this purpose, the authors use three strategies. The first one is the “tag

weight” strategy aiming to compute the weight for every resource using users‟ tag

information. The second one is the “time weight” strategy for computing the weight of

interest drifts for every selected resource by the target user. The last one is the “tag and

time” strategy for calculating the target user‟s rating values with the combination of tag

and time information. According to the experimental results, all three strategies are

effective and better than the log-based approach.

Due to suffering from just using one algorithm in the recommender system, Yu [25]

proposed a new method called dynamic competitive recommendation to use in social

networks. For this purpose, Yu present an algorithm that calculates the recommendation

30

with several algorithms. The author carries out the experiment on the Twitter platform

in order to recommend a friend to the target user by calculating several component

algorithms such as “Number of Followers”, “Number of Tweets”, “Common Follower”,

“PageRank”, and “Profile Matching”. Consequently, the dynamic competitive

recommendation algorithm chooses the highest one according to the results of each

algorithm. If the results are equal, the dynamic competitive recommendation algorithm

tries to get the results from each algorithm according to the maximum, average,

Standard Deviation, and size of the candidate list, respectively.

Kim et al. [26] propose an enriched collaborative user model and rather than clustering

users in accordance with the topics, they use a topic-driven user model. For this

purpose, they integrate ratings and tags to discover frequent topics not only relevant to

user interests but also irrelevant. According to the ratings given by the target user, the

algorithm determines tags that the target user would be interested in or not. In this way,

the algorithm gathers tags, if these tags are frequently annotated in positive or negative

items; it means the target user is interested in a particular topic or vice versa. The

authors identify the neighbors based on tags labeled in items. According to the

experiment results, the proposed collaborative user model is better than other CF

recommenders.

Because of difficulties to keep track of different social networking sites for a user,

Zhang et al. [27] present a system or application called Social Connect (SocConnect)

for getting social activities published by user‟s friends in different social networks. In

order to achieve this goal, the authors design an application in which the user can select

his/her friends from Twitter and Facebook, and also users can make some special

groups using tags based on his/her relationships. In the proposed system users are

allowed to give some ratings on his/her friends‟ activities such as “like” or “dislike”. In

this way, the algorithm finds out the target user‟s interests in activities using some

machine learning techniques. Consequently, Zhang et al. create a personalized system

that allows users to blend and grouping their friends as well as tagging their friends and

social activities obtained by different social networks domain and provide users some

recommendations based on their interests from the related social networks.

Ullah, Sarwar, and Lee [28] offer an interesting study of the use of recommender

systems in a different area. The authors propose a smart device that recommends TV

31

programs according to user‟s preferences and social network data. The authors convert

user‟s preferences to a rating value between 1 and 5. To calculate the rating value, they

divide the time which the target user spends on the program during the broadcast, with

the total time of the program. After getting the rating value, the authors try to find the

features of the related program such as genres, actors' information, etc. Then, they

select the top-N most similar users. To find a similarity between two users, the authors

calculate 3 different parts. The first part is the Pearson Correlation Coefficient

similarity metric. The second part is direct trust between the users and the last part is

the contribution of the user content. According to the simulation results, the proposed

system performs well in terms of accuracy, precision, and recall.

Sun et al. [29] suggest an approach that integrates the social network graph to improve

the prediction accuracy of recommender systems using a bi-clustering algorithm finding

the most suitable group of friends. According to the authors, when we do not separate

the different friendships between users, all the friendships will be treated equally. But in

this way, we can‟t improve the accuracy of the recommendation. For this reason, Sun et

al. cluster the dataset in order to get smaller groups with similar favors. The experiment

on the real dataset reveals that if we do not ignore the friendship among users, we can

improve the prediction quality.

Yu-sheng et al. [30] propose a model called interest social recommendation (ISoRec)

consisted of a combination of the user-item matrix, implicit user interest information,

and explicit user social information. To build up a new model, the authors combine the

following two basic models. The first model is named social recommendation (SoRec).

The model uses the user-item matrix and implicit interest relationships matrix

simultaneously. Because of reflecting the interest of the user‟s friends‟ interest, the

second model is named the social trust ensemble. Namely, to improve the prediction

accuracy of recommender systems, it uses the users‟ explicit social connections.

According to the comparing results, the proposed model outperforms PMF

(Probabilistic Matrix Factorization) and SVD on the MovieLens dataset with respect to

RMSE and MAE. The proposed model also outperforms the SoRec approach on the

Epinions dataset. But the authors use implicit users‟ interest connection information

when the explicit social connection information is not available. Actually, this is the

main idea in the related study.

32

Han et al. [31] propose a prediction model in order to find the interests of a user who

doesn‟t have enough information to the recommendation in an online social network.

For this purpose, the authors utilize social information such as demographic information

(age, gender, current city, etc.), social relationship (user friend list, friend similarity),

and obtainable users‟ interests (interest entropy). According to the proposed solution, to

calculate users‟ interest similarity, firstly we can compare and measure the geographic

distance between users, secondly, we can count the mutual friends of two users, and

lastly, we can employ entropy to determine a user‟s interest feature. In order to

calculate the interest similarity, the authors use binary similarity measure and weighted

cosine similarity measure (if the mutual interest is too common, it has less effect such

as the movie “Harry Potter”). In the research, the authors use leave-one-feature-out

evaluation to see the effects of each social feature on the interest similarity prediction,

but they see that all the used features have an effect on the prediction. Since, each social

feature has an importance on different domains such as location has a great effect on

music similarity measure than movie similarity measure, while social relation has a

great effect on movie similarity measure than music similarity measure. At the end of

the research, the authors compare the proposed prediction model with several state-of-

the-art recommendation models for a new user. According to the experimental results,

the proposed prediction model is better than other models with a great difference.

Yuan et al. [32] show that friends have different influences on users‟ behavior in the

social network. Some of them, called “buddy” in the research, have a strong influence

on a user. According to the authors, some users also are not influenced by other users

when they make a decision. For this reason, in addition to finding buddies, Yuan et al.

calculate the susceptibility of each user by the social relation analysis. So, the

recommendation is done based on both friends‟ influence and individual taste. To find

the user‟s closest friends and calculate his/her susceptibility, the authors use rating

similarity and edge embeddedness. If the target user and his/her buddy have high taste

similarity and common friends (edge embeddedness), it means that the buddy has a

great influence on the target user. The experiment is conducted on Douban and

Epinions' real-world dataset which contains the users‟ rating and their social

relationships. The proposed algorithm (BSSR) is compared with other algorithms such

as ItemCF, PMF, SoRec (Social Recommendation), RSTE (Recommendation with

33

Social Trust Ensemble), etc. According to the results, the proposed algorithm model

gets remarkable progress and can be better to use on social relations into the

recommendation systems.

Chaney et al. [33] present a probabilistic model called Social Poisson Factorization

(SPF) combining user preferences for items in traditional recommendation systems with

social networks influence information developing a scalable algorithm. According to

the authors, when we decide to choose something, our behaviors are affected by our

general preferences and influence of our closest friends. The computation of

“influence” in the research is not the same as trust information. Because trust

information is calculated by a binary structure (if it has a link between users, the trust

value is equal to “1”, or “0” otherwise) and it is computed on the structure of the

network without considering user activities and similarity degree between users. But

SPF calculates the influence by looking at the similarity between the target user and

others in addition to user behavior history. According to the results, SPF achieves top

performance on five different datasets against the competing methods such as social

factorization, poisson factorization, popularity baseline, etc.

To improve the quality of personalized recommendations Gan [34] proposed a novel

method called COUSIN which is a network-based regression model correlating object

and user similarity profiles. For this purpose, Gan creates two matrices consisting of

user similarities and object similarities using historical data. Then in order to obtain a

sparse similarity network, he carries out the power-law adjustment on these two

matrices. After that, he creates two concordance vectors consisting of “user similarity

profile” and “associated object similarity” obtained sum over similarities between

selected objects by the user and candidate object. To obtain the “associated object

similarity profile”, this process is repeated for all the users. Lastly, to calculate the

concordance score, Gan applies a regression model on these two vectors. According to

the result, the proposed method shows better performance over existing methods not

only the accuracy but also the diversity of recommendations because the method uses

both user relationships and object relationships in a single regression model.

In order to improve the effectiveness of recommendations, Colace et al. [35] proposed a

novel collaborative and user-centered recommendation approach using some aspects

related to the target user such as preferences, opinions, behavior, feedbacks integrated

34

with item features and content information. For this purpose, the authors cluster items

based on similarity considering all the different features. The authors filter out the set of

features browsed by the user. Namely, users are defined by the set of features, not by

items. The main idea of the research is to find similar items that the target user browses

in the same session. So, if the target user browses an item oi after an item oj, the

algorithm marks both items positively for rating. The authors also use the Mixed Graph

of Terms (MGT) for refining items ranks with target user sentiments and feedback. The

MGT includes some interrelated words which describe a certain sentiment belonging to

a knowledge domain. The results show that the proposed approach can be easily used in

some types of platforms to provide recommendations for more than one category of

items.

To provide better recommendations, Celdrán et al. [36] present a hybrid recommender

to rank the suggested items by combining similarity between user to user, user to items,

items to items, and location of users and items. Firstly, the authors filter undesired

items by looking at the properties of a given item. If any properties do not intercept

between the item and target user‟s preferences, the algorithm filters that undesired item.

In order to compute the similarity between user and item, the authors care about the

number of common properties between item and target user preferences. They compute

the item similarity looking at the number of common properties between the given item

and all the items chosen by the target user without considering the importance of

properties. To compute user similarity, the authors combine the items visited by both

users and the ratings of two users with similar preferences. To compute the location of

users and items, they use the Manhattan distance to measure the distance between users

and items. To compute the users‟ tracking, the authors calculate the number of times of

visiting and the direction of the user to recommend items on that location and lastly the

date when the target user visited the related item last time. The experimental results

show that the proposed solution is useful and efficient.

Yang et al. [37] present a hybrid model in order to predict better how a user similar to

one another. For this purpose, they use demographic information such as age, gender,

and location and they use social network information such as friendship, relationship,

and group information. To represent this goal, they carried out the experiment on the

video domain using a tag-based user profile. The authors also combine that information

35

in order to predict user similarity based on different machine learning techniques. The

authors use a popular Tag-Based Profile which is based on the frequency of common

tags among users and Representative Tag-Based Profile which is based on tags

representatives. The authors also take into account the time of the target user‟s interest.

According to the authors, the performance of the recommender system is changed as

regards the time of the user selecting an item. Namely, the current interest of a user is

more effective on the performance of the recommender.

Biancalana et al. [38] propose a hybrid recommender system that calculates contextual

factors related to time to improve the quality of collaborative filtering approaches.

According to the result, new items (which are movies in the study) can have a higher

potential of being interesting than old ones.

Fijałkowski and Zatoka [39] present a concept to improve the effectiveness of e-

commerce recommender systems using social network user profiles obtained via

facebook Open API. The authors propose to obtain some objects from user‟s facebook

profile such as user posts, published links, comments along with user‟s friends‟ posts,

and comments liked by the user. These objects can be used to calculate similarity

between users‟ interests based on keywords list in the context in order to enrich dataset

in e-commerce platforms.

Carrer-Neto et al. [40] use an application based on movies. According to the experiment

results, adding social heritage to the recommender system decreases the quality of the

recommender since more contents affect it.

Bedi et al. [41] present a recommendation method using knowledge domain for

generating a recommendation. According to the selected domain by the user, the

algorithm brings the product based on trust calculating by that chosen product

experiences. When a user selects a product, the related domain of the target user is

changed by the system. So, the trust means, in the research, how many times the users

selected that product, in other word it is based on experiences.

3.1.2 Studies in Trust and Reputation Based Recommender Systems

Because of providing remarkable improvements, many researchers have been

investigated trust-based recommender systems on social networks in recent years. The

basic idea is that our preferences are not completely independent from our relationships.

36

Namely, when we think of buying or choosing a product, our friends‟ opinions will have

a significant influence on our decisions. In this section, we review several major

approaches for trust-based recommendations in general.

In place of using similarity between users‟ profiles in CF to calculate the ratings of an

item, O‟Donovan and Smyth [42] proposed a new approach based on the

trustworthiness of users on a specific rating prediction. In order to achieve this goal, the

authors modified a lit bit the Resnick‟s prediction formula. Due to the fact that

Resnick‟s prediction formula gets rating prediction by looking at profile similarity, the

authors propose to add trust to the formula. Their algorithm calculates the trust by

looking at the percentage of correct recommendations comparing predicted ratings

between the target user and any other user. If the user has a greater number of correct

recommendations with the same target user, the algorithm gives more trust value to that

user. The algorithm also filters some users by looking at the trustworthiness degree by

using a threshold. According to the results, the use of trust value has a great positive

impact on overall prediction error rates.

To improve the trustworthiness of rating prediction, Jamali and Ester [43] proposed a

random walk recommender model, called TrustWalker, using both trust-based and item-

based collaborative filtering recommendations. In order to provide a recommendation to

a user, the authors apply random walks on the trust network. If the user has already

rated the target item, the random walker returns with that result, otherwise, it has two

options to continue. The first option is to stay at that node and select one of the items

similar to the target item and return with that value as a result. The second option is to

continue to another trusted user. The results show that trust-based CF performs better

than other CF methods to cope with fraudulent attacks.

To construct an efficient and effective recommender system, Ma et al. [44] presented a

novel approach called Social Trust Ensemble combining the user‟s preferences with

trusted friends of the user. In order to fuse users‟ social network information with the

user-item rating matrix, firstly the authors calculate conditional distribution on ratings

(if the user rated the related movie, it is equal to “1”, or “0” otherwise). Then they

calculate the conditional distribution on a social graph which is not symmetric, namely,

if the user “u” trusts user “k”, it doesn‟t also mean user “k” trust user “u” and they use

the weighted trust edge between two users. They also use a balancing parameter “α”

37

controlling the users‟ preferences and the trusted friends‟ preferences. So, when “α” is

equal to “1”, it means recommendation will use just user‟s preferences, while “α” is

equal to “0”, it means recommendation will use social trust network in order to generate

a recommendation. According to the experimental result, when the “α” is equal the 0.4,

it is the best condition for a recommendation. In addition to that, results show that when

the recommender uses just the social trust network, it is worse than just using users‟

own tastes.

In order to improve the prediction accuracy of recommender systems, Lathia et al. [45]

propose a variation of a k-nearest neighbor algorithm to reveal how much a user close to

the target user in the recommendation system. For this purpose, firstly the authors use

the traditional Pearson Correlation Coefficient in order to find the similarity between

two users. When calculating the rating prediction, the algorithm gets all users who rated

that item. The trust value is increased when the distance between two users‟ rating

decreases and the trust value ranges from 0 to 1, whereas the similarity value ranges

from -1 to 1. After completed trust values for all users, the algorithm gets some of them

according to the k-Nearest recommenders which select the user who provides necessary

information for rating prediction for that item. According to the results, the proposed

method outperforms the similarity-based methods to cope with problems in CF.

Hang and Singh [46] proposed a trust-based recommendation considering link structure

and trust network. In order to calculate the similarity between graphs, the authors use a

convergent iterative process. The method is applied to a vertex similarity measurement

between graphs by calculating the similarity between the trust network and a structure

graph. According to the results, the similarity measurement between the trust network

and a structure graph shows how tightly a user connected to his neighbors.

In order to increase the prediction accuracy of recommender systems in e-commerce, Li

et al. [47] use the Multi-Criteria Decision Making method that consists of preference

similarity, recommendation trust, and social relation. To predict a recommendation, the

algorithm should calculate all three categories. According to the experiment results, the

STR model (preference similarity, recommendation trust, and social relation) has higher

success frequencies than others when “ɛ” (the absolute value of prediction error) is

smaller than 0.6 and has lower success frequencies than almost all others when “ɛ” is

larger than 1.2.

38

To improve the prediction accuracy of recommendation systems Chen et al. [48]

propose a novel approach based on social trust relationships called RSTR that explicitly

and implicitly uses social trust relationships simultaneously. Actually, this study is a

combination of SoRec proposed by Ma et al. [21] and RSTE proposed by Ma et al. [44].

The main goal of the research is to estimate the missing data in the user-item rating

matrix using a social trust relationship between users. SoRec algorithm indicator

function gives “1” value if the target user trust to another user or “0” otherwise and

likewise, the indicator function gives “1” value if the target user rated an item, or “0”

otherwise whereas in RSTE algorithm both target user‟s and his trusted friends‟

preferences affect observed item rating. According to the results, the proposed method

combines the advantages of SoRec and RSTE.

To improve the quality of collaborative filtering recommendation, Yang et al. [49]

propose an approach called TrustMF by way of compounding ratings and social trust

network. With this object in mind, the authors use a trustor-specific feature vector and

trustee-specific feature vector. The main mentality of this trust-based study is one can

be affected by other users, and one can also affects to other‟s opinion. Therefore, to

calculate a user‟s ratings affected by other users, the authors use a trustor model. In

order to get the value of a user who affects other‟s decisions, the authors use a trustee

model. Results show that TrustMF performs better than its competitors for the cold

start problem on a real-world dataset.

O‟Doherty et al. [50] presented an empirical analysis to compare trust-based

recommendation algorithms. In the research, the first algorithm is like Pearson weighted

mean just instead of the similarity measure, the algorithm uses trust value between two

users. The second algorithm is also like Pearson collaborative filtering just instead of

the weighted similarity measure, the algorithm uses trust value between two users. The

third algorithm is like a simple mean but when the algorithm calculates the rating

prediction, it just admits the raters who pass the trust threshold. The fourth algorithm is

also like Pearson collaborative filtering but when the algorithm calculates the rating

prediction over similarity, it just admits the raters who pass the trust threshold. The fifth

algorithm goals consider all available ways to get a positive weight for a user of an item

when verifying trust value over similarity. According to the experiment result, accuracy

and coverage of trust-based algorithms are better than standard algorithms.

39

To improve the effectiveness of the recommendation system, Özsoy and Polat [51]

compare existed recommender systems and propose an approach using a trust-based

recommender system. They use a set of users, items, tags, and categories. The items are

defined by tags and categories also have related tags. In order to find the probability of

liking an item by the target user, firstly the algorithm controls the ratio of the number of

items commented by the target user posted by a neighbor-user over all items

commented by the target user in that specific category. Then the algorithm calculates

the ratio of the number of all items commented by the target user over all items in that

category. Lastly, it calculates the ratio of the number of items posted by the target user

over all items in that related category. According to the results, using combined trust-

based recommender systems performs better for providing personalized services rather

than the similarity-based method.

Deng, Huang, and Xu [7] presented an approach to service recommendation using a

trust relationship between social network users called as RelevantTrustWalker (RTW).

To measure the trustworthiness degree between users, the authors use a matrix

factorization. Then, they get recommendations results by the use of RTW which is a

random walk algorithm based on trust relevancy among users. In order to predict

ratings, RTW chooses the neighbors according to the weighted trust social network.

Trust relevancy is calculated multiplying similarity and the degree of trust of the user

“u” to the user “v”. Because the random walk is likely to never stop, the authors choose

6 degrees for the maximum step. When the RTW chooses the user, it tries to find the

rating of the related item giving by the chosen user. If the chosen user has rated the

related item, that rating is returned as the result of that walk. Otherwise, the algorithm

goes on to the next user who is again chosen by the trust relevancy formula executed on

the last chosen user. If the next user has also not rated the related item, the algorithm

gets the rating of the most similar item to the related item. So, the RTW gets the

ultimate result through multiple iterations. Results show that the proposed method

chose the target node not randomly but based on trust relevance when a random walker

tries to find a similar user.

Instead of calculating the user similarity method in order to predict the rating of an item,

Zhong et al. [52] propose to use a directed trust graph. For this purpose, firstly the

authors reveal directed and undirected relationships between users. Thus, when

40

calculating the predicted rating, the algorithm takes into account if the target user has a

direct or indirect relation to the other users. In order to achieve this goal, the authors use

“direct and indirect trust nodes” together. Namely, there is a level of distance from the

target user node to other node and according to this level of distance, the result is

changed. If the neighbor node is in the first level (direct relationship), it affects the

result more than other levels. So, when the level increases, the affection of that node on

the rating value decreases. The experimental results indicate the good effects of the

proposed trust-based recommendation approach.

Chamsi et al. [53] propose an approach to transform concepts of users‟ profiles from

social networks into a source of recommendation. They crawl the user‟s tweet, retweet,

and replays via Twitter API in order to get concepts for each user. After applying

cleaning operations, the authors try to find the frequency of each concept appeared in

each user profile. In this way, they build a matrix of concepts for all users. Chamsi et al.

apply the same filtering operation over the resources to build up a matrix of concepts for

all resources. The authors use the memory-based collaborative filtering and apply a

user-user based recommender algorithm to get the predicted value for the target user of

an item related to a concept. Consequently, the authors use social information as a

resource for the recommendation system to offer a resource to Twitter users. Results

show that transforming the social network into a recommender can be useful.

Guo et al. [54] carried out an empirical study in order to compare five different trust

algorithms on two different datasets. In order to achieve this goal, firstly they present

five trust definitions used in recommender models by taking into consideration four

trust properties. These four trust properties are Asymmetry (trustworthiness is mutual or

not), Transitivity (if user A trusts user B, user B trusts user C, then user A trusts user C),

Dynamic (trustworthiness changes in time or not), Context-Dependence

(trustworthiness bases on knowledge domain or not) respectively. According to the

empirical study results, there is no single trust algorithm superior to others when the

data set is changed.

In order to personalize recommendations, Alahmadi and Zeng [55] present a new

approach using trust relationships and users‟ friends‟ comments crawled from Twitter.

The authors calculate the trust value between the target user and his friend by

normalized average “RT” (re-tweet action means how many times the target user re-

41

tweet the message of his friend over all the messages which are re-twitted by the user

“u” from all his friends) and “L” value which indicates the percentage of followers the

overall number of followers and followings. According to the results, short and informal

posts published by users in social data can improve the quality of the users' preferences

data, especially for CF problems.

In order to lead to improved predictive accuracy during recommendation, Deng et al

[56] present an approach called Trust-based Service Recommendation using preferences

of users and trust relationships among users by looking at invoked services by each

user. For this purpose, firstly the authors prepare “History Service Records” which

consist of services called by the active user, categories according to the service domain,

and the rating value given by the active user to the related service. According to the

trusted user set, the authors calculate the similarity between two users and provide the

top-k services to the target user using those similarities. According to the experimental

results, the proposed method performs better recall rate, precision, f-measure, and rank

score.

In order to increase the prediction accuracy of recommender systems, Keikha et al. [57]

proposed a method called TB-CA (trust-based context-aware) using the information of a

user trust networks to recommend items that are matched user preferences. For that

purpose, the authors firstly apply a few preprocessing on raw data in order to get

conceptual context data by Fuzzy function and they form the set of trust networks of

each user. Then with a given user and target items, the algorithm starts to find out the

rating of the target item. Firstly, the algorithm looks at the user‟s item set which is

formed with the same conceptual domain of the target item. Namely, if the target item is

in that rated set, naturally the rating of the target item is returned. Otherwise, a random

walker selects a neighbor of the target user and the same process is repeated. According

to the results, the proposed method is successful with all contextual concepts and F-

measure compared with previous methods.

To improve the quality of item recommendations in social networks, Wu et al. [58] set

up a new algorithmic framework called collaborative topic regression (CTR) with social

trust ensemble exploiting user-item feedback, item content, and social network. The

authors offer the rating prediction to the user “i” for item “j” by looking at user i‟s and

item j‟s latent features with the social influence which is a weighted sum of the

42

predicted ratings for item “j” from all of the user i‟s trusted friends. Trust score is

calculated via similarity between two users with the number of users who “i” follows or

we can say “i” trusts and the number of users who trust the user “i”. According to the

experimental results, while the social influence is effective on one dataset's users, the

individual tastes are more important on another dataset's users without considering

different scales of training data. Actually, this situation shows us, the influence of social

media on recommendation systems differs from the nature of our data.

Now we will explain the basic mathematical background related to the calculation of

product rating score. After that, we will give some basic information about graph theory

related to our used formula. Let‟s explain how we calculate the rating scores of products

based on trust relationship between users.

3.2 Prepare Background and Context

In recent years, with the rise of the importance of recommender engines in e-commerce

platforms, people and companies start to affect the results of recommender algorithms

in order to increase the rating scores of their products by creating fake accounts.

Because, as in real life, when we make our decision about buying or choosing a product

or service, obviously, we are influenced by the opinions of the people surrounding us.

Especially in e-commerce platforms, people pay attention to the rating of products that

they want to buy or use as a service and examine most of all, if not all, the reviews

before making a final decision. For example, when we search for a hotel on

TripAdvisor, at first, we are checking on how many stars that hotel has, and then we are

reading almost all the reviews about that hotel. On these types of websites, people can

also click like button if they agree with that comment or dislike button if they don‟t.

This feature is also important to understand the quality of that hotel. In this section, we

analyze the relationship among users to find users, who are trusted by others and

calculate the ratings of products according to those trusted users‟ ratings. In this way,

we can present two types of ratings to the users. The first one is the traditional average

score and the second one is a weighted score based on the trustworthiness of the users.

Therefore, people will have a chance to compare two rating results. Moreover, it can

show the quality of the rating result if the two rating results are almost equal. For this

43

purpose, we first explain the basic mathematical background of the PageRank

algorithm, which we use in our research to reveal the relationship between customers

and then find trustful users.

3.2.1 Mathematical Background

Basic linear algebra operations: In math,

creating a rectangular array adding m x n

numbers in rows and columns is called a matrix.

We represent m x n matrix A with real numbers.

Namely, it means that someone can get a real

number “Aij” on row “i” and column “j”. For

instance, the value A23, which is pointed “1”, is

located where the second row and third column

coincide.

We can add or subtract matrices via adding or subtracting the numbers in the same

positions if two matrices have the same size. As it is seen in Figure 3.2, matrix “A” and

matrix “B” have the same size, namely, they have both the same number of rows and

columns. Therefore, we can add both matrices by adding the numbers in the same

positions. Furthermore, matrix addition between the same types of matrices has

associative and commutative properties.

Figure 3.1 Relationship between

rows and columns in a matrix

Figure 3.2 Adding and subtracting matrices

44

As it is seen in Figure 3.3, when multiplying a matrix by a single number (a scalar),

each element in the matrix should be multiplied by this scalar. Accordingly, if we have

a matrix “A” with single numbers “r” and “k”, we can say that (r+k)A = rA + kA and

r(A+B) = rA + rB and also (rk)A = r(kA).

In order to multiply a matrix by another matrix, the number of the columns of the first

matrix should be an equal number of the rows of the second matrix. If they carry the

condition, we can multiply two matrices to each other. Therefore, as it is seen in Figure

3.4, firstly we get the first row of the first matrix “A”, then we match the first column

members of the second matrix B, multiply them (3 with 9 and 5 with 5), and finally sum

them up. Likewise, we do the same procedure for the second column of the second

matrix “B” and for the third column of the matrix “B”. After finishing each column of

matrix “B”, we do the same procedure for the other rows of the matrix “A”.

Figure 3.3 Scalar multiplication

Figure 3.4 Matrix multiplication

Figure 3.5 Transpose of a matrix

45

It is called transpose of matrix “A” denoted “A
t
” by turning all the columns into rows or

vice-versa. So that the first column of the matrix “A” will be the first row of the “A
t
”,

and the second column of the matrix “A” will be the second row of the “A
t
”, and so on.

Therefore, transpose of the “A
t
” will be the matrix “A” again. Transpose of two matrix

multiplication is equal to the multiplication of transpose of each matrix “(A x B)
t
” = A

t

x B
t
. Likewise, transpose of two matrix addition is equal to the addition of transpose of

each matrix “(A + B)
t
” = A

t
 + B

t
.

In a linear transformation T : V  V, a non-zero vector “x” for x ϵ V, if there is a

number “λ” satisfying the equality T(x) = λx, there is an “x” called eigenvector

corresponding to the eigenvalue “λ” [59]. To sum up this situation with an example:

To find eigenvalue and eigenvector of matrix

“A”, we should obtain the expansion of det(A-

λI) generating second-degree polynomial. λ
2
 - 4λ

+ 3 = (λ-1) (λ-3), which is called the

characteristic polynomial for matrix “A”. As a

result, the eigenvalues for the matrix “A” are the

solutions of the roots of the characteristic

polynomial p(λ) = 0, and they are λ = 1 and λ =

3. To find the corresponding eigenvector of

eigenvalue λ = 3, we get a = 0 and b = 1. The

transpose of matrix “A” has also the same

eigenvalues, but they don‟t have the same

eigenvectors that correspond to the common eigenvalues [60] in general.

46

For example, to find the corresponding eigenvector of

transpose A
t
 for eigenvalue λ = 3, as it is seen in the

example, there is more than one eigenvector corresponding

to the same eigenvalue. Even if these eigenvectors have the

same eigenvalue, they may have no relationship to each

other.

After explaining the mathematical background, it is

important to mention about the matrix type often used in

our research calculations. It is a matrix called column-

stochastic which all the values greater than or equal to zero,

and also the sum of the values of each column is equal to 1.

If all the values are greater than zero, it is called a positive matrix with real numbers.

Assume that we have a matrix “A” with transpose “A
t
”:

Figure 3.6 A matrix with transpose

47

As it is seen in Figure 3.6, all the values of the matrix “A” are positive, and the matrix

“A” is a type of column-stochastic. But transpose “A
t
” is a row-stochastic because the

sum of the values of each row is equal to 1. As it is mentioned before, the matrix “A”

and its transpose “A
t
” have the same eigenvalue and it is equal to 1. Accordingly, we

can say:

- Any column-stochastic matrix has an eigenvalue which is equal to 1.

- If our matrix is a column-stochastic matrix, the eigenvector corresponding to the

eigenvalue (which is equal to 1) can have only positive values or only negative

values.

- If our matrix is a positive column-stochastic matrix, there is a unique vector to the

corresponding eigenvalue (which is equal to 1) and this unique vector has only

positive values and the sum of the values is equal to 1 [60].

3.2.2 Directed Graphs

Graphs are objects reflecting the relationships between structures consisting of nodes or

points. They are often used to represent the network formed by more than one web site

on the internet [61].

As seen in Figure 3.7, we called “node” to each point and each node represents a web

site on the internet graph. Each arrow between the nodes represents a link and it is also

called “edge”. Therefore, this structure consisting of nodes and edges is called a graph.

There are various graph types, but we focus on a particularly directed web graph in this

study. Even if internet graphs can be very large, all graphs are thought as composed of

finite points when calculations are done.

Figure 3.7 Directed graph with four nodes

48

If there is an edge between a node “i” and a node “j” or vice versa, we can say that these

nodes are adjacent in that directed graph, and node “i” and node “j” are the last points in

the graph. If the edge between node “i” and node “j” exits from node “i” and enters to

node “j”, the node “i” is called “tail” and the node “j” is called the “head” of the edge.

For instance, as seen in Figure 3.7, there is an edge between node “1” and node “2”, so

these nodes are adjacent and node “1” is the tail part, and node “2” is the “head” part.

Since there isn‟t any edge between node “1” and node “3”, we cannot say that they are

adjacent nodes. The number of edges to a node is called inlinks (internal links) to a

website, likewise, the number of edges from a node is called outlinks (external links)

from a website.

When we look at the graph, node “1” has two outlinks and no inlinks. One of these

outlinks goes to node “4” and the other one goes to node “2”. Likewise, node “2” and

node “3” have just one outlink and node “4” has no outlink. But node “4” has two

inlinks and one of these inlinks comes from node “1” and the other one comes from

node “3”. Also, node “2” and node “3” have just one inlink.

We can make a few comments about our graph in Figure 3.7, in general. As it is known,

if a website (a node) is offered (getting a link) from other websites, it means that that is

a recommended website which is important. When we look at the graph, node “4” has

more inlinks than others, so we can say that node “4” is the most important node in our

graph. Likewise, node “1” has no inlinks, so we can say that node “1” is the least

important node in our graph. Of course, all the comments we make are from what we

see on the graph, but we know that there are other factors indicated the importance.

3.2.3 A glimpse of PageRank Computation

PageRank algorithm was the backbone of the Google search engine in the 2000s. The

importance of a web page in the ranking pages result was determined by the PageRank

algorithm when given an inquiry to the search engine. As is known, the basic logic of

the PageRank algorithm is that the importance of a website increases so long as the

number of inlinks increases. In this regard, the PageRank algorithm can be considered

as an election logic. But in this algorithm one can distribute his/her vote between

attendees. Namely, you can distribute your vote between other websites by giving links

if you think those websites are the best to represent your website. Then, when given an

49

inquiry to the search engine, the algorithm controls the scores of each page in that

related field. The website which has more inlinks than others comes to the top of the

result list.

It is useful to explain one more thing in this election logic. Since the score of each

website is calculated by inlinks, each website has a different score. So, it is important

which website sent a link to your website and at what rate. Namely, because of getting

more inlinks, bbc.com will have more effect than any ordinary website on your website

if you get a link from. Of course, it is a dynamic structure and the score of each website

is constantly changing. As a result, everyone‟s vote is not equal as in general election on

the internet graph. Let‟s look at the mathematics of Google‟s PageRank.

Brin et al. summarized the PageRank calculation with a simple sum Formula (3.1) [62].

(3.1)

50

As it is seen in Formula 3.1, PageRank of a page “i”, r(Pi), is calculated by collecting all

PageRanks coming from other webpages to the page “i”. B(Pi) represents the inlinks to

the page Pi. |(Pj)|represents the outlinks from the page Pj. But how can we calculate

r(Pj)? In order to overcome this problem, Brin and Page used an iterative calculation

(3.2). According to this iterative calculation, each webpage has an equal PageRank

score at the beginning of the calculation.

(3.2)

The PageRank value of each Pi is calculated by getting one before the value of the Pj.

So, in order to get rk+1(Pi) of page Pi at iteration k+1, we use the Formula 3.2. This

process is started for all pages in the graph with r0(Pi) = 1/n, where n is the number of

pages in the related graph. To illustrate this calculation, let‟s apply on a simple graph.

As seen in Figure 3.8, we have a “1” point value and 4 pages. So, when we start to

calculate, each node will get 1/4 scores at the beginning. In the first iteration, node 1

distributes its point between node 2 and node 4 (each node gets 1/8 points). Node 2

gives all its points to node 3. Node 3 distributes its point between nodes 1, 2, and 4

(each node gets 1/12 points). Lastly, node 4 gives all its points to node 2. At the end of

the first iteration, node 1 has 1/12 points coming just from node 3. Node 2 has 11/24

(1/8+1/12+1/4) coming from node 1, node 3, and node 4 respectively. Node 3 has 1/4

Figure 3.8 A graph with four nodes

51

points coming just from node 2. Lastly, node 4 has 5/24 (1/8+1/12) points coming from

node 1 and node 3. Let‟s show the first two iterations in the table.

Table 3.1 First few iterates using on Figure 3.8

As seen at the end of the second iteration from Table 3.1, node 1 is the last page, and

node 3 is the first page on the raking page result. Even if node 1 gets a link from the

winner node 3, it couldn‟t pass the others. Because the winner node 3 distributes its

point to all pages, so it is meaningless to get a link from node 3. Likewise, even if node

2 gets links from all nodes, node 3 comes first because of getting all points of node 2.

3.2.4 Matrix Representation to Compute Page Score

PageRank calculation can be considered as a matrix problem. We saw how we can

calculate the PageRank score by the given formula (3.2). But it can be calculated easier

and understandable way using matrices at each iteration. It can also be easier to apply

other operations on a matrix. To accomplish this, we should just transform our graph to

a

matrix structure. To illustrate, let‟s apply on a simple graph.

But first, we transform our graph into a matrix, for that we should obey the above rule.

As can be seen in Figure 3.9, our directed graph consists of six nodes which represent a

very small version of the web graph. There are two links from node 1 to node 2 and 3,

respectively. It means that node 1 distributes its point between nodes 2 and 3 by half-

and-half. Node 2 does not distribute its point. Node 3 distributes its point between nodes

1, 2 and 4 by a third, node 4 distributes its point between nodes 5 and 6 by half-and-

Iteration 0 Iteration 1 Iteration 2 Rank at

iteration 2

r0(P1) = 1/4 r1(P1) = 1/12 r2(P1) = 1/12 4

r0(P2) = 1/4 r1(P2) = 11/24  (1/8+1/12+1/4) r2(P2) = 8/24 (1/24+1/12+5/24) 2

r0(P3) = 1/4 r1(P3) = ¼ r2(P3) = 11/24 1

r0(P4) = 1/4 r1(P4) = 5/24 (1/8+1/12) r2(P4) = 3/24 (1/24+1/12) 3

52

half, node 5 gives all its point to node 6, and lastly, node 6 distributes its point between

node 4 and 5 by half-and-half. After distributing points, we can arrange our matrix:

As it is seen in the “H” matrix, if there is no

link from the page (node) Pi to another

page, we put a “0” to that place. Namely,

Figure 3.9 A graph with six nodes

53

we don‟t share Pi‟s point with that page. Accordingly, Hij indicates a directed link from

page “i” to page “j”. Likewise, Ni indicates the total number of outlinks from page “i”.

Thus, each row represents the outlinks from page “i”, whereas each column represents

the inlinks to page “i”. Then, we can calculate the PageRank score for each page

according to the obtained values by the iterative formula:

r(P)T
(k + 1) = r(P)T

(k) H, k = 0, 1, 2, . . . (3.3)

We denote the PageRank score with “π” in the following section. Thus,

πT
(k + 1) = πT

(k) H, k = 0, 1, 2, . . . (3.4)

3.2.4.1 Random Walk on the Web Graph

It will be useful to know Random Walker in order to understand the structure and

problems of the PageRank algorithm since it will be easy to comprehend the transition

between pages by the Random Walk model. As the name implies, Random Walker

starts to move by selecting a random page and move on to one another web page using

one of the external links on this page. This move is repeated for each occurrence of a

new web page. But there is one thing we should pay attention to this movement. If the

Random Walker chooses web pages according to the external links, it means that when

a web page has too much inlinks, the probability of the Random Walker chooses that

page will be more than other pages. Another important point of the Random Walker

movement is that the probability of a page being selected by the Random Walker is not

relevant to the previous page [63]. Namely, assume that Random Walker passed from

page “i” to page “j”, the next movement of Random Walker is not affected by page “i”.

Random Walker goes on its way by choosing an outlink on the page “j”. It means that

the probability of a page being selected by the Random Walker is changed by the ratio

of the distribution of page j‟s score to other pages. For more details you can read

Markov chains in the section 3.2.5.

3.2.4.2 Dangling Nodes Problem in the PageRank Algorithm

We have seen how the Random Walker provides the transition between web pages. But

if we look at the graph carefully in Figure 3.9, we can realize several problems when the

Random Walker passes from one page to another. As we mentioned before, the Random

54

Walker passes to another page by choosing an outlink on the arrived page. But when the

Random Walker arrives node 2, it cannot move from node 2 to another page since there

are no outlinks on node 2. We called node 2 as a dangling node. For this reason, as it is

seen in “H” matrix, all the entries are “0” on row 2. But how the Random Walker can

move to another page in this circumstance. Actually, dangling nodes mostly consist of

documents such as pictures, pdf, words, etc. in the gigantic web graph. Random Walker

can stop the process, or it can start again from the beginning in such a case. But because

of reducing the performance of the Random Walker, such a solution is not a very logical

way. To overcome this problem, Brin and Page appealed to the following method [62].

If a webpage does not link to any other webpages, the PageRank score of that page will

be distributed equally to all other webpages. For “n” dimensional matrices, all the

entries of the row consisted of zeros will be replaced by 1/n. according to this process,

our new matrix formulation will be as follows.

S = H + (1/n) de
T
 (3.5)

Where, “e” represents the column vector of all 1s and “d” indicates the dangling node

and equal to “1”, or “0” otherwise. It can be stated as below.

If we apply this Formula (3.5) on our graph in Fig. 3.9, the d2 column vector which is

the second row consisted of zeros will get the value “1” in our matrix.

Accordingly, when we also add “H” matrix, S matrix will be as follows:

55

We get the above result. Namely, we used a row stochastic matrix in which the sum of

all the entries is equal to 1 in order to get the “S” matrix. Even though we solved the

dangling nodes problem in our graph, we have still some problems if we look carefully.

Let‟s take a glance at the next problem.

3.2.4.3 Rank Sink Subgraphs Problem in the PageRank Algorithm

We have seen how to solve the dangling nodes problem in the PageRank algorithm. But

when we take our graph as several subgraphs, we can see the Random Walker has

another problem. Assume that Random Walker passed from node 3 to node 4, Random

Walker will drive round and round in the subgraph consisted of nodes 4, 5, and 6 since

there is no outlink from this subgraph to another consisted of nodes 1, 2, and 3. In this

way, nodes 4, 5, and 6 will get more and more PageRank at each iteration. We called

this problem as a “rank sink” which refuse to share PageRank via not giving a link to

other nodes or subgraphs. We can also see this problem in Figure 3.7. In that directed

graph node 4 is also a rank sink node. In order to overcome the problem that Random

walker gets stuck in a subgraph, we transform our matrix into an irreducible matrix.

Let‟s explain how to deal with this problem.

It is called the “teleportation” method providing the PageRank Algorithm to turn into an

irreducible status. Even if there is a little chance, Random Walker will be able to make

the transition between pages in this way. Let‟s represent this method with the Formula

(3.6) below:

G = αS + (1-α)(1/n)ee
T
 (3.6)

As in the previous formula, “e” represents the column vector of all 1s, “α” is the

damping factor or breaking the power factor of the rank sink of subgraphs (teleportation

probability factor) which is between “0” and “1” (generally it is equal to 0.85). Let‟s

apply this formula to our matrix.

56

.

.

.

In this way, we got the irreducible “G” matrix. Namely, we let the Random Walker able

to make the transition between all pages in the graph by adding (1-α)(1/n)ee
T
 on our “S”

formula.

57

3.2.4.4 Computation of the PageRank Vector

After solving the problems in the calculation of the PageRank Algorithm, it is time to

calculate the PageRank vector which provides the importance of each page in order. For

this purpose, let‟s review a few details of the calculation of the PageRank vector.

If the Random Walker can pass from node “i” to node “j” in a given graph, we can say

that there is a path between node “i” and node “j” and it is called as a connected graph.

But if the Random Walker has a chance to pass any node “i” to any node “j”, we call

these types of graphs as strongly connected graphs. As we saw in our graph, “H” matrix

represents a connected graph (There is a link from node “1” to node “2” but there is no

link from node “2” to any other page) but after solving dangling nodes and rank sinks

problems, it is transformed into a strongly connected graph. In this way, Random

Walker could make a transition between any web pages. Considering this case in terms

of matrices, if B = I + A + A
2
 + A

3
 + … +A

k
 is a positive value, for a positive “k” value

(multiplying our matrix by “k” times, i.e. A
k
 for matrix “A”), we can say that our

matrix is a strongly connected graph. Here, adding the identity matrix is that the cycle

of the nodes themselves. Accordingly, if there is a path from node “i” to node “j” at “k”

times, it means that we can pass from node “i” to node “j”. If the values of matrix “B”

are all positive, it means we can pass from any node “i” to any node “j”, in other words,

it will be a strongly connected graph. To illustrate, let‟s look at our previous graph.

Let‟s say that “1” for each passing from node “i” to node “j”.

Accordingly, matrix “A” is a connected graph, not a strongly connected graph. Let‟s

calculate matrix “B” according to the matrix “A”.

Figure 3.10 Directed graph with four nodes

58

As it is seen, since all the entries are not bigger than “1”, matrix “B” is not positive.

Namely, there is no connection from any node “i” to any node “j”, matrix “B” is not a

strongly connected graph.

Before computing the PageRank vector of matrix “G”, let‟s take a glance at matrix “H”

which is an untouched matrix before obtaining matrix “G”. Therefore, we can compare

our guesses are true or not at the end of getting the PageRank vector.

As seen in Figure 3.11, our graph consists of two

subgraphs. The first subgraph consists of nodes 1, 2,

and 3, the second subgraph consists of nodes 4, 5,

and 6. When we look at the first subgraph, node 2 has

two inlinks and no outlinks. So, node 2 most

probably will be more important than others. Node 1

and node 3 get link from each other, but because of

dividing its score into three parts, the link comes

from node 3 is less important than 1. Therefore, node

3 will get more points than node 1. Consequently, our

rank order will be like 2 > 3 > 1 in the first subgraph.

In the second subgraph, each node gets two inlinks,

but since node 5 gives all its point to node 6, node 6

will be the most important node in the second graph.

When we come to decide which one is more

important between nodes 4 and 5, it is a bit

complicated. Firstly, both node 4 and node 5 get a

link from node 6. Thus, node 6 is not a determinant
Figure 3.11 A graph with six nodes

59

node. In this case, if node 3 has more score than node 4, our rank order will be like 6 >

4 > 5, otherwise if node 4 has more score than node 3, our rank order will be like 6 > 5

> 4 in the second subgraph.

After guessing the PageRank score order, we can start to calculate our “G” matrix now.

Due to the fact that all the entries in matrix “G” are bigger than “0”, there is a path

between any page “i” and “j”. As it is done before in an example, we can start with

dividing our PageRank (which is equal to 1) to each node in equal in order to start the

iterative process. We have 6 nodes in our graph. It means each node will get a 1/6

PageRank score at the beginning of the iterative process. After the first process, the

PageRank score of each node will change by the amount of importance value they have

until they reach a threshold. After the threshold (after a certain iteration), each node will

start to get an unchanged score, in other words, they will reach a balance or saturation

point. This threshold (the number of iterations of the process) is changed according to

the graph structure. We will get each result of the iterative process according to the

logic as we mentioned before in Table 3.1. That operation is the same with multiplying

matrix “G” with π
T
 (we denoted before with r(Pi)). Accordingly, our first step of

importance vector will be as follows:

π
T

(k + 1) = π
T

(k) G (3.7)

According to Formula (3.7),

1.step  π
T

(1) = π
T
 G,

2.step  π
T

(2) = (π
T
 G)G,

3.step  π
T

(3) = ((π
T
 G)G)G

.

.

.

At the last step (threshold) we can see that the PageRank score of each node reaches a

saturation point and after that saturation point (iteration), the results do not be changed.

Let‟s calculate the first iterate of the PageRank vector calculation.

60

π
T
 =

(1/6 1/6 1/6 1/6 1/6 1/6)

πT
1 = πT G = (0,095833333 0,166666667 0,119444444 0,166666667 0,190277778 0,261111111)

If we go on to compute the PageRank vector, we can get the ultimate PageRank vector

(π
T

*). It is shown the PageRank vector of each iteration in Table 3.2 and the ultimate

PageRank vector (π
T

*).

Table 3.2 Calculation of each page score at each iteration

πT
2 0,082453704 0,12318287 0,089340278 0,193425926 0,230416667 0,281180556

πT
3 0,067763985 0,102806809 0,077493731 0,187265721 0,244158661 0,320511092

πT
4 0,061520855 0,090320549 0,068363992 0,197738069 0,255369444 0,326687092

πT
5 0,057165209 0,083311572 0,063941774 0,196007223 0,260676104 0,338898118

πT
6 0,054919309 0,079214523 0,061097686 0,198951009 0,264137242 0,341680231

πT
7 0,053533069 0,076873775 0,059562764 0,198747167 0,265990334 0,345292892

πT
8 0,052766568 0,075518122 0,058642006 0,199516047 0,267107476 0,346449781

πT
9 0,052313636 0,074739427 0,058124192 0,199554793 0,267733878 0,347534075

πT
10 0,052056607 0,074289902 0,057821381 0,199758589 0,268100854 0,347972668

πT
11 0,051907127 0,074031185 0,05764846 0,199795511 0,268310187 0,348307529

πT
12 0,051821482 0,073882011 0,05754828 0,199852182 0,268431543 0,348464502

πT
13 0,051771964 0,073796094 0,057490748 0,199869378 0,268501209 0,348570607

πT
14 0,051743492 0,073746577 0,057457531 0,199886 0,26854144 0,34862496

πT
15 0,051727066 0,07371805 0,057438416 0,199892673 0,26856459 0,348659206

πT
16 0,051717608 0,073701611 0,057427393 0,199897771 0,268577939 0,348677678

πT
17 0,051712156 0,07369214 0,057421045 0,199900169 0,268585627 0,348688862

πT
18 0,051709016 0,073686682 0,057417386 0,199901782 0,268590058 0,348695075

πT
19 0,051707206 0,073683538 0,057415278 0,199902613 0,268592611 0,348698754

πT
20 0,051706163 0,073681726 0,057414064 0,199903134 0,268594082 0,348700831

πT
21 0,051705563 0,073680682 0,057413364 0,199903416 0,26859493 0,348702046

πT
22 0,051705216 0,073680081 0,057412961 0,199903586 0,268595418 0,348702738

πT
23 0,051705017 0,073679734 0,057412728 0,199903681 0,268595699 0,348703141

πT
24 0,051704902 0,073679534 0,057412595 0,199903737 0,268595861 0,348703371

πT
25 0,051704836 0,073679419 0,057412517 0,199903768 0,268595955 0,348703504

πT
26 0,051704798 0,073679353 0,057412473 0,199903787 0,268596009 0,348703581

πT
27 0,051704776 0,073679315 0,057412447 0,199903798 0,26859604 0,348703625

61

As it is seen our ultimate PageRank vector (π
T

*) fixated at iteration 36. As a result, our

ultimate PageRank vector (π
T

*) is as follows:

π
T

* = 0,051704746 0,073679263 0,057412413 0,199903812 0,268596082 0,348703685

According to the π
T

*, our guess for the first graph is true and the order of the importance

of the nodes is as 2 > 3 > 1. For the second subgraph, the order of the importance of the

nodes is as 6 > 5 > 4 and the importance of node 4 is bigger than node 3 (4 > 3).

Consequently, the order of the importance of the nodes is as 6 > 5 > 4 > 2 > 3 >1 in this

tiny web. According to the result, the most important node is page 6, and the least

important node is page 1. If we interpret the result, the Random Walker visit page 1 by

5.170% and page 6 by 34.870% of the time.

3.2.5 Markov Chains in PageRank Computation

Markov chains, which is a special kind of stochastic process is used in many

engineering fields, especially in the search engines. In Markov chains, the probability of

a case that will take place next is only affected by the current state. Namely, the case

which will take place next is not affected by the situation that occurred before the

current state. Let‟s explain it by the graph with six nodes in Figure 3.11. Assume that

Random Walker passed from node 3 to node 4, the probability of Random Walker

passes to any other nodes from node 4 is not affected by node 3. The probability of

passing to any other nodes is determined by the distribution of node 4‟s score.

πT
28 0,051704763 0,073679293 0,057412433 0,199903804 0,268596058 0,348703651

πT
29 0,051704756 0,07367928 0,057412424 0,199903807 0,268596068 0,348703665

πT
30 0,051704751 0,073679273 0,057412419 0,199903809 0,268596074 0,348703674

πT
31 0,051704749 0,073679268 0,057412416 0,19990381 0,268596077 0,348703679

πT
32 0,051704748 0,073679266 0,057412415 0,199903811 0,268596079 0,348703681

πT
33 0,051704747 0,073679265 0,057412414 0,199903811 0,26859608 0,348703683

πT
34 0,051704746 0,073679264 0,057412413 0,199903812 0,268596081 0,348703684

πT
35 0,051704746 0,073679263 0,057412413 0,199903812 0,268596081 0,348703684

πT
36 0,051704746 0,073679263 0,057412413 0,199903812 0,268596082 0,348703685

πT
37 0,051704746 0,073679263 0,057412413 0,199903812 0,268596082 0,348703685

.

.

.

πT
* 0,051704746 0,073679263 0,057412413 0,199903812 0,268596082 0,348703685

62

3.2.5.1 Graph Theory of Markov Chain

Markov chain is actually an application of graph theory. Graph theory, as we mentioned

before, is a set of a graph in which nodes represent states and edges represent the

transition between states. Markov chains determine a situation would change according

to certain statistical values. But the realization of current changes is independent of past

states. Therefore, when the current state is affected by the former state, the future states

are affected by just the current state. In this context, if a state is only dependent on the

former state, it is called a time-dependent Markov process. Based on statistical Markov

model, we can show the probability of each stochastic event by the following formula:

)|(),...,,|(11001111 tttttttttt xxxxPxxxxxxxxP   (3.8)

In Markov chains, it is called the transition probability passing from the state “i” to

subsequent state “j” at a time and depending on the time it can be expressed as follows:

Pij
t,t+1

 = P(π(t+1) = j, π(t)=i) (3.9)

Accordingly, in Markov chains, the conditional probability of occurrence from the state

“i” to subsequent state “j” at a time is;

3.10

We can show the conditional

probability of occurrence as

adjacent to Figure 3.12. N = 0 to

reflect the current state, all states

of the process are specified on

each line for a given state.

Accordingly, “i” indicates the

number of row and πi indicates a

row vector in the transition matrix

“P”. For instance, π3 represents the third row. So, the transition matrix “P” consists of πi

probabilistic vectors and each entry of πi indicates the probability of passing from one

state to another. If we denote this passing probability by “K”, πi consists of finite

passing probabilities. Let‟s show this on the web graph:

Figure 3.12 The conditional probability of occurrence

63

Assume that N = 4 and we have four nodes K1, K2, K3, and K4. Pij indicates the

passing probability from one node to another. For instance, P23 indicates the passing

probability starting from node K2 to node K3.

3.2.5.2 Formulizing Web Graphs with Markov Chains

Table 3.3 Passing probability of Random Walker between nodes

Present State (n=0) Next State

 K1 K2 K3 K4 (Kj)

K1 0 1/2 0 1/2

K2 0 0 1 0

K3 1/3 1/3 0 1/3

K4 0 2 0 0

(Ki)

The Table 3.3 shows that the passing probability of Random Walker from node Ki to

node Kj in the next step. Let‟s show these passing probabilities on the transition matrix.

1P0 ij 

)4,3,2,1(1
4

1




iP
j

ij

Figure 3.13 A four-node graph given with passing probability

64

Our transition matrix satisfies the above conditions. Let‟s calculate the passing

probability of Random Walker from node K3 to node K2 after two steps.

Table 3.4 Passing probability of Random Walker after two steps

Starting

Node

First

Step

Second Step

Probabilities

passing

probability

from node

2 to node 3

K3

K1 = 1/3 K1 = 0, K2 = 1/2, K3 = 0, K4 = 1/2 K3  K1  K2 = 1/3 * 1/2 = 1/6

1/6+1/3 =1/2

K2 = 1/3 K1 = 0, K2 = 0, K3 = 1, K4 = 0 K3  K2  K2 = 1/3 * 0 = 0

K3 = 0 - 0

K4 = 1/3 K1 = 0, K2 = 1, K3 = 0, K4 = 0 K3  K4  K2 = 1/3 * 1 = 1/3

As it is seen in Table 3.4, the passing probability of Random Walker from node K3 to

node K2 after two steps is 1/2. Therefore, we can formulate this movement as follows:

πi
n+1

 = πi
n
 x P (3.11)

“π” is the probability vector. So, for n = 2;

Thus, Random walker would be at K1 with probability 0, at K2 with probability 1/2, at

K3 with probability 1/3, and at K4 with probability 1/6. We can get all passing

probabilities of Random Walker by multiplying matrix “P” for the two steps.

According to the result, some entries still are zero. It means that Random Walker can‟t

pass some nodes. In order to overcome this problem, we mentioned some solutions such

65

as dangling node problems and rank sinks problems. As a result, time-dependent

Markov chains are perfect to fit for some search engines.

3.3 Dataset

Table 3.5 Rating Dataset

Order User_id Item_id ratings

0 1 1 3

1 1 2 4

2 1 3 4

3 1 4 5

For the research, we got a real-world dataset from http://www.jiliang.xyz/trust.html or

https://www.cse.msu.edu/~tangjili/datasetcode/truststudy.htm because of having a trust

relationship between users. It is publicly available and widely used to evaluate

recommendation systems in the literature. The dataset consists of two sub-data sets. The

first one is the rating dataset indicating “user id”, “item id”, “ratings” given to the

related product by the related user and contains star values ranging from 1 to 5. The

value of “1” indicates that the user does not like the item at all, while the value of “5”

indicates that he likes it very much. If the ratings column contains a value of “0”, it

indicates that the relevant user did not score the relevant product. The ratings column

consists of 48.891% 5 star, 31.152% 4 star, 11.016% 3 star, 5.04% 2 star, 3.889% 1 star,

respectively. There are unique 7.353 users and 105.582 items in the dataset. So, when

we look at Table 3.5 user 1 gives to item 1 “3” stars. And our dataset consists of 284086

rows with 3 columns. It is a “.csv” file and 4.82 Mb.

Table 3.6 Trust Network Dataset

 Trustee trustor

0 1 3

1 1 4

2 1 5

3 1 6

The second dataset shows the trust relationship between users. The trust-network dataset

indicates the trustee and the trustor respectively. So, “user 1” trust to “user 3”, “user 4”,

“user 5”, and so on. And our trust network dataset consists of 111781 rows with 2

66

columns. It is a “.csv” file and 998 Kb. Our algorithms are executed on

Jupyter Notebook with python version “2.7.11”.

3.4 Recommender Model Based on Trust Relationship

We use the PageRank graph theory in order to find the reliable or trusted users in our

dataset. In our recommendation model, we consider a user as a website or a node in a

graph. So, we have a set of users U = {u1, u2, …., um} and a set of items I = { i1, i2, ….,

in} and every user have a set of rates Rui = { ui1, ui2, …., uim} and it is represented by

ru,i for user “u” on item “i”. Lastly, we also have a trust network among users. If user

“u” trusts user “v”, then we represent by tu,v for the value of this trust with a real number

between “0” and “1” and “0” means no trust and “1” means full trust.

3.4.1 Creating User Matrix for Creating the Trust Relationship

Figure 3.14 User vector with Trust-relationship Matrix

As you can see in Figure 3.14 from the output of the program, we have a total of 7375

users, and we define a vector for these users. Then, we define the matrix for showing

each user‟s trust relationship with other users.

67

3.4.2 Specify Relationship Between Users

Figure 3.15 The appearance of first user's vector in trust-relationship matrix

As you see in Figure 3.15 from the output of the program, if the user trusts the other

user we placed “1” in the relevant cell, “0” if he/she does not. The vector in the Figure

3.15 shows just the trust relationship between the first user and just the first 200 other

users.

3.4.3 Sharing the Trust Values Between Trustee of the Trustor “H” Matrix

Figure 3.16 Sharing the trust value of user 1 between trustee

As mentioned earlier, we share the trust score of the relevant user equally with other

trusted users. We called the resulting matrix as the "H" matrix. What you see in Figure

3.16, it is the amount of trust that the first user shares with the other users he trusts.

68

Again, the vector in Figure 3.16 shows just the trust values between the first user and

just the first 100 other users.

3.4.4 Solving Dangling Nodes Problem “S” Matrix

As you can see in Table 3.7, each user has a different

number of trusted users, and each user's trust value is

shared among other users he or she trusts. However,

sometimes some users do not have a trust relationship with

other users in the dataset. Users in this state are called

"Dangling Users". Because these users have no trust

sharing, they cause problems with matrix multiplications.

Therefore, their trust values are shared equally among all

other users. It means that if you don‟t trust anyone, you

trust everyone. As seen in Table 3.7, user “155” doesn‟t

trust anyone, while user “158” trusts 50 other users in the

dataset.

Figure 3.17 Sharing trust value of user 155 between all users

As you can see from the program output in Figure 3.17, all trust value of user 155 is

shared equally among other users since he does not trust anyone. As we mentioned

before, the matrix formed after this process is called the "S" matrix. Again, the vector in

Table 3.7 Dangling Users

User

Order

Number of

the Trustee

152 22

153 10

154 25

155 0

156 43

157 11

158 50

69

Figure 3.17 shows just the trust values between the first user and just the first 100 other

users.

3.4.5 Solving Rank Sink Subgraphs Problem

As we mentioned before, in order to overcome the problem that Random walker gets

stuck in a subgraph and to break the power of the subgraphs, we transform our matrix

into an irreducible matrix.

For this purpose, we use the teleportation method to give a little chance to Random

Walker to able to make a transition between users.

In our calculations, we have given a value of 0.85 to the damping factor “α”. This value

is a standard accepted in many studies. Therefore, Random Walker can move to any

users or subgraphs at a rate of 0.15 as we showed in the rank sink part in Formula (3.6).

As you see in Figure 3.18, all users have the same chance of Random Walker being able

to stop by themselves in the rank sink part.

Figure 3.18 Rank sink part in G formula

70

3.4.6 Computation of “G” Matrix

Figure 3.19 "G" Matrix after solution of rank sink problem

As shown in Figure 3.19, after the solution of the rank sink problem, we have obtained

the “G” matrix. Therefore, the “G” matrix becomes an irreducible matrix. Namely,

Random Walker can move between all users in our “G” matrix.

3.4.7 Computation of the PageRank Vector:

As we explained before, we start with dividing our PageRank (which is equal to 1) to

each user in equal in order to start the iterative process. We have 7375 users in our

graph. It means that each user gets 1/7375 trustworthiness score at the beginning of the

iterative process as you see above. Let‟s go on the iterative process until the threshold.

As we mentioned before, after a certain iteration each user will get an unchanged score.

After “59” iterations, we get the ultimate PageRank vector (πT
*), and as you see above

each user gets his/her own score. Let‟s look at a few users who get the most trust value.

Table 3.8 Trustworthiness of users in order

Order User Trustworthiness value

1 260 0.00150946708019796

2 5957 0.0010692603167929203

3 536 0.001049247566604396

4 3555 0.0010418192034589357

5 3556 0.0010405252123860767

71

As seen in Table 3.8, when we executed our algorithm on our dataset as we mentioned

above, we got the trustworthiness score of each user in order. For instance, user 260 has

approximately a “0,00150” point whereas user 5957 has almost a “0,00107” point.

Namely, we can say that user 260 is more trusted than user 5957. So now we can

calculate ratings of items based on trustworthiness score. Generally, any item‟s rating is

calculated by the average of all users‟ ratings who has a preference/rate that item before

but now we can calculate by looking at the trustworthiness score of user‟s. In other

words, we calculate the rating of an item with a weighted average by trustworthiness

score. In short, if user 1 has more trustworthiness score than user 2, it will affect the

rating of that item more weighted by his/her trustworthiness score.

3.4.8 Findings after Computation of the PageRank Vector

Table 3.9 Comparing Average Rating Score and Weighted Rating Score Based on Trustworthiness

Item_id Number of Users Average Rating Score Rating Score Based on

Trustworthiness

1 1 3 3

4 3 3,666 3,986

17 5 4,8 4,866

31 5 4,4 4,340

33 12 3,91 4,155

35 8 4,15 3,81

491 972 4.201 4.197

577 316 2.471 2.402

612 119 4.050 4.045

645 187 4.074 4.077

 ∑ = (Σ Rating*Trustfulness) / Trustfulness (3.11)

As it is seen in Table 3.9, for item 1, there is no difference between Average Rating

Score (ARS) and Weighted Rating Score Based on Trustworthiness (WRSBT) both are

“3.0”. But when we look at item 4, 3 users rated this item, and the difference is almost

0.3194. This means that some of these users have more trustworthiness value and rated

72

this item more than average. Let us look at who rated this item “4” and what are their

trustworthiness score.

Table 3.10 Trustworthiness of the User who rated item 4

User_id User’s rating for item 4 Trustworthiness of the user

1 5 0,000763

83 3 0,000307

244 3 0,000114

As you can see in Table 3.10, user 1, user 83, and user 244 rated item 4. Since the user 1

is more a trustful user and rated with 5 points to item 4, WRSBT of item 4 is bigger tha

n ARS.

The other important result is the average distance ratio between ARS and WRSBT when

the number of users who rated the related items. Let us see the average difference

between ARS and WRSBT when the number of rated users increases on 10.000 items in

our dataset.

Table 3.11 Changing the distance between ARS and WRSBT by the different range of users

Number of users 2-5 6-10 11-20 21-50 21-50 > 100

Number of items 3521 1104 753 403 73 51

Average Difference 0.2368 0.1888 0.1484 0.1209 0.0901 0.0408

According to Table 3.11, 3521 items were rated by between 2 and 5 users and the

average distance between ARS and WRSBT is 0.2368, likewise, 51 items were rated by

more than 100 people and the average distance between ARS and WRSBT is 0.0408.

Moreover, 94.73% of items were rated by less than 20 people. It means that it is easy to

change the rating of an item by fake accounts.

3.4.9 Calculation of Items’ Ratings Based on Trusted Users via Iem-based

Recommendation

We calculate the rating scores of products according to the trustworthiness value of each

user who rated relevant products. In this part, we try to predict the rating score of

products based on trusted users especially for the missing values. To accomplish this

goal, after calculating the trust values of each user and finding the most trusted users as

it is seen in Table 3.8, we get our rating dataset to train our model with 7375 users and

73

105114 items. We train the model with ranking factorization recommender for

recommendations and get 0.384422 final training RMSE.

Table 3.12 ARS and WRSBT by first the 500 trusted users

Items ARS WRSBT ARS by first 500 trusted users WRSBT by first 500 trusted users

4 3,666 3,986 2,749 2,730

17 4,8 4,866 3,026 3,067

31 4,4 4,340 3,097 3,077

33 3,91 4,155 3,073 3,102

35 4,15 3,81 3,222 3,304

491 4.201 4.197 4,019 4,160

577 2.471 2.402 2,966 2,829

612 4.050 4.045 3,721 3,829

645 4.074 4.077 3,596 3,799

For getting a prediction by the first 500 trusted users (this number can be changed

according to the used e-commerce platform), we use item-based recommendation.

Therefore, we calculate a prediction for each item by looking at each user‟s experiences

via item-based recommendation. As seen in Table 3.12, we calculate ARS and WRSBT

for a couple of items by the first 500 trusted users. As we know that in our dataset

94.73% of items were rated by less than 20 people, So, it is important to consult

experienced or trusted users to get opinions about related items especially for some e-

commerce platforms like websites selling electronic products. According to the results

in Table 3.12, the product rating score of the items rated by a few users (items 4, 17, 31,

33, 35) decreases significantly at different rates by ARS by the first 500 users. This

means that, according to the first 500 trusted users, these items are not as good or

valuable as it is thought. But for the items rated by many users (items 491, 577, 612,

645), the difference between ARS/WRSBT and ARS/WRSBT by the trusted users

decreases.

The next calculation is the weighted rating score based on trustworthiness (WRSBT),

this time we calculate the rating score of the products based on trust values of the first

500 trusted users. According to the results in Table 3.12, each rating score of the

products varies slightly between ARS by the first 500 trusted users and WRSBT by the

first 500 trusted users. But again, the product rating score of the items rated by a few

74

users (items 4, 17, 31, 33, 35) decreases significantly at different rates by ARS by the

first 500 users.

We know that when a product is rated by a large number of users, the value it deserves

emerges and the effects of the fake accounts on the results decrease. Therefore, the

decrease in the difference between ARS/WRSBT and ARS/WRSBT by the trusted users

for the items 491, 577, 612, 645 shows that we made an accurate calculation with our

model that calculating the product rating score based on trusted users. We got the same

results by executing the program many times for all the other items as well.

Apart from Ranking Factorization, different similarity measures can be used to find

similarities between products in the item-based model, as we mentioned in the previous

chapter. Table 3.13 shows the RMSE results of some similarity measures in the scikit

learn library, which gives the best result on our own data set.

Table 3.13 Comparing Similarity Measures on Items

 Similarity Measure RMSE

1 correlation 0.23597

2 braycurtis 0.23730

3 hamming 0.24641

4 cosine 0.25982

5 kulsinki 0.27004

6 rogerstanimoto 0.27004

7 jaccard 0.27005

8 dice 0.27005

9 matching 0.27005

10 canberra 0.35545

3.4.10 Calculation of Items’ Ratings Based on Trusted Users via User-based

Recommendation

In this part, we predict the rating score of the products based on trusted users via user-

based recommendation. To accomplish this goal, we use a similar formula called

TrustWalker which combines trust-based and item-based recommendation from Deng,

Huang, and Xu [7].

75

Therefore, the task of our recommender algorithm is as follows. Given an item i ϵ I for

which rtu,i is unknown, predict the rating by trusted users on item i. we call “tu” trusted

users and “i” for the target item. The predicted rating is represented by ȓtu,i.

Generally, traditional recommender algorithms predict ȓi based on the average of all

given ratings to item “i”. Basically, algorithms aggregate all ratings given to the target

item and calculate the average of the ratings. However, in trust user-based

recommendation, the trust relationship between users is used instead of the average

rating. In order to predict a rating of a product, we ask directly trusted users whether

they know the rating for the target item especially for the missing values or items which

are rated by a few users. If so, the algorithm returns with that value, otherwise, they

recursively consult users whom they trust. The trusted users in our recommendation

model are defined on the row of source trusted users in the transition matrix.

Consequently, the rating of the target item is the aggregation of all ratings based on the

trusted users‟ ratings returned by different random walks. And a single random walk is

as follow:

Starting from the most trustful user on clustered domain, the random walker tries to

obtain the rating of the target item given by the visited trusted user.

-If the visited trusted user has the rating on the target item, the random walker returns

with that rating value and it stops walking. If the visited trusted user doesn‟t have a

rating on the target item, then;

-Random walker jumps to another user who is trusted by the target trusted user via user-

based recommender.

-If the random walker cannot find the rating of the target item on the visited trusted

user, it will continue forever. To overcome this problem, we terminate the walk when

the random walker goes very far away from the first visited trusted user. Because when

the random walker goes far away from the first visited trusted user, the rating captured

by the random walker will be less trustworthy. Because of this reason we define the

maximum depth (the number of iteration) to “6” as similar [7]. If the random walker

cannot find the rating value of the target item at iteration six, we get the rating

calculating the most similar item on the first trusted user via item-based recommender.

76

Table 3.14 WRSBT by the first 10 trusted users via user-based recommender

Items ARS WRSBT WRSBT by the first 10 trusted users

via user-based recommender

4 3,666 3,986 2,997

17 4,8 4,866 3,233

31 4,4 4,340 3,379

33 3,91 4,155 3,045

35 4,15 3,81 3,291

491 4.201 4.197 4,338

577 2.471 2.402 2,588

612 4.050 4.045 4,120

645 4.074 4.077 4,130

As seen in Table 3.14, we calculate WRSBT by the first 10 trusted users (this number

can be changed according to the used e-commerce platform) via user-based

recommender. According to the results, we get almost the same results calculated by the

item-based recommender. Namely, the rating score of the items rated by a few users

decreases significantly at different rates but the rating score of the items rated by a large

number of users varies slightly between ARS/WRSBT and WRSBT via user-based

recommender. But if we compare item-based and user-based recommender to each

other, user-based recommender‟s results are closer to ARS/WRSBT as we observe by

experimental results executing many times.

Apart from Ranking Factorization, different similarity measures can be used to find

similarities between users in the user-based model, as we mentioned in the previous

chapter. Table 3.15 shows the RMSE results of some similarity measures in the scikit

learn library, which gives the best result on our own data set.

Table 3.15 Comparing Similarity Measures on Users

 Similarity Measure RMSE

1 jaccard 0.20361

2 rogerstanimoto 0.20361

3 dice 0.20361

4 matching 0.20361

5 kulsinki 0.20361

77

6 hamming 0.20364

7 cosine 0.20385

8 correlation 0.20972

9 braycurtis 0.21104

10 canberra 0.30736

3.5 Conclusion

In this chapter, we tried to show how fake accounts affect rating scores of items in e-

commerce platforms and how to overcome these types of problems. For this purpose,

we analyzed the relationship between users, and we found a trustworthiness value for

each of them. Thus, we calculated the rating score of each item by the weighted average

of users‟ ratings according to their trustworthiness values instead of getting a direct

average of users‟ ratings. According to the calculations, the items rated by between 2

and 20 people have a great difference between ARS and WRSBT. It means that when

the number of users who rated the item decreases, the effect of the fake account goes up.

On the other hand, when the number of users increases, especially more than 100

people, the difference between ARS and WRSBT decreases almost “0”. Besides this,

we calculated the rating score of the products based on item-based recommender by the

first 500 most trusted users and user-based recommender by the first 10 most trusted

users. Similar to one before calculation, the rating score of the products changes

significantly at different rates for the items rated by a few users but for the items rated

by many users, results are close to results of the item-based and user-based

recommenders. Actually, this is also proof that our model works very well.

Consequently, if we think databases which are suffering from sparsity problems, this

model can be a nice solution. By this model, items may get deserved rating scores more

than in the traditional models.

78

4. A RECOMMENDER MODEL BASED ON TIME DECAY

Most of the existing product rating score algorithms ignore the time decay of users‟

ratings when creating a list of recommendations. The time decay of users‟ ratings to an

item may improve the quality of product rating scores in e-commerce platforms,

especially when it is thought that the majority of customers read the reviews before

making a purchase.

In this chapter, we first introduce the concept of time decay by explaining its

mathematical definition and redefine the product rating score based on time decay of

the users‟ ratings. Besides, we calculate the product rating score based on the trust value

of users by looking at the trust relationship. After that, we execute both algorithms

together in order to show their both effects on the quality of the product rating score.

Finally, we present experimentally the effectiveness of three approaches on a large real

dataset.

Online consumer reviews bring a number of benefits such as saving time and money,

finding experienced products by other consumers. But most of the e-commerce

platforms do not have any verification or authentication mechanisms on their online

users‟ reviews related to their products even if online ratings and reviews have become

quite determinant on customers‟ purchasing decisions. Report [64] indicates that almost

82% of internet customers read reviews before making a purchase. This information

shows us that the importance of online reviews/ratings has a great effect on the

purchasing behavior of customers in e-commerce platforms. Even if 78% of customers

think the information found online is vital and more trustful than advertisements, it is

confirmed that most of the reviews are fake [65]. Therefore, time is also an important

factor while calculating product rating scores especially in some e-commerce platforms

such as hotels, restaurants, travel agencies, and other service-based companies. Most of

the existing algorithms calculate rating scores of products or services based on average

ratings but they ignore the time of each user‟s rating. As we mentioned above, for some

e-commerce platforms rating time is a crucial factor since their products or services

change over time. That is to say, a rating given yesterday, and a rating given ten years

ago should not be considered as having the same value when calculating a hotel‟s rating

79

score. For this purpose, we propose a simple algorithm considering rating time when

calculating a product or a service rating score. At the end of this chapter, for the

calculation of a product rating score, our algorithm finds each user‟s trust value based

on the PageRank algorithm by looking at given users‟ relationships as we mentioned in

the previous chapter, and at the same time, it calculates the time decay of users‟ ratings

to that product. Thus, each user affects the rating score of the products regarding his/her

trust value and time decay of his/her rating.

4.1 Related Work

The latest researches show that the time factor significantly increases the quality of

recommender systems, especially on e-commerce platforms. According to the

observations, more recent reviews and ratings better reflect the quality of products and

services. In this section, we review several major approaches for the time-based

recommendations in general.

Lee et al. [66] present a novel based approach to building a recommender system based

on implicit feedback. According to the empirical results, using two kinds of temporal

information such as user rating time and product launching time improves both

recommendation accuracy and performance.

Jamali and Ester [23] investigate whether a user rates after being exposed to an item

rated by the target user‟s neighbors at a certain time. According to the experiment

results, the influence of direct neighbors or rating items in the social network is higher

than in the similarity network on datasets when the user is exposed to an item at a time.

Zheng and Li [24] propose a new computational approach using tag and time

information. For this purpose, the authors use three strategies which are “tag weight”,

“time weight” and “tag and time”. They use the “tag and time” strategy for calculating

the target user‟s rating values with the combination of tag and time information.

According to the experimental results, these three strategies give good results to

personalize navigational recommendation rather than the traditional log-based method.

Raju et al. [67] propose an approach using a graph-based structure that uses the

relationships between customers, products, customers and products. The authors utilize

a matrix that consists of visiting area information, visiting date, visiting time, need type

and satisfaction level for recommendations. They apply Collaborative Filtering to find

80

the most similar users based on filtered items and other user‟s additional information

including day, time and need type, etc.

Ullah, Sarwar, and Lee [28] offer an interesting study that is the use of the

recommender systems in a different area. The authors propose a smart device that

recommends TV programs according to user preferences and the user‟s social network

data. To calculate the rating value, they divide the time which the target user spends on

the program during the broadcast, with the total time of the program.

Celdrán et al. [36] present a hybrid recommender and to compute the users‟ tracking,

the authors calculate the number of times of visits and direction of the user to

recommend items on that location, and lastly the date when the target user visited the

related item last time.

Yang et al. [37] present a hybrid recommender model that considers the time of the

target user‟s interest. According to the authors, the performance of the recommender

system is changed as regards the time of the user selecting an item. Namely, the current

interest of a user is more effective on the performance of the recommender system.

Zhang et al. [68] present a time series analysis for dynamic-aware recommendations to

overcome data insufficiency. The developed algorithm called FARIMA deals with the

year-long period of purchasing data to provide daily aware predictions.

Jiang et al. [69] propose an algorithm that uses time decay to provide dynamic item-

based top-N recommendations. To show the effects of time decay on recommendations

the authors use three patterns of time decay which are concave time decay function,

convex time decay function, and linear time decay function. According to the result, the

algorithm with time decay provides better recommendations if the value of the time

decay coefficient is chosen properly.

4.2 Prepare Background and Context

Another important deficiency in calculating the rating score of a product is the time

factor. Most of the existing rating score algorithms do not take into account the time of

users‟ ratings. But as we mentioned above, time is an important factor in some e-

commerce platforms, and it is believed that more recently reviewed products better

appeal to customers‟ needs. Namely, hot ratings give us more reliable and valuable

information about products. For these types of reasons, in this section, we first

81

introduce the concept of time decay by explaining its mathematical definition then we

calculate a product rating score based on time decay.

In the method to be explained, we assume that a record is a quartet in which user u rate

item i with r on the t
th

 day as shown in Table 4.1.

4.2.1 Time Decay of a Rating

The more current rate on a product by a user, the more current information for us about

the quality of that product. To calculate the currency of a rate, we use the formula of the

motion at constant or uniform acceleration. As it is known that acceleration is the rate of

change of velocity of an object. It is so common in physics and daily life that some

basic equations are derived to work out the situations in which acceleration is constant.

As it is known the position equation for the constant acceleration is as follow:

 d
1

2
 t2 (4.1)

Where d indicates the position, is the acceleration and 𝘵 is the time. In the following

sections, we indicate the currency of a rate as a position. Thus, our equation will be as

follow:

1

2
 t2 (4.2)

According to Formula (4.2), the currency, or we can say that the importance of a rate

increases as the time increases. If the currency-time data for such a product were

graphed, then the resulting graph would look like the graph as below:

Figure 4.1 Currency-time graph

According to the graph in Figure 4.1, as the date of a rate gets closer to the current day,

the importance of the rate increases. Let‟s show it with a real example on our dataset.

82

4.2.2 Calculation Rating Score of a Product Based on Time Decay

Let‟s assume that we get the product 2 from our real dataset.

Table 4.1 Information about product 2

Itemid Userid Rating Day_Distance Date

2 2244178 4 969 2002-02-27

2 66286 4 931 2002-01-20

2 1 5 3358 2008-09-12

Where Day_Distance indicates the difference of the date of the rate to the date of our

database is created (which is 1999-07-04). The normal average rating score of item 2 is

4.333 but we want to calculate based on time decay. For this purpose, we first calculate

the acceleration of our dataset according to the currency value which is set to over 100

in this study. The equation of the acceleration is as follow:

 = 2 † t – t 2 (4.3)

It is assumed that the currency of any rating is from 1 to 100 and time is the difference

between the date of our database is created (which is the first day of our dataset

obtained, t2) and the date of the today (which is the last day of our dataset obtained, t1).

Thus, our value will be as follow:

ɑ = 2 * 100 † (2011-06-16 – 1999-07-04)
2
 = 1.049

Now we can calculate the rating score of item 2 based on the weighted average with the

currency of the rates. The equation will be as follow (4.4):

 =
∑ rn

u=1

∑ n
u=1

(4.4)

Where indicates product rating score, c is the currency, and r is the rating of each user

to the related product. Thus, we can calculate the weighted average of the ratings

according to the currency of each rating. The currency of each user‟s rating is as follow:

Table 4.2 Currency of each rating

Userid Rating Day Distance (t1–t2) Currency ((1/2) *α*𝘵2
)

2244178 4 969 (2002-02-27 – 1999-07-04) = (1/2)*1.049*(969)
2
=4,92

66286 4 931 (2002-01-20 – 1999-07-04) = (1/2)* 1.049*(931)
2
=4,54

1 5 3358 (2008-09-12 – 1999-07-04) = (1/2)* 1.049*(3358)
2
=59,14

Thus, the weighted average of the ratings based on time decay is as follow:

83

As you can see from the result, the rating score of the product has increased. The reason

is that user 1 gives “5” star to the item and the date of the rate is more current than

others. The other two users gave rates in 2002 but user 1‟s is in 2008. The difference in

the date of the rates is about 6 years. This time difference is really important to us when

we think about some e-commerce platforms such as hotels, restaurants, travel agencies,

and other service-based companies. There can be many reasons for the increase in the

rating score of the product 2. If we assume that the product 2 as a hotel, the owner of the

hotel may have changed or the hotel could be renovated or the hotel‟s service policy

may have changed, etc.

4.2.3 Calculation Rating Score of a Product Based on Helpfulness Votes

In order to compare our models (trust-based and time-based model) with traditional

models, here we want to calculate the rating score of products based on helpfulness vote

which is used in some e-commerce platforms.

Reviews are another quality assessment of products on e-commerce platforms especially

in making the customer‟s final decision. Some algorithms calculate the rating score of

items based on the number of reviews since the popularity of product increases by the

number of reviews. But because the majority of reviews are fake, weak, or meaningless

nowadays some e-commerce platforms use a voting system for the review rating such as

amazon, TripAdvisor, booking, etc. In such systems, customers can vote the reviews if

they want and, in this way, it is easier for the algorithms to determine the quality of the

reviews. In our study, in order to understand the effect of the reviews on the rating score

of items, we try to calculate the weighted rating score based on the helpfulness votes.

As seen in Table 4.3, the sixth column is the helpfulness vote of the review. We have

five helpfulness categories, and these are „Very Helpful‟, „Helpful‟, „Somewhat

Helpful‟, „Show‟, „Not Yet Rated‟.

84

4.2.4 Calculation Rating Score of a Product Based on True Bayesian Estimate

In order to compare our models (trust-based and time-based model) with traditional

models, here we want to calculate the rating score of products based on True Bayesian

Estimate (TBE) which is used in some e-commerce platforms.

To get healthy results when we calculate the average score of an item, it is important to

regard the number of rated users to that item. We know that the more experienced item

by users, the more known about the quality of that item for the other users. For instance,

for a movie rating, it is not the same for the same average rating for two movies which

one is rated by just two users and the other one rated by one million users. Of course,

knowing the quality of the second movie will be healthier because of rated by a higher

number of users. That‟s why web sites like IMDB use the TBE in order to assess the

quality of movies.

True Bayesian Estimate is commonly used for forecasting weighting value in order to

get logically accurate rating results. Actually, it is based on Bayesian Estimate but

specifically utilizes the number of users‟ rates and sometimes other features. Let‟s look

at the Formula (4.5):

 (

) (

)

(4.5)

Where:

WR = weighted average rating for the item,

v = number of users who rated the item,

m = minimum number of users to be calculated by the formula,

R = average rating of the item,

C = Average rating of all items by the formula.

4.3 Experimental Results

In this part, we carry out several experiments in order to verify the quality of the

proposed recommender model based on trust value and time decay. For this purpose, we

perform 3 different methods, i.e., product rating score based on trust values, time decay,

and both, and then we compare with a normal average score.

In this section, the dataset we use to evaluate the proposed algorithm is a real e-

commerce dataset extracted from Epinions in June 2011. It is available at

85

http://liris.cnrs.fr/red/. It is worked on two datasets. The first one contains information

about reviews from users on items and the second one contains trust relationships

between users.

Table 4.3 Appearance of the rating dataset

Review id User id Rating Item id Date Review rating

51902 182 4 43286 2001-06-21 Very Heplful

557406 236320 5 83979 2000-01-29 Helpful

557411 2377344 5 43032 2004-11-07 Somewhat Helpful

557415 237344 4 166791 2004-11-05 Show

510717 235 5 158368 2000-11-16 Not Yet Rated

The rating dataset contains review id, user id, item id, user‟s rating, between 1 and 5,

and the date of the review. There are 1127673 reviews which 113629 users have at last

one rating. Table 4.3 shows that the user 182 has a review with id 51902 and gives 4

points for the item 43286 on the date 2001-06-21. It is a .csv file and 62.0 Mb.

Table 4.4 Appearance of the trust network dataset

Trustor id Trustee id Value

22 434 1

The trust network dataset shows which user trust to whom, only positive values appear

in the dataset and there are 538392 trust values which 47522 users have at last one trust

relation. Table 4.4 shows the user 22 trusts the user 434. The value of 1 indicates that

the user trusts to another one. It is a .csv file and 10.2 Mb.

Our dataset contains 131228 users, 317775 items and 1127673 reviews, namely our

dataset has 0.003% sparsity. Our algorithms are executed on the Jupyter Notebook with

Python version 2.7.11.

4.3.1 Rating Score Based on Trust Values

Table 4.5 Trust values of some users

User id Trust Values

1 14.380358249

2 10.348435726

3 3.243809321

86

As we explained in Chapter 3, after applying the formula in (3.7) on our trust network

dataset we get the results as it is shown in Table 4.5. Approximately, user 1 has 14, user

2 has 10, user 3 has 3 trust value, and so on, respectively. According to the result, we

can say that user 1 is the most trustworthy user among the three users. As it is known,

most of the existing recommender algorithms calculate the product rating score by

calculating the average of all ratings of the users who rated the related item. But we

calculate a weighted average based on the trust value of each user who rated the

product. That is to say, user 1 affects the rating score of a product more than user 2 if

they both rated to the related product [46].

 =
∑ trn

u=1

∑ tn
u=1

(4.6)

Where indicates product rating score, 𝘵 is the trust value of the user, and r is the rating

of each user to the related product. Thus, we can calculate the weighted average of the

ratings according to the trust value of each user. Results are as follows:

Table 4.6 Average ratings based on trust values

item id Number of

users

Average of

ratings

Average of ratings based on

trust

1 2 4.0 4.0

2 3 4.333 4.965

3 9 4.555 4.117

According to Table 4.6, the rating score of item 1 does not change because of the given

the same rate by the rated users. But for item 2, there is a great difference between

average rating (AR) and weighted average rating based on trust values (WARTV). Most

probably one of the users who have a more trust value gives a rate to the item more than

average. The same for item 3 but this time one of the users who has a more trust value

gives a rate to the item less than average. Let‟s examine one of these items in detail.

Table 4.7 Trust values of each user who rated item 2

User id User’s rating for item 2 Trust values of Users

1 5 14.380358249

66286 4 0.325909815

244178 4 0.201582285

87

As seen in Table 4.7, user 1 has great trust value more than other users. Because of this

reason, even the other two users give 4 rates for item 2; item 2‟s rating score is almost 5.

Another important output of the research is that the average difference between AR and

WARTV decreases as the number of users increases. It means that items rated by too

few people are affected easier by the fake accounts but according to our dataset, rating

score of items rated by more than 100 people have almost the same rating score based

on trust values. Let us see the average difference between AR and WARTV when the

number of rated users increases on 1.000 items in our dataset.

Table 4.8 Average difference between AR and WARTV

Number of users Number of items Average Difference

2-10 339 0,32080

11-50 223 0,27434

>50 195 0,19845

As seen in Table 4.8, as the number of users who rated the products increases, the

average difference between AR and WARTV decreases. Also, the number of items

rated by more than 50 users decreases when we execute the algorithm on more than

1000 items. Of course, these results are just for 1000 items and when we increase the

items, the results emerge clearer. Actually, when we continue to calculate the rating

score of the products rated by more users, we see that the average difference between

AR and WARTV comes closer, almost 0.

4.3.2 Rating Score Based on Time Decay

Table 4.9Average ratings based on time decay

item id Number of users Average of ratings Weighted Average of ratings by TD

1 2 4.0 4.0

2 3 4.333 4.862

9 31 4.161 3.140

17 2 2.5 3.936

As seen in Table 4.9, after applying Formula (4.4) on our dataset, the rating score of

each item changes according to the ratings‟ date of users. Some rating scores of the

items increase while some decrease. That is to say, there is no regular structure.

88

4.3.3 Rating Score Based on Trust Values and Time Decay

In order to find rating score of products based on TV and TD, we apply Formula (4.7)

on our dataset.

 { (

∑ 𝘵

∑ 𝘵

) (

∑

∑

)}

(4.7)

Dividing one-half means that each method will affect the results equally.

Table 4.10 Average ratings based an time-decay and trust value

item id Number of users Average ratings With TV With TD With TV and TD

1 2 4.0 4.0 4.0 4.0

2 3 4.333 4.965 4.862 4.913

9 31 4.161 4.388 3.140 3.764

17 2 2.5 3.707 3.936 3.821

As seen in Table 4.10, the weighted average rating score of products based on both

methods is a balance between two other methods. This may be because of some users‟

having a high trust value, but their comments are too old or vice versa.

4.3.4 Rating Score Based on Helpfulness Votes

When we calculate a rating score of a product, we get all the ratings with „review rating‟

for that product. Then, in order to find the weighted average rating, we multiply each

rating of that product with the review rating. Namely, if the rating has a „very helpful‟

review rating, we multiply the rating with 5 or if the rating has a „helpful‟ review rating,

we multiply the rating with 4 and so on. The output of some items‟ rating score can be

seen in Table 4.11.

Table 4.11 Average rating based on helpfulness votes

Item id Number of users Average rating Average rating based on helpfulness votes

3 9 4.555 4.523

9 31 4.161 4.21

12 3 3.666 3.800

15 34 4.323 4.307

89

As seen in Table 4.11, there is no regular decrease or increase in value between ARS

and weighted average rating based on helpfulness votes (WARHV). In other words,

while the rating score of some items increase, other decreases.

4.3.5 Rating Score Based on True Bayesian Estimate

We execute the algorithm according to the Formula (4.5) to see the difference average

and weighted average based on True Bayesian Estimate. We got the „m‟ value as 1 and

the average („C‟) of all products of this category was equal to „3.68863983712‟.

Table 4.12 Average rating based on True Bayesian Estimate

Item id Number of users Average rating Average rating based on TBE

32820 1 5.0 4.344

218694 2 3.0 3.229

61559 66 4.424 4.413

34328 99 4.040 4.036

As seen on the Table 4.12, average rating results come close the general average („C‟)

because of the formula. That is to say, if the average score of an item is less than

average score of all items (which is overall average and equal to 3.688), the result is

drawn towards the overall average because of the formula. Similarly, if it is higher than

the general average, the result is drawn down.

4.3.6 Comparison of all Weighted Averages with each other

Table 4.13 Comparison the difference between average and all other weighted averages

Number of users

(Range)

Number

of items

Trust

Values

Time

Decay

Helpfulness

Votes

True Bayesian

Estimate

1-5 249 0.302 0.163 0.040 0.004

5-10 90 0.373 0.228 0.035 0.016

10-20 100 0.269 0.244 0.043 0.000

20-50 123 0.278 0.230 0.035 0.006

50-100 83 0.248 0.227 0.022 0.000

100-200 54 0.174 0.240 0.020 0.003

>200 36 0.125 0.241 0.012 0.002

90

According to the results in Table 4.13, it seems the True Bayesian Estimate has the best

results. But if we take into account the formula of TBE, the mentality of the formula is

already pulling the rates of the items to the average. Because of this reason, the

difference between the average and TBE is almost close to zero. But when we think of

the increasing range, it seems not regular. Namely, when the range goes up the

difference is not close to zero. It changes range to range. If you realized, Helpfulness

Votes is the better than True Bayesian Estimate if we take into account the increasing

range. Actually, this has not surprised us because of getting the help of people but it is

too hard to get helping of people for voting the reviews. If you look at the Time decay

results, we see there is no regular motion. Time Decay weighted average totally depends

on the time of each user‟s rating date. Indeed, Time Decay weighted average would be

better for some types of e-commerce platforms especially hotels, websites and other

service-based platforms because of their nature. The weighted average based on trust

values is also almost regular. Its results come to close zero according to the increasing

range. It differs from other weighted averages as Time Decay.

4.4 Conclusion

In this chapter, we tried to improve the quality of the product rating score based on the

trust values of users and time decay of the date of users‟ ratings. First, we introduce the

concept of PageRank by giving its mathematical definition and redefine for revealing

the relationship between users in Chapter 3. We tried to reduce the effects of fake

accounts on the rating score of products by using the trust value of each user. As seen in

Table 4.8, the normal average rating score of products comes close to the trust values

based average as the number of users who rated the related products increases. This

result shows us that our algorithm is on the right track. Then, we introduce the concept

of time decay by giving its mathematical definition and redefine for reducing the effects

of old ratings when determining the rating score of products. After that, we apply both

methods to the dataset. In this way, we break down the power of one method on the

results since a product can be rated by trustful users, but their ratings‟ date may be too

old or vice versa. But if a product is rated by trustful users and their ratings‟ date is up

to date enough, we can say that the product gets the value it deserves. Lastly, we

compared average ratings with all weighted average. According to the results, Due to

91

the structure of the formula, the True Bayesian Estimate seems the best method.

However, when we consider the products one by one, some products get a high rating

score while others get low, but this is due to the structure of the formula, not the quality

of the product. Apart from that, finding rating score of an item based on helpfulness

votes gives good results, but this method requires extra user assistance and there is not

enough data for many e-commerce platforms.

92

5. THE IMPACT OF TEXT PREPROCESSING ON THE

PREDICTION OF REVIEW RATINGS

With the increase of e-commerce platforms and online applications, businessmen are

looking to have a rating and review system through which they can easily reveal the

feelings of customers related to their products and services. It is undeniable from the

statistics that online ratings and reviews charm new customers as well as increase sales

by means of providing confidence, ratification, opinions, comparisons, merchant

credibility, etc. Although considerable research has been devoted to the sentiment

analysis for review classification, rather less attention has been paid to the text

preprocessing which is a crucial step in opinion mining especially if convenient

preprocessing strategies are found out to increase the classification accuracy. In this

chapter, we concentrate on the impact of simple text preprocessing decisions in order to

predict fine-grained review rating stars whereas the majority of previous works focused

on the binary distinction of positive vs. negative. Therefore, the aim of this section is to

analyze preprocessing techniques and their influence, at the same time explain the

interesting observations and results on the performance of a five class-based review

rating classifier.

Especially over the past decade, fast-growing e-commerce platforms have begun to

dominate the entire business world. Thanks to the many options provided by these

platforms, customers started to feel more comfortable than traditional commerce by

finding experienced products, which are reviewed and rated by too many people who

are expressing and sharing their own feelings and thoughts about any products. Thus,

customers‟ opinions began to play a major role in purchasing decisions, business

intelligence, and keeping any product or service available. Many studies and surveys

conducted by companies and researches have proved this situation that sentiment

analysis is a constantly growing area in recent years [70]. Holleschovsky and

Constantinides [6] show that 98% of the sample research population read reviews

before making a purchase and 60% of them read often or quite often. Last

ReviewTrakers online survey shows that 6 out of 10 consumers look to Google for

checking online reviews before visiting a business [71]. Tripadvisor indicates that

travelers rely on reviews and opinions from other travelers before booking their trip

93

[72]. Therefore, the field of sentiment analysis, which is also called opinion mining

suddenly, became a popular research field because of providing opportunities to the

companies wanting to know the pros and cons of their products or services to identify

new strategies as well as make crucial decisions.

Specifically, sentiment analysis in reviews is the process of analyzing, monitoring, and

categorizing thoughts, opinions, or feelings from an unstructured text about a product or

a service, especially in e-commerce platforms. Namely, it works on unstructured review

text to find useful information for business intelligence. There are a couple of steps for

the text classification such as preprocessing, feature extraction, feature selection, and

classification.

Although sentiment analysis is a relatively new area of computer science, there are

considerable researches except for the importance of text preprocessing on classification

performance. Therefore, in this section, we specifically focus on the role of various text-

preprocessing stages which are the initial processes in sentiment analysis to demonstrate

the effects by experimental results on the performance of a five class-based review

rating classifier. Generally, preprocessing consists of some methods such as

tokenization, lemmatization, stemming, lowercase conversion, replacing negation,

reverting repeated letters, expanding acronym, removing stopwords, numbers, URLs,

punctuations and special characters, etc.

There are few types of research on predicting fine-grained rating stars in review texts

which is a challenging task because of the low probability of estimation and use of

similar words for closed classes by users. Thus, it is important to know which

preprocessing method will increase the classification accuracy and how and why it

affects the results.

The rest of this chapter is organized as follows. After the introduction, Section 5.1

presents some of the recent works especially focused on preprocessing techniques for

text classification. In Section 5.2, we explain some details about each preprocessing

method and give some specific examples about the related area. Section 5.3 introduces a

real-life dataset used in our experiment and Section 5.4 reports some experimental

outcomes and evaluates the results. Finally, we conclude and discuss in Section 5.5.

94

5.1 Related Work

After the sentiment analysis is really drawn a great deal of attention among data mining

researches in the last decades due to the charming commercial returns, researches

related to this field started to increase, particularly on classification models aiming to

improve the sentiment classification accuracy. In this section, we specifically focus on

some recent related researches which deal with different types of preprocessing methods

to improve the performance of a classifier.

When we look at the recent studies in general, some of them indicate that certain

preprocessing methods have a great effect on the performance of classifiers while some

of them state that they are only slightly better or do not show any effects or even worse.

Below is a close look at some of these studies.

Sharma et al. [73] investigate the impact of preprocessing on four different Twitter text

data i.e. sports, politics, entertainment, and finance. According to the results, removing

stopwords, URL links, punctuations, and converting lowercase increase the

classification accuracy of the Twitter sample data.

Ghag et al. [74] investigate the impact of removing stopwords on several sentiment

classification models using the movie document dataset. According to the results, while

removing stopwords has a great effect on the classification accuracy for the traditional

sentiment classifier, there is no significant change for the other classifiers such as the

Average Relative Term Frequency Sentiment Classifier, Sentiment Term Frequency,

Inverse Document Frequency, and Relative Term Frequency Sentiment Classifier.

Jianqiang and Xiaolin [75] investigate the impacts of preprocessing techniques for the

performance of sentiment classification on five Twitter datasets. According to the

experimental results, while removing URLs, numbers and stopwords have a little effect,

expanding acronyms and replacing negation have a huge impact on the classification

accuracy and F1 measure for the classifying Twitter texts.

Srividhya and Anitha [76] investigate some preprocessing techniques whether they have

an impact on the classification accuracy on the Reuters dataset. According to the results,

removing stopwords, stemming and TF/IDF have a great effect on the performance of

classification.

Camacho-Collados and Pilehvar [77] study on the role of simple pre-processing

techniques on the performance of Neural Text Classifier using tokenizing, lemmatizing,

95

lowercasing and multi-word grouping. According to the research, using simple

tokenization affects more than complex preprocessing techniques such as lemmatization

or multi-grouping. The research also shows that the effects of pre-processing changes

according to the size of the training data used.

Ghag et al. [78] work on some pre-processing techniques for optimizing sentiment

classification. For this purpose, they focus on some rules to handle apostrophe and

punctuation symbols, unlike traditional pre-processing techniques. According to the

results of the research, the accuracy of classification increases by the proposed pre-

processed data, and the elimination of the stopwords decreases, unlike traditional

sentiment classification.

Gull et al. [79] use pre-processing techniques in order to analyze useful political

structured content. For this purpose, they get the data from Twitter, and then they clean

tweets especially useless emoticons, punctuations and URL links using some pre-

processing techniques. After that, they extract hash tags and change of direction

indicators on the selected parsed tweets for classification. According to the results,

SVM is better than Naïve Bayes for tweet classification.

Jianqiang [80] works on the preprocessing techniques in order to show their effects on

Twitter Sentiment Analysis especially cleaning tweets from URL links, stopwords,

repeated letters, negation, acronym, and numbers. According to the authors, some pre-

processing techniques hardly change the accuracy of sentiment classification such as

removing URL links, numbers, and stopwords.

Safeek and Kalideen [81] work on spell correction and emoticon analysis in order to get

suitable data for Sentiment Analysis on Facebook data. According to the authors,

writing “happppyyyyy” is more strength than “happy”. Namely strength of the word is

defined how many times a character occurs in a word.

Vijayarani et al. [82] explain various pre-processing techniques in their research

especially stopwords elimination, stopwords removal methods and stemming algorithms

for classification processes such as truncating methods, statistical methods, and mix

methods.

Hemalatha et al. [83] apply some preprocessing techniques to be ready for giving a text

as an input to any Machine Learning algorithms. For this purpose, they remove URLs,

96

special characters, question words and repeated characters in order to help a given

document to be ready as an input into any Machine Learning algorithms.

To improve mining process, Katariya and Chaudhari [84] suggest using the text data

with the use of side information such as web logs, links in the document and meta-data.

Therefore, they get text documents from different sources and then they apply

preprocessing techniques on the obtained information. The research shows that the

domain specific application is more proper for text mining.

Singh and Kumari [85] study on the effects of preprocessing and normalization on the

short text like tweets. They especially evaluate the effects of slang words in a tweet to

show how they change the accuracy for a better sentiment classification.

Nayak et al. [86] work on two basic stemming algorithms to reveal the pros and cons of

each of them. According to the authors, MF Porter‟s algorithm leads to a large degree,

therefore it finds incorrect stem whereas the Krovetz algorithm is ineffective with a

large document.

Krouska at al. [87] execute some preprocessing techniques on three different Twitter

datasets. According to the results, using appropriate feature selection and representation

of the dataset may increase the classification accuracy in Sentiment Analysis such as 1-

to-3 grams perform better than other representations and feature extraction.

Zin at al. [88] show the effects of various preprocessing strategies such as stopwords,

numbers, punctuations, etc. with experimental results on online movie reviews. Their

study proved that preprocessing affects the performance of the classification in a good

way especially on the SVM with non-linear kernel.

Pomikálek and Řehů ek [89] study on preprocessing parameters such as stopwords list

selection, stemmer selection, and tokenizers in order to compare them on three text data

sets and they show how these parameters affect results. According to their results, the

term weightier “ntc” (tf.idf) works best with the shorter documents whereas term

frequency “atc” performs better with longer documents.

Schofield et al. [90]investigate the effects of preprocessing in sentiment classification.

According to the results, the influence of many common preprocessing techniques such

as stemming, removing stopwords have little effect or even negative effects. They

suggest that instead of applying the common preprocessing techniques on the text data,

it can be more efficient to decide to preprocess techniques according to the application.

97

Fan and Khademi [91] concentrate on the effects of top frequent words in raw text

reviews and top frequent words/adjectives after part of speech analysis results.

According to the results, raw data has almost equal power for different feature

generation methods whereas determining words and adjectives after part of speech can

remove informative features out.

There are not only researches about text preprocessing in English but also other

languages. One of them is the research of Duwairi and El-Orfali [92] who investigated

the effects of text preprocessing methods on the classifiers‟ accuracy in the Arabic

language. According to the results, stemming and removing stopwords affect the

performance of the classification badly for the movie review texts while slightly

improve for the political texts. The other one is Saad‟s research [93], which investigates

the effects of text preprocessing on Arabic text classification applying term weighting

schemes, morphological analysis, namely stemming and light stemming. According to

the experimental results, light stemming with term pruning works very well for feature

reduction and weighting schemes affect the accuracy of the distance-based classifier. As

in the Arabic language, there are some challenges in some languages because of having

very complex morphology as we compare to the English language. For this reason,

preprocessing is very important for text mining. One another study in a language other

than English is Uysal and Gunal‟s [94] research which shows the effects of

preprocessing techniques on two different text domains and languages, namely Turkish

and English. For this purpose, they use all potential combinations of preprocessing

strategies by thinking of several ways. According to the results, using proper

combinations of preprocessing strategies provide successful accuracy on text

classification depending on domains and languages studied.

5.2 Prepare Background and Context

Online review websites play a vital role in all aspects of the business world especially

with the increase in e-commerce platforms. Nowadays, most of the review-based e-

commerce websites like amazon.com, TripAdvisor, booking.com, alibaba.com, etc., are

extensively dominate the market. The best parts of these kinds of platforms are that

customers can comment on products, rate products, and can easily reach to the other

reviews about products written by other users. For this reason, it is important to analyze

98

reviews and ratings in order to determine new strategies and provide better service to

customers.

Preprocessing is the first step of the sentiment analysis after getting a dataset. We apply

this process to clean and prepare texts for sentiment classification because texts

particularly written by users are unstructured. Namely, unstructured texts usually have

lots of noisy, unnecessary, useless information such as repeated words, numbers,

punctuations, Html tags, URLs, scripts, advertisements, stopwords, abbreviations,

emoticons, slang words, misspelling, shortcuts, specific terminology, etc. Because of

treating each word as a dimension in the feature set, having all unnecessary words cause

the models to be confused and loss of time. On the other hand, cleaning the text from

noisy data may increase the performance of classifiers as well as accelerates the

classification process.

Even we can‟t show all the details in this research due to the space limitation,

preprocessing contains very different steps such as tokenization, removing emoticons,

punctuations, URLs, stopwords elimination, stemming, lemmatization, expanding

abbreviation, lowercasing, multiword grouping, word correction, the strength of words,

weighting scheme and removing common words. Although there have been remarkable

researches on this field, finding the best preprocessing method is still an open issue.

Researchers show that the best preprocessing methods change according to the

application. Therefore, in this study, we concentrate on review texts specifically related

to restaurants. Below are some of these preprocessing methods step by step.

5.2.1 Tokenization

Tokenization can be defined as splitting up a text into the desired list of practical pieces

called tokens such as words, phrases, symbols, or other units, or even whole sentences

in order to work on the text more effectively. It is considered an important process of

Natural Language Processing because of being an input for the next processes. We use

whitespace, punctuations, and sometimes line breaks to get tokens. In most cases, we

use whitespace.

There are a couple of tokenizers in Natural Language Toolkit (nltk) which is a platform

to work on human language data. One of them is the Regexp tokenizer. This tokenizer

split a sentence using regular expression for matching tokens. For instance, if we use

99

RegexpTokenizer(“[/w`]+”) for a sentence like, “We‟ll go on a picnic tomorrow.”. We

will get a result like: [“We”, “ll”, “go”, “on”, “a”, “picnic”, “tomorrow”].

The second one is TreebankWord tokenizer. This tokenizer split the sentence according

to the regular expression but treats the punctuations as a word, so it splits commas,

apostrophes, quotation marks, etc. For instance, if we use TreebankWordTokenizer() for

the same sentence above, we will get a result like: [“We”, “ ‟ ”, “ll”, “go”, “on”, “a”,

“picnic”, “tomorrow”, “.”].

The third one is WordPunct tokenizer. This tokenizer split the sentence according to

this \w+|[^\w\s]+ regular expression. For instance, if we use WordPunctTokenizer() for

the same sentence above, we will get a result like, [“We”, “ ‟ ”, “ll”, “go”, “on”, “a”,

“picnic”, “tomorrow”, “.”].

As it is seen we got the same result as TreebankWord tokenizer, of course for the given

sentence. There are more tokenizers in nltk tool to use according to the need.

5.2.2 Effect of Emoticons, Removing Punctuation and Urls

Most of the time, it does not make sense to treat emoticons and punctuations as a token

for the sentiment classification. Thus, removing emoticons (e.g. :-), :), :-), :-(are

frequently used in social media and messaging applications), and punctuations

(^!”#$%`()*+-/:;<=>?@[\\]|~{}) increase the accuracy of the classification because of

being treated as a dimension in the feature set for each word. But sometimes especially

emoticons can have a slightly good effect on the sentiment score according to the

searching area [95]. The research in [96] shows that the importance of emoticons on

polarity sentiment classification especially in social networks is undeniable and their

popularity is getting higher and higher.

In most literature, URLs do not have any information to analyze regarding sentiments in

texts. For instance, when considering the following sentence, “I hate all those disgusting

meals from www.mydeliciousmeals.com if you want better, you can click

www.besteverdinner.com” actually the review is negative but because of the words in

links, it may become a positive review. Thus, researchers want to remove URLs from

texts to avoid such situations. But for some specific application URLs can be effective

for providing insights about the text in a way that is not easily obtainable from the

context.

100

5.2.3 Expanding Abbreviation and Acronyms

We can say that abbreviation is a shortened form of words and most of the time, their

full meaning is given at the first used place. We widely use the abbreviation to avoid

repetition of words that are used too many times in a text and to save space. Usually,

they are formed by getting the first few letters such as Aug. for August, CA. for

California, univ. for university, etc. Sometimes they are formed by omitting letters such

as TX. for Texas, St. for Street, Rd. for road, Dr. for Doctor, etc.

The difference between abbreviation and acronym is that acronyms are formed by

getting the first letters of each word of the phrase such as A.S.A.P for as soon as

possible, PA. Personal Assistant, Lol. for Laugh out loud, TY. for Thank you, NP. for

No problem, FBI. for the Federal Bureau of Investigation, AI. for Artificial Intelligence,

etc.

Expanding abbreviations and acronyms are important to understand the contexts in text

mining. Compared to the past, the problem of abbreviation and acronym has attracted

relatively more attention in text mining especially after increasing the number of

messaging applications such as WhatsApp, Viber, Tango, Line, etc. and social media

platforms such as Facebook, Twitter, Instagram, Snapchat, etc. For instance, the

acronyms such as Omg (Oh my God), Lol (Laughing out Loud), 2moro (Tomorrow),

B3 (Blah, Blah, Blah), ASL (Age / Sex / Location), F2F (Face to Face), BTW (By the

Way), XOXOXOX (Hugs, kisses,…), PAL (Parents are listening), BRB (Be right back)

are just some of them and they are used too much in daily life conversations. The ability

to expand abbreviations and acronyms is crucial for many natural language processing

applications and to find out the information contained in documents for information

retrieval [97].

5.2.4 Word Correction and Multiword Expressions

Word correction which is also called misspelling checking is a method that identifies

misspelled words in order to change with their most possible similar words. For this

purpose, the misspelled word is checked whether it is presented in the dictionary or not.

If it is not, the algorithm tries to provide the best similar word of it [98]. There are some

types of misspelling such as keyboard errors (“yur” – “your”, “allways” – “always”,

101

etc.), cognitive errors (“piece”–“peice”, “sipritual”-“spiritual”, “freindly”-“friendly”

etc.), phonetic errors (“calander”-“calender”, “katalog”-“catalog”, etc.), etc.

Bertoldi et al. [99] empirically work on the effects of misspelled words to show the

performance of the Machine Translation. According to the research results, performance

is related to the noise rate and the noise source affects the capability of Machine

Translation.

There are some tools (e.g. nltk, word2vec, python grammar-check) for checking the

misspelled words in texts according to the different languages. Some of them provide

the best option, while others offer more than one alternative to the users classifying by

types of misspelling. And some of them also check grammatical mistakes by examining

everything that forms incorrect use of a person to subject-verb agreement.

Another important challenge in Natural Language Processing is multiword expressions

which are generally difficult to trace from their individual words. They can be

metaphorical expressions such as “killing time”, “broke someone heart”, “time is a

thief”, etc. or verbal idioms such as “give away”, “made out”, “take off”, “come along

with”, etc. or phrasal verbs or stereotyped comparisons such “as nice as pie”, “swear

like a trooper”, “cold as stone”, etc. [100], or some well-known group of words such as

“United Kingdom”, “Galaxy note 9”, “Citizen of Humanity”, etc. and so on. Thus,

tokenizing such multiword expressions for text mining causes words to lose their

meaning in the sentences. Consequently, getting these types of multiword as a single

word can increase the performance of the classifier. There are some studies specifically

on this topic [77], [100], [101] to show their effects on text mining. The study [101]

investigates two empirical methods to integrate multiword expressions in a real

constituency-parsing context.

5.2.5 Stopwords Elimination

In general, stopwords mean the most common words in a language, for us in English

such as “and”, “an”, “at”, etc. which are considered unnecessary and useless in text

mining applications. These words can be pronouns (I, me, my, mine, myself, etc.),

prepositions (on, in, next to, behind, under, around, etc.), conjunctions (once, until,

when, why, since, after, etc.), articles (a, an, the), auxiliary verbs (be, do, have, will,

can, may, etc.), etc. Most of the studies show that stopwords should be removed from

102

the corpus without losing valuable information before the feature selection because of

their negative effects on the performance of the sentiment classifier. But sometimes

removing the stopwords might reduce the accuracy of classification such as documents

or texts related to prepositions, conjunctions, auxiliary verbs, etc. So, removing

stopwords can make the matching impossible but as we said, generally due to reducing

the size of the feature set comparatively, it has a good effect in text mining. Normally,

researchers use compiled lists (Rainbow list, Van stoplist, Smart stopwords list, etc.)

provided by text mining tools but sometimes researchers create and then use those

predefined lists according to their application. In this study, we use nltk tools but also,

we modified the stopwords list according to our text structure.

There are some methods to eliminate stopwords from a text. The basic one is using pre-

compiled lists as we mentioned. The other one is finding the most frequent words which

are not needed for matching in the texts. For instance, if you study on restaurants

reviews, the word “food” or “meal” generally will not give meaningful results because

these words are used in both negative and positive reviews. Maybe these words can be

used with the combination of other words, namely bigrams or Ngrams combinations

such as “terrible tasting”, “food tastes bad”, “never had a bad meal”, etc. Actually, this

is another preprocessing method but for some researchers, it can be under the branch of

stopwords elimination. One another method is selecting words that occurred rarely and

not related to your texts. There are some additional methods that are examined and

studied.

5.2.6 Stemming

The aim of the stemming is to take words in a way in which they occur in a text so that

reduce them to root forms by removing of their affixes such as prefixes (cutting off the

beginning of the word) and suffixes (cutting off the end of the word) according to some

grammatical rules. In this way, they can be used as an indexing unit in the related

research area. Although stemming algorithms in most application tools are commonly

developed for English, there is a need for appropriate editing according to the language

being studied because of differences in language structure. Nowadays, many different

algorithms can be also used for some other languages.

103

Stemming is applied for a couple of reasons. One of them is to reduce the derivatives of

the same root words to the common representations to increase the performance of

classification. One of the other reasons is to reduce the size of the feature set so that the

number of dimensions is reduced.

We can apply the stemming to derivatives of the word such as number (cat, cats), tense

(play, played, playing), gender (actor, actress), pronouns (I, me, my, mine), person

(hate, hates), aspect (become, became), etc. For instance, the words select, selected,

selecting, selects all can be stemmed to the word “select”. As it is seen, we cut off the

end of the words which are semantically related to their root form. In this way, we

reduce the number of words in memory space and save time.

When applying stemmer, we should consider some points which are important and

required for a powerful natural language processing application. One of them is

overstemming which occurs when the words have the same root but not having the same

meaning. For example, “general” and “generation” can have the same root “gener”.

Similarly, “organization” and “organs” have the same root “organ” and this situation

decreases the accuracy of the classifier. One another is understemming which occurs in

some stemmer algorithms. For example, the stemmer takes the words “cooks” and

“cooked” and reduces to “cook”, while “cookery” can be reduced to “cookeri” or

“absorbtion” and “absorbing” are stemmed to “absorpt” and “absorb”. This causes

corresponding documents to not be returned.

Natural Language Toolkit platform uses a couple of stemmers such as PorterStemmer,

LancasterStemmer, RegexpStemmer, Snowball Stemmer, etc. For example, while the

PorterStemmer reduces the word “cookery” to “cookeri”, LancasterStemmer reduces to

“cookery”. But if you want to use RegexpStemmer, you should determine your affix.

For instance, when you use RegexpStemmer(„ing‟), it brings the word “cooking” as

“cook” but you need to be careful in case the word has a prefix such as the word

“ingrain”, it will be returned as “rain”.

5.2.7 Lemmatization

Both stemming and lemmatization are language preprocessing methods to provide that

different versions of a word are not left out. Even they are closely related to each other,

lemmatization is more complex than stemming because it reduces derivationally related

104

word form to its dictionary form categorized by a part of speech as well as by inflected

form. Namely, stemming is applied without checking the position of the word in the

sentence. So, if the user queries the plural and singular form of a word such as “mice”

and “mouse” when the stemmer brings them as “mice”/“mic” and “mous”, the

lemmatization brings “mice” and “mouse” both as “mouse”. By the time, for

lemmatization we need to indicate the position of the word otherwise lemmatization

gets the position of the word as “noun” by default. For example, when you use wordnet

lemmatizer like, wordnet_lemmatizer.lemmatize(„are‟). Lemmatizer will bring it as

“are”. For that, we should write as, Wordnet_lemmatizer.lemmatize(„are‟, pos=‟v‟).

Then, lemmatizer will bring it as “be”. Let‟s look at some words results after executing

lemmatization.

Table 5.1 Difference between stemmer and lemmatizer

Words Porter

Stemmer

WordNet Lemmatization

(pos=verb)

WordNet Lemmatization

(pos=noun)

Constructing construct construct constructing

Extracts extract extract extract

Decided decid decide decided

Took Took take took

Information inform information information

Clearly clearli clearly clearly

Is Is be Is

As it is seen in Table 5.1, according to our indication lemmatizer finds a base form of

the words. Namely, lemmatizing means that converting the word to its dictionary form

or morphologically related form. For example, for the sentence like, "I loved cats, dogs,

frogs, and geese secretly". Lemmatizer will bring it as, “i love cat dog frog and goose

secretly”. We informed the lemma function that “love” is a verb, “cats”, “dogs”,

“frogs”, “geese” are noun and “secretly” is an adverb, and then we get the above result.

Whereas if we use stemming for the sentence, it will return as, “I lov cat dog frog gees

secret”. Namely, stemming returns the root of the word whereas lemmatizing returns

dictionary form according to the position of the word in the sentence.

105

5.2.8 Lowercasing

Lowercasing is one of the first stages of preprocessing for text mining. All letters are

converted to the lowercase to prevent case sensitivity. In this way, we can increase the

performance of classifiers without considering the non-consistence of texts. Even

though this simple preprocessing technique provides the easiest and important help to

the classification, sometimes doing this might create some problems by increasing

ambiguity. For example, Turkey is a country, but turkey is an animal or Opera is a

browser, but opera is a musical play, so getting words in the lower case would be

considered as identical entities for these types of words in text classification.

5.2.9 Removing Common Words

Removal of the common words does not guarantee that the accuracy of the classifier

will be higher, but for most applications, it gives very good results. Common words and

stopwords should not be confused with each other. Stopwords can be most common

words but when we say common words here it means that they are found in almost each

different class documents related to the studied field. So stopwords are almost the same

for all studied field while common words are totally different for each studied field. For

instance, the words “meal”, “dinner”, and “menu” can be the most common words for a

restaurant corpus while the words “room”, “reception”, “bed” can be the most common

words for a hotel corpus. As you realize, these words are not enough to find the

differences between hotel or restaurant rating classes.

5.2.10 N-grams

Recently, many types of research on text mining and natural language processing have

focused on Ngram. According to Ngram, it is not a coincidence that the words in a text

are found more than once together. In other words, these words together give us a clue

about the text summarization. In particular, the surprising effect of the text classification

has been proven by many types of research. Of course, N-grams‟s effect changes from

research to research. For instance, according to the results of [102], Ngram works better

on the shorter texts since the presence of words in shorter texts are more important than

106

longer texts. Namely, the value of a word loses its significance or value in a long text.

Anyway, so what exactly do we mean by Ngram? Let‟s explain the Ngram with an

example. If we want to use bigram for a sentence like, "An n-gram is a contiguous

sequence of words in a text". After cleaning from the stopwords, the output of the

program will be as, [(„n-gram‟, „contiguous‟), („contiguous‟, „sequence‟), („sequence‟,

„words‟), („words‟, „text‟)].

As it is seen, Ngram takes each word with the adjacent word. According to the

frequency of these adjacent words, the content of the text is estimated, and the

classification is made according to the result. If we had done the same example for

trigram, we would get an output like, [(„n-gram‟, „contiguous‟, „sequence‟),

(„contiguous‟, „sequence‟, „words‟), („sequence‟, „words‟, „text‟)]. As it is seen, at this

time Ngram takes three consecutive words. And again, according to the frequency of

these adjacent words, the class of the text is decided. According to the studied field, the

number of the N can be changed but, in this study, we use the combinations of the

Ngrams from one to three.

5.3 Dataset Description

In this paper, the dataset we use to evaluate the preprocessing methods is a real e-

commerce dataset extracted from Yelp in June 2018. It is available at

https://www.yelp.com/dataset. We work on two datasets. The first one contains full

review text data including the User_id that wrote the review and the Business_id the

review is written for and the second one contains business data including location data,

attributes, and categories.

Table 5.2 Appearance of review dataset

Business_id Date Review id Star Text User_id

9yKzy… 2011-01-26 fWKv… 5
My wife took me here on
my birthday for breakf...

rLtl8Z…

The review dataset contains Business_id, the date of the review, Review_id, star, review

text, and User_id. There are 229907 reviews, from which 43873 users have at last one

review. Star column contains values ranging from 1 to 5. The value of “1” indicates that

the user does not like the business at all, while the value of “5” indicates that he likes it

107

very much. If the ratings column contains a value of “0”, it indicates that the relevant

user did not score the relevant product. The star column consists of 33.141% 5 star,

34.744% 4 star, 15.381% 3 star, 9.115% 2 star, 7.619% 1 star, respectively. Table 5.2

shows that the user rLtl8Z… has a review with id fWKv… and gives 5 stars for the

business 9yKzy… on the date 2011-01-26. It is a .json file and 206.0 Mb.

Table 5.3 Appearance of business dataset

Business_id Categories Address Name Review_count Star

qarob…
[Sandwiches,

Restaurants]

891 E Baseline

Rd\nSuite

102\nGilbert, AZ

85233

Jersey

Mike's Subs
10

3.5

The business dataset shows business location data, category, its name, how many

reviews it gets from users, and its average star rating. There are 11527 businesses which

have at last one review. There are 509 different categories from 61 different cities.

11.034% of businesses 5 star, 15.151% 4.5 star, 23.178% 4 star, 22.874% 3.5 star,

13.097% 3 star, 8.763% 2.5 star, 3.493% 2 star, 1.474% 1.5 star and 0.936% received 1

star. 14.577% of the businesses are restaurants, 5.442% shopping, 5.231% food, 2.473%

Beauty & Spas, 2.072% Nigthlife and the rest are other categories, each below 2%.

Table 5.3 shows the business qarob… which reviewed by 10 people and got 3.5 stars on

average and it is in the restaurant category. It is a .json file and 4.08 Mb. Our algorithms

are executed on the Jupyter Notebook with Python version 3.6.5.

5.4 Experimental Results

In this section, we carry out several experiments in order to verify the effects of

preprocessing methods on the performance of the classifier. For this purpose, we

perform ten different methods, i.e., tokenization, effects of emoticons, removing

punctuation and URLs, expanding abbreviations and acronyms, word correction and

multiword expressions, stopwords elimination, stemming, lemmatization, lowercasing,

removing common words and lastly Ngrams effects.

In order to get meaningful results, we created our feature set on 10000 restaurant

reviews. Our aim is to analyze the effects of preprocessing methods when finding the

star ratings of restaurants by analyzing the reviews. Star ratings range from 1 to 5. As

108

we mentioned above, the biggest challenge is to find the star rating of close categories

because of using very similar words.

We use K Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF),

Logistic Regression (LR), Stochastic Gradients Descent (SGD), Naïve Bayes Classifier

(NB), Support Vector Machine (SVM) classifiers of nltk to get accuracy results for all

types of preprocessing methods. Over the created feature set, 10000 reviews are applied

for training the classifier (Classifiers are applied for each rating category in equal

number, namely, 2000 training reviews are selected from each rating category.) and

1000 reviews are applied for testing (200 testing reviews are selected from each rating

category) in order to see the performance of the classifier.

To get stable results from the effects of a random selection of reviews, we run each

experiment by selecting 20 times shuffled reviews for each preprocessing method.

Namely, for each run, a different subset of reviews is selected from the pool of all

available five rating categories.

5.4.1 Performance of the Classifiers Based on Different Tokenizers

In this part, we report the results obtained after tokenizing the text of the reviews as we

mentioned above. In addition to those techniques, we also used WhitespaceTokenizer

which is simply used for tokenizing the text according to the white space between the

words. WhitespaceTokenizer method can be considered as the result without any

preprocessing. In other words, at least this basic tokenizer form must be applied to the

data before the other preprocessing method can be performed. Therefore, for the rest of

the preprocessing methods, we choose space tokenizer to create a dictionary with the 1-

to-3 n-grams in order to get directly simple effects of the methods.

Table 5.4 Performance of the classifier based on different tokenizers

Tokenizer KNN DT RF LR SGD NB SVM

WhitespaceTokenizer() –

Base Form

0.260 0.287 0.374 0.476 0.446 0.491 0.444

RegexpTokenizer(“[w‟]+”) 0.284 0.318 0.404 0.513 0.486 0.512 0.478

TreebankWordTokenizer() 0.281 0.303 0.366 0.510 0.485 0.518 0.465

WordPuncTokenizer() 0.266 0.338 0.403 0.503 0.478 0.518 0.476

109

As shown in Table 5.4 after running the methods 20 times shuffled reviews, there is no

significant difference between RegexpTokenizer(“[\w']+”), TreebankWordTokenizer(),

and WordPunctTokenizer() tokenizers, all the tokenizers gave almost the same results.

But we should also indicate that we observed the WhitespaceTokenizer() gives a little

bit worse results on general average all the times rather than others when we run the

program multiple times.

5.4.2 Classifier Performance Based on Replaced Emoticons and Removing

Punctuations

In this part, we report the results obtained after removing emoticons and punctuations

separately. We don‟t apply the removing URLs method due to a lack of the remarkable

number of reviews as we observed from reviews text.

To see the effects of emoticons on the rating stars, we investigate the usage of

emoticons in the text reviews. For this purpose, we create a simple word replacer in

order to change emoticons to words. In this way, our program can find a relationship

with a combination of words. For example, we replace the emoji “:)” as a “smile”, “:(”

as a “sad”, “:-o” as a “surprised”, etc. which are commonly used in messaging

applications and social media.

Table 5.5 Classifier performance based on replaced emoticons and removing punctuations

Preprocessing Methods KNN DT RF LR SGD NB SVM

Base Form 0.260 0.287 0.374 0.476 0.446 0.491 0.444

Replaced Emoticons 0.281 0.311 0.314 0.474 0.428 0.492 0.438

Removing Punctuations 0.276 0.289 0.379 0.474 0.435 0.491 0.436

As shown in Table 5.5 after running the methods 20 times shuffled reviews, the average

accuracy result of replaced emoticons is sometimes worse than without execution of the

method if we compare with the results base form without preprocessing. Actually, this

result shows us there are no significant effects of this method for categorizing the rating

stars of the reviews unlike the effects in messaging applications and social media as

proved in some researches. Almost the same result for removing punctuations even after

we execute multiple times for each method.

110

5.4.3 Classifier Performance Based on Expanding Abbreviations and Acronyms

In this part, we try to find some abbreviations and acronyms in the reviews of the

restaurants but unfortunately, there is no remarkable number of the most common words

of this specific field in the text of the reviews. Thus, we use general abbreviations and

acronyms which are the most commonly used in messaging applications and social

media. For example, omg (Oh my God), Lol (Laughing out Loud), 2moro (Tomorrow),

B3 (Blah, Blah, Blah), etc. which we got from https://www.smart-

words.org/abbreviations/text.html. Again, we use a replacer class for this purpose and

choose space tokenizer for the review text in order to get direct simple effects of the

method.

The accuracy results are 0.263 (KNN), 0.305 (DT), 0.393 (RF), 0.484 (LR), 0.470

(SGD), 0.498 (NB), 0.453 (SVM) after running the methods 20 times shuffled reviews.

The average classifiers‟ accuracy results of expanding abbreviations and acronyms are

not better than without execution of the method significantly if we compare to the

results with the base form given in Table 5.4. Actually, this result shows us there are no

significant effects of this method for categorizing the rating stars of the reviews unlike

the effects in messaging applications and social media as proved in some researches.

5.4.4 Classifier Performance Based on Word Correction

In this part, we report the result obtained after executing the auto corrector of python on

each review text for the misspelled words in order to change with their most possible

similar words. As we mentioned above, misspelled words are checked according to the

English language. We don't apply the removing Multiword Expression method due to a

lack of a remarkable number of reviews as we observed from reviews text.

The accuracy results are 0.243 (KNN), 0.254 (DT), 0.321 (RF), 0.412 (LR), 0.393

(SGD), 0.421 (NB), 0.401 (SVM) after running the methods 20 times shuffled reviews.

The average accuracy result of the word correction is much worse than other methods.

As we observed from the output of the program, the tool which we used is not

successful at all for the text of the reviews. Consequently, this result shows us there are

no significant effects of this method for categorizing the rating stars of the reviews

111

unlike the effects in messaging applications and social media as proved in some

researches.

5.4.5 Classifier Performance Based on Stopwords Elimination

In this part, we report the result obtained after removing the stopwords in each review

text using nltk stopwords. As we mentioned above, stopwords are checked according to

the English language.

Table 5.6 Classifier performance based on stopwords eliminations

Preprocessing Methods KNN DT RF LR SGD NB SVM

Base Form 0.260 0.287 0.374 0.476 0.446 0.491 0.444

Removing Stopwords 0.261 0.376 0.389 0.494 0.454 0.512 0.462

Removing Stopwords with

Modified List

0.299 0.293 0.406 0.494 0.461 0.523 0.486

As shown in Table 5.6 after running the methods 20 times shuffled reviews, the average

accuracy results of the stopwords elimination are better than other methods. Especially

the modified stopwords list method according to our text structure (like not removing

comparative adverbs such as good, better, best) is slightly better than directly removing

stopwords. As we observed from the output of the program after executing multiple

times, we conclude that this method has a significant effect on categorizing the rating

stars of the reviews.

5.4.6 Classifier Performance Based on Stemming

In this part, we investigate the stemming algorithms such as Porter Stemmer, Lancaster

Stemmer, and Snowball Stemmer and their efficiencies on the restaurant reviews. We

reduce words to root forms by removing prefixes and suffixes according to some

grammatical rules of the nltk stemmers. We execute the stemmer algorithms on space

tokenizer base form in order to get directly simple effects of them.

Table 5.7 Classifier performance based on stemming

Preprocessing Methods KNN DT RF LR SGD NB SVM

112

Base Form 0.260 0.287 0.374 0.476 0.446 0.491 0.444

PorterStemmer() 0.248 0.297 0.376 0.512 0.459 0.511 0.463

LancesterStemmer() 0.232 0.297 0.373 0.501 0.453 0.498 0.448

SnowballStemmer 0.254 0.316 0.363 0.499 0.461 0.517 0.450

As shown in Table 5.7 after running the methods 20 times shuffled reviews, all the

stemmer algorithms slightly change the average accuracy results, especially for Logistic

Regression and Naive Bayes classifiers in a good way. In general, these results show us

there are no significant effects of these methods for categorizing the rating stars of the

reviews as we expected.

5.4.7 Classifier Performance Based on Lemmatization

This time we investigate the effects of the lemmatizer on the restaurant reviews. Again,

we execute the lemmatizer algorithms on space tokenizer base form in order to get

directly simple effects of them.

Table 5.8 Classifier performance based on lemmatization

Preprocessing Methods KNN DT RF LR SGD NB SVM

Base Form 0.260 0.287 0.374 0.476 0.446 0.491 0.444

WordNetLemmatizer() 0.263 0.309 0.373 0.473 0.421 0.479 0.439

WordNetLemmatizer() with position 0.305 0.349 0.382 0.513 0.467 0.524 0.481

As shown in Table 5.8 after running the methods 20 times shuffled reviews, the

lemmatizer without indicating the word position does not change the accuracy results

significantly but the lemmatizer with position increases the accuracy results even we

execute the program multiple times. As we observed from the output of the program,

these results show us there are no significant effects of this method for categorizing the

rating stars of the reviews as we expected but indicating the position of the word for the

lemmatizer gives us better results.

5.4.8 Classifier Performance Based on Lowercasing

In this part, we report the result obtained after executing the lowercasing on each review

text to increase the performance of the classifier without considering the non-

113

consistence of texts. We execute our lowercasing method on 20 times shuffled reviews

and on space tokenizer base form in order to get directly simple effects of the method.

This time the accuracy results are 0.314 (KNN), 0.333 (DT), 0.399 (RF), 0.523 (LR),

0.473 (SGD), 0.522 (NB), 0.497 (SVM) and surprisingly the average accuracy result of

the lowercasing method is much better than before if we compare to the results with the

base form given Table 5.4. As we observed from the output of the program after

executing multiple times, this result shows us there are significant effects of this method

for categorizing the star ratings of the reviews. Because of treating each word as a

dimension in the feature set, having the same words in different case cause the models

to be confused and loss of time.

5.4.9 Classifier Performance Based on Removing Common Words

In this part, we report the result obtained after removing the common words on each

review text to increase the performance of the classifier. We execute the algorithm on

20 times shuffled reviews and on space tokenizer base form in order to get directly

simple effects of the method.

This time the accuracy results are 0.294 (KNN), 0.324 (DT), 0.374 (RF), 0.500 (LR),

0.471 (SGD), 0.518 (NB), 0.458 (SVM) and the average accuracy result of the

removing common words method is much better than before if we compare to the

results with the base form given Table 5.4. As we observed from the output of the

program after executing multiple times, this result shows us there are significant effects

of this method for categorizing the star ratings of the reviews. Because the classifier

confuses the class of rating when seeing those common words in the review text.

5.4.10 Classifier Performance Based on Removing N-grams

In this part, we report the result obtained after executing some combination of Ngrams.

In the beginning, we apply each Ngrams alone, and then we apply a combination of

three in order to see the effect of each combination. Same as before, each obtained

result is the average of 20 times shuffled restaurant reviews.

Table 5.9 Classifier performance based on removing N-grams

Ngrams KNN DT RF LR SGD NB SVM

114

Unigram() 0.304 0.332 0.364 0.370 0.371 0.365 0.361

Bigram() 0.332 0.403 0.415 0.426 0.398 0.445 0.435

Trigram() 0.255 0.297 0.307 0.336 0.331 0.344 0.305

Unigram() & Trigram() 0.325 0.325 0.365 0.388 0.371 0.389 0.377

Unigram() & Bigram() 0.324 0.387 0.411 0.486 0.455 0.483 0.458

Bigram() & Trigram() 0.219 0.362 0.406 0.469 0.432 0.458 0.445

Unigram() & Bigram() &

Trigram()

0.335 0.420 0.425 0.495 0.469 0.511 0.472

As shown in Table 5.9, we observed from the output of the program after executing

multiple times, while the effect of the Bigram is bigger than Unigram, the effect of the

Unigram is bigger than Trigram. When it comes to the combination of the Ngrams, the

effect of the combination Unigram() & Bigram() is more than Bigram() & Trigram()

while the effect of the Bigram() & Trigram() is more than Unigram() & Trigram(). We

get the best result even after executing multiple times when we apply all the Ngrams

together.

5.4.11 Classifier Performance Based on Preprocessing Order

In this part, we report the results obtained after executing some combination of

preprocessing methods in order to see the effects of executing order. For this purpose,

we use lemmatization, stopwords, and lowercasing preprocessing methods which have a

positive effect on chosen classifiers on the review data set as we mentioned above. In

order to see the difference between preprocessing orders we execute all the

combinations of three methods, respectively. This time we don't shuffle the review set

to see the effects of executing the order of three methods on the same dataset.

Table 5.10 Classifier performance based on preprocessing order

Order of the Methods KNN DT RF LR SGD NB SVM

Base Form 0.260 0.287 0.374 0.476 0.446 0.491 0.444

Lemmatization – Stopwords -

Lowercasing

0.345 0.394 0.439 0.553 0.512 0.564 0.521

Lemmatization – Lowercasing -

Stopwords

0.358 0.398 0.423 0.535 0.514 0.547 0.524

Stopwords – Lemmatization - 0.360 0.376 0.423 0.567 0.522 0.567 0.536

115

Lowercasing

Stopwords – Lowercasing -

Lemmatization

0.344 0.371 0.448 0.542 0.512 0.570 0.527

Lowercasing – Stopwords –

Lemmatization

0.339 0.404 0.445 0.547 0.494 0.561 0.514

Lowercasing – Lemmatization -

Stopwords

0.344 0.391 0.433 0.545 0.507 0.542 0.515

As shown in Table 5.10, we observed from the output of the program after executing

multiple times, executing the order of the preprocessing methods affects the accuracy

results of any classifier by almost 2%. In addition, when we compare the accuracy

results of each classifier with the base form, the preprocessing methods applied to

change the accuracy results up to 10% in some classifiers. These results show us how

important applying preprocessing methods are when classifying our data.

5.5 Conclusion

In this chapter, we discussed the experiments involving some simple text preprocessing

methods that give an impact on the classification performance when we predict fine-

grained review rating stars. For this reason, we wanted to show their effects on the five

class-based review rating stars, individually.

Although less attention has been paid to the text preprocessing in the researches, our

evaluations highlight that it has a remarkable impact on the performance of classifier

but of course not for all the methods. Some of them have a positive effect on

classification accuracy, while some have a negative effect, and others have a neutral

effect.

In general, a simple stopwords elimination, lowercasing, removing common words, and

lastly the combination of 1-to-3 Ngrams perform better than other preprocessing

methods for improving the classification accuracy of the five class-based review rating

stars. As we mentioned before, the challenge of this field is to predict fine-grained

review rating stars because of being used almost the same words for the close classes.

Otherwise, it might be useful to apply the mentioned methods, for instance, for the

binary distinction of positive vs. negative. Namely the effects of the preprocessing

116

methods can change on any domain. So, it should be considered all possible

preprocessing methods and their combination before used in any application. And

applying the order of the preprocessing methods can also be important. The effects of

abbreviations, acronyms, stemming and lemmatization might be higher after executing

lowercasing to the text. It is believed that our study results will help future researchers

to carefully select these text preprocessing methods.

117

6. CALCULATING OVERALL STAR RATINGS

BASED ON REVIEWS

Through the instruments of increased e-commerce platforms, the customers‟ reviews

and ratings have started to play a significant role in marketing strategies. Customers do

not hesitate to share their negative or positive opinions on these platforms. Since most

of the customers generally choose a product with at least 4 stars over 5 or 8 stars over

10, calculating the quality star rating of a product or a service has become extremely

important. But, determining the star ratings of a multi-class rating system is quite hard,

not only because of probability ratio but also used words which are very similar among

the close classes. Hence, a binary classification is preferred. There are several ways to

calculate the quality ratings according to the need, such us views of trustful users,

usefulness of votes, number of the users providing ratings, date and time of the ratings,

and the sentiment analysis, which is the method this paper is concerned with. We

propose a methodology to overcome the challenges when calculating the quality of

multi-class star ratings, specifically on restaurant reviews, to calculate the overall star

ratings via sentence-based, review-based, dictionary-based, and the newly proposed

hybrid-based sentiment analysis methods.

E-commerce can be broadly defined as the purchase and sale of a product or a service

through the Internet and it is one of the most important building blocks in today‟s

modern business world, as online shopping ranges from 13% to 82% in just European

countries and B2C e-commerce expected to rise to €602 billion just in 2018 [103].

Namely, the importance of e-commerce is growing day by day. Thus, almost all types of

businesses start to find out the most effective ways to influence the customers for their

e-commerce market. Online ratings and review websites are some of the most powerful

ways to changing purchasing decisions and increasing customer confidence. Especially

it has become vitally important for small businesses to fight with conglomerates that

dominate the related market.

Ratings and reviews are not just for customers to find good quality products and trustful

sellers but also for the product producer to identify the pros and cons related to their

products and to determine competitive intelligence. But due to the charming market

share, countless misleading reviews and ratings are showing up with each passing day

118

by malicious users, biased bloggers, even owners of the related products. Some systems

try to solve this problem by helpfulness votes, but it is found that the ratings for the

most helpful reviews are consistently inflated compared with the ratings provided [104].

Of course, today‟s product ratings and reviews systems are very useful for the

purchasing decisions of the customers but there are still weaknesses, particularly the

difference between the product ratings and reviews text [105].

For an efficient and productive online shopping, not only there should be a secure

system, easy to understand content, prompt delivery and quality services, business

credibility, etc. [106], but also a high-quality star rating calculation in order to increase

customer confidence since more and more customers rely on the opinions of other users

when making a purchasing decision. Thus, to get a more reliable and comprehensive

rating system for products, a few methods such as views of trustful users, usefulness of

votes, number of the users providing ratings, date and time of the ratings, and the

sentiment analysis are needed. In this way, the effects of the fake accounts on the rating

systems can be lowered significantly or eliminated. Amongst above mentioned methods,

we focus on the sentiment analysis of reviews, which is one of the ways to check the

quality of star ratings of products and services. To this end, we compare sentiment

analysis methods and develop a hybrid model to classify each review text.

There are a lot of existing work on similar topics of various scopes, most of which

focused on the binary distinction of positive vs. negative but our model predicts the

user‟s numerical star ratings in a Likert scale, which is the main challenge to determine

the exact star among close classes. After training model on the feature set, we calculate

each restaurant‟s star rating from users‟ reviews by a hybrid model consisted of

supervised learning (document level and sentence level) and dictionary-based approach

and then analyze the results by comparing to the real ratings to see the pros and cons of

each different approach.

The rest of this chapter is organized as follows. After the introduction, Section 6.1

presents some of the recent work especially the research on review rating prediction

using sentiment analysis of the reviews. In Section 6.2, details about research methods

and some specific examples about the related field are provided. Section 6.3 introduces

a real-life dataset used in our experiment and Section 6.4 reports some experimental

outcomes and evaluates the results. Finally, we conclude and discuss in Section 6.5.

119

6.1 Related Work

Although advertising still has a substantial effect on the increased product sales,

sentiment analysis of product reviews and ratings has attracted a great deal of attention

in recent years because of providing high-profit share in e-commerce platforms. In this

section, we specifically focus on some recent related research, which aim to put into

practice binary or fine-grained classification and latent aspect rating. So, the research

that is close to the content of our research is summarized below.

Govindarajan [107] proposes a hybrid model consisted of Naïve Bayes, Genetic

Algorithm, and Support Vector Machine (SVM) in order to indicate the effects on the

restaurant reviews with a comparative analysis. For this purpose, classification accuracy

was evaluated by each model individually first, and then by the ensembled ones.

According to their results, the recommended hybrid model delivers better performance

than the base classifiers on the restaurant reviews with regard to classification accuracy.

Guo et al. [108] investigate two types of estimations, the first one is the star rating of

restaurants and the second one is the popularity change of restaurants. They use features

such as price, location, available services, etc. by using a couple of machine learning

methods such as Logistic Regression (LR), Naïve Bayes, Neural Network and SVM.

However, according to their results, actually, none of the methods tried gives good

results due to lack of relevant data.

Yu et al. [109] compare the performance of some machine learning algorithms in order

to predict star ratings of reviews related to restaurants. They use linear regression,

random forest, and the latent factor model. According Yu et al., the Random Forest (RF)

is the best model for predicting the rating of reviews because of using reasonable

features extracted from the rich dataset.

Asghar [110] tries to find out the best model for predicting the star rating of reviews, as

a five-class classification problem, among sixteen different models combining four

feature methods like 1-to-3 N-grams and Latent Semantic Indexing. According to the

results of four machine learning algorithms, LR seems the best one, obtained by

unigram & bigram on the set of the top 10.000 features with the accuracy of 64%,

among the others such as Naïve Bayes classification, Perceptrons, and Linear Support

Vector Machine classification.

120

Kapukaranov and Nakov [111] focus on comparing classification, regression, and

ordinal regression in terms of performance on the reviews text and contextual features

such as movie length, director, actors, etc. According to their results, regression and

contextual features model is better than the other combinations. While country,

directors, or genre, namely factual information, except actors do not seem to be useful,

user average score is the most useful contextual features. As a result of the research, we

now know that adding contextual information has a positive impact on performance.

Ghazvinian [112] tries to categorize numerical ratings of multi-class restaurant reviews

rather than to predict them simply positive or negative. He implements a maximum

entropy classifier with a selected feature set (unigram, preprocessing, bigram, etc.) and

the sentiment models such as language models and sentiment modeling. According to

the results, the selected/tried model after a couple of experimental results can predict the

rating of a review at 60% precision.

Lee et al. [113] focus on the evaluation of the user-generated and machine-generated

star ratings using Naïve Bayes and SVM. After applying some preprocessing methods

on the obtained data and then vectorizing it, they calculate star ratings of reviews using

sentiment analysis. According to the results, the combination of the VADER-Sentiment

Analysis tool to produce star value and sending directly vectorized data to the train is

the most viable approach.

Doan and Kalita [114] study on an incremental learning approach by a modified online

RF model in order to overcome retraining the whole system problem whenever new

data become available, namely streaming data. According to the experimental results

after a couple of data processes, the proposed approach comes in third place in five

different models following by Factorization Machine and Hoeffding Tree, but it needs

longer run time because of high computation involved.

Zhang et al. [115] suggest a model for Yelp Dataset to predict reviews‟ usefulness and

examine three well-known classification models: K-Nearest Neighbors (kNN), SVM,

and RF Classification. To improve the success of the model, they choose some users,

reviews, and business-related features and evaluate their performance using LR.

According to the experimental results after selecting features, RF without TF-IDF

features gives the best results with the accuracy 0.699.

121

Huang and Yu [116] suggest a novel task to restore the truthful rating in order to

overcome fake reviews problems that mislead not only users but also service providers.

For this purpose, they evaluate the performance of a couple of models such as Linear

Regression, kNN, Deep Neural Network (DNN), etc. on the two weeks summarized

ratings. Especially DNN with some sub-models for different features at a specific layer

and full connection in the following layer gives the best performance among all the

other methods.

In order to increase rating prediction accuracy, Ochi et al. [117] work on a novel

feature vector, dimension of which is reduced using extracted feature words in order to

execute algorithms on a large and sparse dataset practically. For this purpose, they

create a feature set finding words, which is appeared in the reviews too many times to

increase the density of the matrix. According to their results, the studied approach

improves the prediction accuracy on a corpus of golf reviews.

Jin et al. [118] suggest a model for review rating prediction to improve the accuracy by

obtaining semantics of review text and completing the value of missing ratings looking

at the history of the user‟s behavior applying on two different datasets. According to the

experimental results, using the skip-thought vector of review text and filling missing

ratings improve the prediction accuracy more than that of the other combined methods.

Since the reviews are written for more than one field about a product or service, Wang

et al. [119] suggest a new method based on their previous work called LARA which

generates rating on a set of predefined aspects and relative weights placed by a reviewer

on each aspect. In contrast with the previous method, the new method called LARAM

doesn‟t need to specify aspect keywords by users. According to their results, LARAM

can effectively find latent topical aspects, ratings on each identified aspect, and weights

placed on different aspects when generating the overall rating.

Xu et al. [120] propose a model to predict hidden aspect ratings such as “cleanliness”,

“food”, “service”, etc. from the users‟ reviews. Actually, the proposed model is

compared with LARAM [119] because of having the same concept. According to their

results, it can also alleviate the aspect sparsity issue, where it is claimed that LARAM

cannot effectively handle. Experimental results show that the predicted aspect ratings

for each review is more accurate and reliable based on the proposed model.

122

Xu et al. [121] compare the performance of different learning algorithms in order to

predict reviews ratings received from the Yelp Dataset. After executing several

preprocessing on the data, they use an existing opinion lexicon and build a feature

dictionary to evaluate the algorithms based on precision and recall. According to the

results, binarized Naïve Bayes is more effective than both Perceptron and Multiclass

SVM algorithms to predict star ratings.

Chen et al. [122] use long short-term memory (LSTM), which is a part of deep learning

method, to fine-grained sentiment analysis on Chinese phone reviews. The study also

compares the algorithm with polarity analysis on Chinese and English texts by accuracy

and F-score. Even though the method is applied to Chinese text, the result shows that

the application of the LSTM on fine-grained sentiment analysis is effective after a series

of modifications.

Chauhan et al. [123] focus on the polarity sentiment analysis in order to detect whether

electronic product reviews are fake but not by calculating the words‟ weight from the

created dictionary. After calculating the sentiment score of the reviews by using NLTK

and VADER with a set of discriminative rules, the proposed model shows effective

results.

Kumari et al. [124] investigate the polarity sentiment analysis in order to determine

whether the smartphone product reviews are positive or negative using SVM. Obtained

performance results by using the values of precision, recall and f-measure, and

accuracy, the proposed SVM work performs very effective, robust, and better than those

other methods compared.

Barbosa et al. [125] study on sentiment analysis to determine overall ratings of hotels

from the review text by comparing three different algorithms: OpinionFinder, Stanford

CoreNLP, and the Naïve Bayes combined with sentiment lexicon. Actually, the authors

try to understand whether reviews are correlated with overall rating, namely whether the

reviews‟ texts are reliable or not. Consequently, the results show that reviews are

correlated with overall ratings and they can be used for predicting numerical ratings.

Yang and Chao [126] focus on the sentiment annotation to highlight the effectiveness of

their approach on the overloading information about tourism reviews in Chinese at the

sentence level. Even though it is applied on a limited corpus the proposed approach

shows that adding sentiment annotation at sentence level improves the information

123

quality of the original review, namely it makes them sufficient, concise information, and

more understandable.

Vinodhini and Chandrasekaran [127] evaluate the performance of the neural network

based on sentiment classification methods with five quality measures and two statistical

methods which are Support Vector Machine and Linear Discriminative Analysis on

online reviews. According to their experimental results, feature reduction is important

for learning methods and homogenous ensemble methods give better results than other

classification methods.

Fang and Zhan [128] elaborate on the problem of sentiment analysis especially on

focusing sentence-level and review-level categorization experimenting on a set of online

product reviews. Both categories‟ results are promising that average sentiment scores

are satisfied enough for polarity categorization.

Malik et al. [129] evaluate reviews when calculating the overall sentiment obtained

from an e-commerce website. They estimate the opinion polarity using the weight

method but for particular features of a product entered by a customer. Namely, they

prove that the proposed model depending on the priority of user wishes works more

effectively.

As mentioned above, while most of the studies focus on the performance of different

classifiers in sentiment analysis, some of them examine the effects of the properties in

the dataset on the performance of classifiers. Another part of the studies investigates the

effect of sentiment analysis in different corpus. According to the results obtained from

the researches, different classifiers can perform differently on different data set. In

addition, we see that the effect of each feature in the data set varies according to the

relevant field and preprocessing methods also affect the performance of the classifiers.

As it is mentioned, the effect of product reviews on e-commerce platforms is known.

The fact that there are not enough studies on data sets that contain numerical star ratings

in a Likert scale, and that the product reviews consist of short text and that these texts

contain similarities in close classes, bring difficulties in terms of scoring the product.

In this context, apart from the performance of the classifiers that are frequently

investigated in the relevant field, we are also looking for better results using different

sentiment analysis methods. In addition, the success of ready-made libraries used in this

field is compared with related methods.

124

6.2 Prepare Background and Context

Nowadays, almost no one buys any online product without reading other users‟

comments and experiences since user-generated content has become the mainstream of

the e-commerce platforms. Actually, it would be wrong to limit it just with the e-

commerce platforms, experiences in our daily lives are also important, sometimes

crucial. Even for some basic things, we need advice such as when we want to watch a

movie, listen to music, or read a column. In fact, this situation is due to the limited time

and internet pollution created by the modern world. Of course, people intrinsically want

to reach the highest quality content as soon as possible. At the same time, it is an

opportunity to be informed in the related field in a limited time, and having a grasp of

concept helps to measure the quality and price conditions without any effort related to

the service to be received or to be offered.

On the other hand, reviews make a dynamic content for the related e-commerce

platforms. A wealth of worthwhile customer feedback can provide electronic word-of-

mouth (e-WOM). Although companies generally produce original contents, since they

identify with the corporate language of the brand very much, they produce generic

content without realizing it, but when the customers make an evaluation, they make

both emotions and original reviews, which are the most valuable facts in marketing

efforts and make remarkable influences on purchasing decisions of other customers.

Increasing the importance of reviews and ratings in e-commerce platforms, malicious

users and companies that want to increase their profit margin have come up with

indirect ways such as creating fake accounts or voting just positive reviews to influence

such systems and increase their products‟ ratings since a lot of recent researches show

that almost over the 90% of consumers read online reviews and 88% of them trust the

online reviews and ratings as much as personal advice [130]. Likewise, 57% of

consumers do not want to use a business with less than 4 stars [131]. Thus, rating

algorithms have tried to find new methods to rule out fake accounts or reduce their

impact on the star rating calculation such us based on trustful users, usefulness votes,

the number of the rated users, time, sentiment analysis, etc., according to the platform

used. In this research, we focus on sentiment analysis on product reviews in order to

classify multi-class review ratings more effectively. As we mentioned above, it is a

challenge that classifies multi-class review ratings because of the similar words used in

125

closed classes. For this purpose, we try to create a hybrid model consisted of supervised

learning (document level and sentence level) and a dictionary-based approach.

6.2.1 Sentiment Analysis

Sentiment analysis is a field that focuses on specifying people feelings (such as being

happy, surprised, angry, funny, sad, pleased, satisfied, etc.), opinions (such as thinking

about a product that it is useless, good quality, waste of time, too expensive, worth a try,

etc.) or sentiments towards a situation, entity or event, specifically a product or service

for our research by looking at a piece of writing or document. In fact, as can be seen in

recent research it is not restricted just with writings but also can be specified by other

structures such as emoticons, emojis, etc [132]. Sentiment analysis in terms, our

research refer to evaluating reviews about a product or service sometimes to classifying

them whether they are positive, negative, or neutral, sometimes grading them within a

certain range. Actually, sentiment analysis can be used not only for classifying of

opinions but also summarizing the main subject of a document, determining whether a

sentence is subjective, finding related document for a given query or for other reasons

such as determining types of the writing, owner of the writing, spam texts, etc.

Sentiment analysis used for examining review ratings in our research by comparing it

with star ratings. In Figure 6.1, you can see how to sentiment analysis can be branched

according to the approach used.

126

Figure 6.1 Sentiment analysis techniques [124]

6.2.1.1 Machine Learning Approach

Machine learning, which is based on artificial intelligence, is a learning method that

provides the most appropriate response to the new situation obtained by its past

experiences. In this context, the characterized, sized and well-prepared data set directly

affect the quality of the response to the new situation. So, making a good prediction in a

completely new situation is its weakest point. For the sentiment analysis, it uses this

logic to classify an opinion of a text with the help of linguistic features.

In supervised learning, each record, in our case reviews, in a given data set is labeled

including a specific class. Then, for an unknown class instance, this model uses past

experiences which are the given data to make a tag to predict the new instance. In our

case, tagging a new review as a positive, negative or neutral, or giving a star rating out

of 5.

In unsupervised learning, data has no class information. The main purpose is to extract

information from this data by clustering it based on a relationship between variables. In

our case, clustering reviews by similarity (in terms of meaning) or by their usage

together.

127

6.2.1.2 Lexicon Based Approach

This approach works by processing the data generated according to the structure of a

language. The strongest side of this approach is that it does not require any labeled

training data. Namely, for categorizing the text it calculates the polarization (it can be

negative, positive, neutral, or numeric scores) of the words that convey feelings used in

the text according to the pre-prepared domain dictionary. Then, to get the overall

sentiment of the text based on that sentiment polarity calculation it uses some

classification algorithms. Consequently, the lexicon-based approach is a collection of

words, in other words, it is a sort of pattern matching. There are a lot of popular

lexicons such as SentiWordNet, SentiStrength, OpinionFinder lexicon, AFINN lexicon

(emotional ratings), NCR lexicon, etc. There are two general approaches in the lexicon-

based approach. The first one is the manual approach which is really hard to generate it

with all aspects, namely, it takes too much time to fix it and requires some experts

corresponding to the studied field. The second one is the automated approach which

consists of dictionary-based and corpus-based.

In the dictionary-based approach, the words related to general-purpose fields are

determined, which start with a smaller set called seed words collected manually in a

dictionary. Then this small set is iteratively expanded by adding synonyms, antonyms,

etc., finding with the help of a dictionary-like WordNet until a new word cannot be

found [133]. After that, the model compares the text with the dictionary in order to

determine the polarity degree. The key point is to convert all the words of the text

according to the prepared dictionary form otherwise the words in the text can‟t match

with the words in that dictionary. Of course, this process is not easy for all languages in

which words‟ roots often change and become unrecognizable when deriving new words

and sometimes words also have a complex suffix and prefix structures as in Arabic,

French, Farsi, etc.

The corpus-based approach can be particularly used for domain-specific applications

and words are collected in the same way as the dictionary-based approach, but the

collected words are polarized according to the field. Namely, while some words are

thought to have a positive polarity in some specific domain, they can have a negative

polarity for some others. For example, for the word “long”, saying that “It was a too

slow and too long movie” for a movie domain can be carried a negative meaning,

128

“Taking a long position here” for a financial domain can be carried positive meaning or

“that‟s a long noodle” for a restaurant domain can be carried neutral meaning. Namely,

the meaning of a word can be different in different situations or domains [134].

6.2.2 Data Preprocessing

In our research, we use the dictionary-based approach and supervised sentiment learning

under the branch of the Machine Learning approach. The following section presents the

methods and classifiers used in the study as shown in the flow diagram in Figure 6.2.

Figure 6.2 Flow of the proposed model

129

6.2.2.1 Tekonization

In order to get as an input in Natural Language Processing (NLP) processes, a review

text must be divided into the smallest meaning units called tokens such as words,

phrases, symbols, or sometimes whole sentences. For this purpose, generally several

Natural Language Toolkit (NLTK) are used according to the needs of the field studied.

Some of the NLTK tokenizers are space tokenizer which breaks up a sequence of strings

using space between two tokens, TreebankWord tokenizer which also treats

punctuations as a token, and Regexp tokenizer which breaks up the text using regular

expressions. In our research, we use Regexp tokenizer.

6.2.2.2 Lowercasing

In order to prevent case sensitivity in sentiment analysis, we need to convert all text into

the lowercase or vice versa. In this way, when we create our feature set, our algorithm

does not treat the same words which are in a different form as a different dimension.

Actually, this preprocessing method has a great effect on the accuracy of classification

as we experienced in chapter 5.

6.2.2.3 Removing Punctuation and Digits

As in lowercasing, when the tokenizer split up a review text into tokens, it treats

punctuations and digits as sperate tokens which increase the feature dimensions and are

useless as it can be seen in most of the sentiment analysis studies. We also remove all

punctuations in our feature set which don‟t have any significant effect on the accuracy

of the classification.

6.2.2.4 Removing Stopwords

Removing stopwords is another important step of preprocessing and it has a really great

effect on the accuracy result as we explained the reason for dimensions. Namely, since

the stopwords increase the dimensions of the feature set and there are numerous of them

in texts, it is better to get rid of them. As it is known, we define stopwords as the most

common words found in a language. So, having stopwords in the feature set is not a

130

distinctive feature to catch the difference between classes. If we give some examples to

the stopwords, we can list words like “a”, “the”, “an”, “me”, “your”, “will”, etc. Of

course, removing stopwords can be changed according to the application. Namely,

while “once”, “when”, “since”, etc., can be important words for some application,

“will”, “can”, “do”, etc. can be important for some others [135]. According to the

application, researchers can change the stopwords list.

6.2.2.5 Lemmatization

One another important method is lemmatization. Actually, while some researchers use

stemming which tries to find out the root form on the words by removing suffix and

prefix according to the related language grammatical rules, some of them use

lemmatization which finds dictionary forms of the words categorized them as a part of

the speech. Namely, lemmatization reduces words according to the position in a

sentence. In this way, we find a base structure of all words in a review. Otherwise, it is

meaningless to store all versions of a word which have the same meaning such as “go”,

“went”, “gone” or “interesting”, “interested”, “interest”, “interests” due to the same

reason that all these versions are considered as a unique feature [136].

6.2.3 N-grams Feature Extraction

In order to identify discriminative and useful features from the text of the reviews, we

should determine the words which represent their own related category. For this

purpose, we create a feature vector called indexing which is generally used by

Information Retrieval. Of course, there are other methods to represent textual data, but

the feature vector is one of the easiest structures. In this method, for each different word

passing in the text of the reviews, a separated dimension is created. Because of this, a

matrix is created which shows which review has which words and how many times. It is

called a bag of words that is used for training a classifier. So, the matrix consisted of

vectors or arrays would be quite large because of containing all elements for each

possible word and for the each occurred word in the related review text weight is

calculated by the function tf-idf (term frequency-inverse document frequency) measure

that calculates how important a word in a text document. While TF calculates how often

131

a word occurs in a review text by dividing a total number of words in the review text,

IDF calculates a logarithm that measures a total number of the reviews dividing by the

number of reviews which have that specific word [137]. Namely, in IDF, if a word

occurs in almost all the reviews text, it means that that word is not a discriminative

word for classification, namely less importance is given to common words. You can see

an instance vector space model from Table 6.1.

Table 6.1 Tf-Idf vector space model

R
ev

ie
w

_
1

R
ev

ie
w

_
2

R
ev

ie
w

_
3

R
ev

ie
w

_
4

R
ev

ie
w

_
5

…

R
ev

ie
w

_
n

Word_1 8 0 1 0 2 … 3

Word_2 0 2 4 0 1 … 0

Word_3 2 0 0 1 0 … 3

Word_4 5 0 0 0 1 … 0

Word_n 1 2 1 2 0 … 4

One another important point about text representation is the N-grams method. It has a

very great effect on the performance of the classifier, especially for categorizing the

product review. Because sometimes combining of the words can represent better than

handling each word separately. For instance, a review that contains phrases such as

“Meals weren‟t delicious in that restaurant”. If we get the words individually, because

of the words “delicious” which has a positive meaning, a classifier can classify as a

positive review but if we get the text as a combination of words with one before and one

after word (“weren‟t delicious”), the classifier can easily find out that is a negative

review [138]. So, it gives unsurprisingly better results because of capturing relationships

between occurred words in the text.

In N-grams, the number of the “N” can be changed according to the application field.

After observing many experimental results, we decide to combine unigrams, bigrams,

and trigrams. Although the overwhelming supremacy of the bigrams, the effect of

combining all three types of N-grams is slightly more than other N-grams combinations

on the review text. Even the same trigrams rarely occur in different review text, it can

make the classifier‟s job easier.

132

6.2.4 Dimensionality Reduction

In order to increase the performance of the classifier, we also reduce the dimensions by

removing some features that occurred in some review categories at the same time.

Firstly, we remove some words/N-grams phrases which occur in all categories and are

not discriminative features anymore. After that, we remove some other specific

words/N-grams phrases that belong to the closed classes. Because while the classifier

can determine the exact class between distant classes easily such as between 1 to 5 or 2

to 5, it has difficulties in distinguishing close classes such as between 1 to 2 or 4 to 5.

We came to this conclusion as a result of some experiments we repeated many times

and we got better results. After this last pre-processing, our data is ready for

classification models.

6.2.5 Existing Classification Methods

Since the past decades, researchers have focused on designing a better model that

provides the right predictions to classify a piece of text written by people looking at the

data at hand. This is quite important because analyzing people‟s thoughts from what

they write can give strong clues for their next behaviors, and this is a piece of vital

information for especially e-commerce platforms. Nowadays hundreds of applications

using this logic such as in search engines, spam detection, speech recognition, fraud

detection, advertisements, etc.

Here we use some machine learning models to analyze the text of the reviews to classify

them for better recommendations by all types of e-commerce platforms or by those that

are basing their customers to digital platforms. Our ultimate goal is to compare the

sentiment analysis methods whether the star ratings match the comments in general and

create a hybrid model to get better results. For this purpose, we use a couple of models

to see which one gives better results for our aims, some of them are Decision Tree (DT),

k-Nearest Neighbors, Random Forest, Multinomial Naïve Bayes (MNB), Logistic

Regression and Support Vector Machines.

133

6.2.5.1 Decision Tree

Decision Tree is one of the most preferred machine learning algorithms due to the fact

that the logic of it is easily understood by people and gives good results. It is used for

both classification and regression problems. The decision tree creates a training model

over a data set that contains a large number of records and try to divide this data set into

smaller subsets with a set of rules that it creates from this model. Thus, with these

decision rules, it tries to determine which subset it is in, starting from the root of the tree

for a new record. Then, at each iteration, the value of the new incoming record is

compared to the value in the next internal node, and according to the comparison result,

this process goes up to the leaves of the tree, thus the location of new incoming record is

determined [139].

Figure 6.3 A simple Decision Tree

As is seen in Figure 6.3, the root node represents the entire population, except the root

node, if a node can split into further sub-nodes, it can be called an internal node,

otherwise, it is called a leaf or terminal node. The most important point when forming a

decision tree is to divide it into homogeneous sub-sets as much as possible. For this

purpose, various algorithms such as Iterative Dichotomiser 3 (ID3), Classification and

Regression Tree (CART), CHi-squared Automatic Interaction Detector (CHAID) are

selected.

134

6.2.5.2 K-Nearest Neighbors

The k-Nearest Neighbors algorithm is one of the supervised learning methods and it is

an algorithm used in the solution of both classification and regression problems. The

algorithm tries to find the class of newly arrived data by comparing it with the examples

in the training set. For this purpose, it uses similarity measures such as Euclidean,

Manhattan, Minkowski, Hamming, etc. It is a lazy learning technique as it memorizes

the data set rather than learning the training data for classification. That is, when

algorithm classifies a new data, it returns to the raw data each time to find the closest

neighbors in the data set [140]. We can say that the basic working principle of the kNN

consists of the following stages:

- “k” value, indicating the number of neighbors to be selected, is determined.

- With any similarity measurement, the distance of new data to other data is measured.

- The distances are listed, and the closest neighbors are found according to the “k”

value.

- The number of each separate category is determined.

- The most found category determines the class of new data.

One of the important points in the algorithm is to determine the “k” value. For this

purpose, an optimum “k” value can be determined by testing various “k” values on the

training set. Otherwise, if the value of “k” is determined to be greater than the optimum

value, it will cause an increase in dissimilar categories, and a small determination of the

“k” value will cause the probable real class of the new data not to be found.

Another important point is the similarity measured used. Euclidean distance, one of the

most used similarity measurements in this field, is the square root of the sum of squared

differences between corresponding attributes of the two data [11]. With given x1 = (x11,

x12 … x1n) and x2 = (x21, x22 … x2n),

 √∑

(6.1)

135

6.2.5.3 Random Forest

Although the basic operating structure is similar to Decision Trees, the Random Forest

algorithm instead of a single decision tree, it randomly divides the data set into multiple

subsets and creates a separate decision tree for each subset that operates as an ensemble.

Then, if our problem is a regression, the algorithm gets the average of the results, and if

it is a classification problem, this time the one with the most votes is chosen. This

means that the same algorithm can be used for both classification and regression.

Besides this, the random forest algorithm gives more accurate results as the number of

trees in the generated forest increases. Therefore, the overfitting problem, which is one

of the missing points of decision trees, is overcome to some extent [141].

The most important point in this algorithm is that the most important feature is not to be

searched when splitting a node like in decision trees. Instead of this, a subset of all the

features is considered for splitting each node in each decision tree created by the

algorithm.

6.2.5.4 Multinomial Naïve Bayes

The Multinomial Naïve Bayes is actually a type of specialized version of Naïve Bayes

and it is generally used on multinomially distributed data for more text categorization.

Namely, when the simple Naïve Bayes checks that particular words are included in the

related review text or not (binary check), MNB explicitly takes into account that how

many times those words occur in the related review text [142]. So, in the feature vector,

each dimension represents the number of occurrences of each word in a review text. To

predict the class of a review we use (6.3):

 ,

(6.2)

Where,

-P(c) represents the probability of a class,

-Nc represents the number of reviews in that class,

-N represents the total number of the reviews the dataset,

-P(w\c) represents the likelihood of a word given a class,

https://sebastianraschka.com/faq/docs/random-forest-feature-subsets.html
https://sebastianraschka.com/faq/docs/random-forest-feature-subsets.html

136

-Count(w, c) represents the count of the word occurring in that class,

-Count(c) represents the count of all words in that class, and

-|V| refers to the total number of unique words in reviews text.

6.2.5.5 Logistic Regression

Logistic Regression is another popular and widely used models for classification

problems. The emergence of Logistic Regression is due to some shortcomings in Linear

Regression, particularly when some outlier samples change the decision boundaries in

Linear Regression especially in classification problems [143]. We can say that Logistic

Regression provides the probability of a certain class, namely, predict only possible

discrete outcomes but Linear Regression‟s outcomes can be any continuous values. For

our research, the Logistic Regression algorithm uses the words and ratings of the

reviews from the feature vector to create a model to predict the class of a given review.

The logic of this algorithm is based on the prediction of two possible outcomes (Binary

Logistic Regression), but also for the multi-class classification problems it uses the

same logic. That is to say, firstly it gets the first class as a positive class and gets the rest

as a negative class like doing it binary classification, and then it trains the classifier on

this training set and gets the result. In the same way, it calculates for the other classes.

In the end, it decides the class of example according to the obtained results. As a result,

it calculates the highest probability computing for all class labels (for us star ratings

from 1 to 5). The general equation of this algorithm is as follow:

(6.3)

 is the probability of a class yi ε {0, 1} be in class 1 given the set of feature

vector xi.

6.2.5.6 Support Vector Machines

Support Vector Machines are supervised machine learning models used to solve

classification and regression problems. The SVM is often used to classify linear data as

well as nonlinear data. The basic logic of this algorithm is to determine the best line for

separating points that consisting of different classes placed on a plane. Multiple lines

137

can be drawn to separate points of different classes. But it tries to find an optimum

hyperplane to correctly classify each newly arrived data. For this purpose, it tries to find

the plane that separates the points of each class by maximum distance that has the

maximum margin [144].

Figure 6.4 Optimal and Possible Hyperplanes

As it is seen Figure 4, support vectors are data points that interior are colored. These

points are close to the hyperplane and can be more than one of course and each newly

added point can change the location of the hyperplane. This can also happen if points

are deleted. According to these determined support vectors, we create our SVM

algorithm. Namely, once the model parameters are determined, the algorithm uses only

on a subset of these support vectors to estimate the class of the new incoming data

[145]. Therefore, support vectors define the margins of the hyperplane. As a result, each

new data that comes in is checked whether it is below or above the hyperplane and then

classified.

6.3 Dataset Description

In this study, the dataset was gathered from Yelp (https://www.yelp.com/dataset/) in

June 2018 to evaluate the proposed model. It is a real e-commerce dataset that contains

information about businesses such as business attributes, reviews, users, check-ins, tips,

and photos in a five-separated file, which is suitable for many kinds of mining tasks.

But specifically, we focus on two files of the dataset related to our research. The first

one is the reviews file we get texts from to work on and the second one is a business file

that we pull out just the restaurant business in order to get more specific results.

138

Table 6.2 Appearance of the review dataset

Business_id Date Review_id Star Text User_id

6oRAC… 2012-06-14 IESLB… 4 I have no idea why some people

give bad review...

0a2Ky…

The Review dataset is a json object in the review.json file, which specifies “User_id”

who wrote the review, “Busines_Id” which the review text is written for, “Star” is a

numeric rating out of 5 given by the user, “Date” shows the date of a review written for

the related business, “Review_id” and the “Text” which we use for sentiment analysis.

There are 229.907 reviews in which 43873 users have at least one review. Table II

shows that the user 0a2Ky… has a review with id IESLB… and gives 4 stars for the

business 6oRAC… on the date 2012-06-14. It is a 206.0 Mb file.

Table 6.3 Appearance of the business dataset

Business id Categories Address Name
Review

count

Star

PzOqR…
[Food, Bagels, Delis,

Restaurant]

6520 W Happy Valley

Rd\nSte...

Hot Bagels

& Deli
14

3.5

The Business dataset includes some attributes such as categories which are just the

business that included restaurants, full business address, Business name, Review count

which shows how many users wrote a review to the related restaurant and its average

star. There are 11.537 businesses which have at last one review. Table III shows the

business PzOqR, which reviewed by 14 people and gets 3.5 stars on average and it is in

the Food, Bagels, Delis, Restaurant category. It is a .json file and 4.08 Mb.

Our algorithms are executed on the Jupyter Notebook with Python version 2.7.11.

6.4 Empirical Observation

In this section, we carry out several experiments on our preprocessed data in order to

verify the effects of learning algorithms on the performance of the classifier. According

139

to the results, we evaluate the sentiment analysis methods via comparing star ratings

obtained from reviews text with real star ratings of the related restaurants.

As we mentioned above, we aim to compare review-based (RB), sentence-based (SB),

and dictionary-based (DB) sentiment analysis with hybrid-based (HB) sentiment

analysis which we created by the combination of these three methods and try to find the

best performing method. For this purpose, we use Decision Tree, k-Nearest Neighbors,

Random Forest, Multinomial Naïve Bayes, Logistic Regression and Support Vector

Machines classifiers to get accuracy results for all types of sentiment analysis methods.

In order to implement our methods and to create our feature set, we extract 10000

reviews from the database that contain only restaurant reviews. As shown in Figure 6.2,

these 10000 reviews from the database are arranged in a specific form in order to avoid

unnecessary dimensions, such as Tokenization, Lowercasing, Removing Punctuations

and Digits, Removing Stopwords, Lemmatization, and to apply our methods more

efficiently. Then, in order to identify discriminative and useful features from the text of

the reviews, we apply N-grams feature extraction combining with unigrams, bigrams,

and trigrams. As mentioned before, the biggest challenge is to find the star rating of

close categories because of using the same words. For this purpose, we reduce the

dimensions by removing some features (the same N-grams) that occurred in some

review categories at the same time to increase the performance of the classifiers.

In order to see the performance of each classifier over the created feature set, we

selected 200 reviews from each category. In this way, we have a chance to analyze the

classifier performance over each category.

Table 6.4 Classifier performance

Classifiers Accuracy Result

Decision Tree 0.320

K-Nearest Neighbors 0.492

Random Forest 0.502

Multinomial Naïve Bayes 0.515

Logistic Regression 0.552

Support Vector Machine 0.556

According to the results, SVM seems to be the best classifier. It is slightly higher than

LR and MNB classifiers. We also evaluated our problem with regression method in

140

order to find better results. The accuracy results of the best regression methods we

obtained, respectively, is kNN(0.352), RF (0.488), Linear Regression (0.587). When we

compare the results of regression methods with the classification methods, kNN and RF

give worse results even we execute on different test sets. Although Linear Regression

gave the best results among all classifiers, we could not go on because we could not find

the probability of a class using regression methods we will use in calculations of

sentiment analysis below and we could not develop a hybrid method from the results to

be obtained.

Now let‟s look at the performance of each classifier according to four different

sentiment analyzes. As we mentioned above, the review-based sentiment analysis

method evaluates the entire review to find the category of that review. Because it wants

to make sense of the whole review. But sometimes the negative or positive polarization

of some words in the reviews is so high that it can affect the whole sentence. In such

cases, review-based sentiment analysis categories reviews incorrectly. For this reason,

we execute sentence-based sentiment analysis, namely, when classifying a review, we

first divide it into sentences, find the probability of each class coming in each sentence,

and then take the average of the results. The training set used for review-based is also

used for sentence-based. Since the reviews that make up each class are passed through

various preprocesses (ngrams, deleting common words, tf/idf), they have specific

features. In the sentence based method, each sentence obtained from a review is

perceived as a new review. The third one is TextBlob which is a lexicon-based method

and it is a Python library for sentiment analysis. It polarizes sentences in the range of [-

1, 1]. Namely, -1 means that it is a negative statement and 1 is vice versa. In our study

we use TextBlob to predict star ratings of restaurants‟ reviews in a Likert scale.

The last sentiment analysis method is a hybrid that combines three other methods. For

the hybrid sentiment analysis, we apply two different approaches. In the first approach,

each sentiment analysis method makes a classification for a review. However, we

compare the probability values they calculate when classifying. For instance, suppose

we are trying to find out the relevant review belongs to which class. Review-based

states that %90 probability is a “5” stars review, sentence-based states that %60

probability is a “4” stars review, and dictionary-based states %40 probability is a “2”

141

stars review. In this case, we take the highest probability of prediction. We assume that

the related sentiment analysis method is more confident in its calculations.

To compare the relevant sentiment analysis methods with each other we select 1000

reviews written about restaurants in total. In order to see how well each method works

in each category, we receive 200 reviews from each category.

Table 6.5 The average distance between real ratings and review ratings based on first approach

Classifiers / Sent. A. Methods RB SB DB HB

Decision Tree 1.097 1.144 1.060 1.109

k-Nearest Neighbors 0.741 0.694 1.060 0.724

Random Forest 0.698 0.974 1.060 0.741

Multinomial Naïve Bayes 0.609 0.610 1.060 0.586

Logistic Regression 0.597 0.763 1.060 0.601

Support Vector Machine 0.551 0.727 1.060 0.531

Average Error 0.716 0.868 1.060 0,714

As we mentioned before, the dictionary-based method is a ready application for

sentiment analysis. Namely, it is not executed by each classifier. It is placed for display

only on the same table. Table 6.5. shows the average distance between the real values of

the ratings and the values calculated by the methods based on review texts. That is to

say, how close the real rating values are to results based on review texts. According to

the results:

-The DB method gives worse results than other methods compared to all other

classifiers, except that it gives the best result in the DT classifier.

- The SB method give worse results than RB and HB methods according to all other

classifiers, except that it gives the best result in the kNN classifier compared to all other

methods.

-When we come to the comparison of RB and HB, we see that the situation changes

according to the classifier used. However, we see the best result in Table V. is given by

the HB method using the SVM classifier.

- When we look at the average error rate according to the results of all classifiers, we

see that the best result is HB, RB, SB and then DB, respectively.

In order to see that the results do not change according to the selected test set, we

applied it on different test sets. You can see the results on another test set below.

142

Table 6.6 Another example for the distance between

real ratings and review ratings based on first approach

Classifiers / Sent. A. Methods RB SB DB HB

Decision Tree 1.130 1.150 1.105 1.134

k-Nearest Neighbors 0.708 0.644 1.105 0.689

Random Forest 0.709 0.936 1.105 0.751

Multinomial Naïve Bayes 0.608 0.607 1.105 0.582

Logistic Regression 0.574 0.752 1.105 0.589

Support Vector Machine 0.538 0.705 1.105 0.518

Average Error 0.711 0.799 1.105 0,709

As can be seen from Table 6.6, when we applied our methods on a second test set, and

we got similar results.

For the second approach that we use to calculate the star rating of a review by the

hybrid sentiment analysis, firstly, as in the first approach, the three other models

calculate the class of the review, and then the class of the review is determined by the

majority of three models, regardless of the probability ratio of the results. That is, at

least two methods need to indicate that the review is in the same class. If each method

finds a different class for the text, then the first approach is used to determine the class

of the review based on the probability ratio. To make comparison, we used the same

data set in Table 6.6. where we got the results using the first approach.

Table 6.7 The distance between real ratings and review ratings based on second approach

Classifiers / Sent. A. Methods RB SB DB HB

Decision Tree 1.130 1.150 1.105 1.040

k-Nearest Neighbors 0.708 0.644 1.105 0.663

Random Forest 0.709 0.936 1.105 0.714

Multinomial Naïve Bayes 0.608 0.607 1.105 0.600

Logistic Regression 0.574 0.752 1.105 0.629

Support Vector Machine 0.538 0.705 1.105 0.530

Average Error 0.711 0.799 1.105 0,696

As can be seen from Table 6.7. when we compare with the first approach, HB sentiment

analysis method gives better results with DT, kNN and RF classifiers, while it gives

worse results with MNB, LR and SVM classifiers. In order to see that the results do not

143

change according to the selected test set, we applied it on different test sets multiple

times, but we obtained similar results.

As we mention, our goal is to find out how close the real values of the ratings between

the values calculated by the methods based on review texts. But what about capturing

the real values according to the calculations that each method draws from the review

texts? In other words, what is the precision values of each method? Because for some

platforms, it may be important how many reviews are correctly classified, rather than

how close they are to real values. Let‟s criticize this situation checking by the SVM

classifier which is the best classifier that gives the closest results.

As can be seen from Table 6.8,

-The DB method seems to be much worse than other methods at determining the stars of

the reviews. In particular, almost three quarters of 2-, 3- and 4-star reviews are

misclassified.

-While the SB method seems to be quite successful in determining 1- and 5-star reviews

compared to other methods, this success decreases in 2-, 3- and 4-star reviews.

Table 6.8 Precision values of each method based on Support Vector Machines

Sentiment Analysis Methods Class 1 Class 2 Class 3 Class 4 Class 5 Total

Review-based
128

200

105

200

100

200

105

200

122

200

560

1000

Sentence-based
177

200

41

200

62

200

71

200

155

200

506

1000

Dictionay-based
96

200

54

200

42

200

55

200

142

200

389

1000

Hybrid-based
138

200

108

200

99

200

109

200

130

200

584

1000

-When we look at the RB method, the number of correct predictions and the almost

equal division of this number into each class shows that this method is successful than

the DB and SB methods.

-When we look at the HB method, it gives slightly better results than the RB method. It

is also another success that the number of correct predictions is distributed almost

equally to each class. We get these results using the first hybrid approach. Let‟s check

the second approach of hybrid method that there is any big difference.

144

Table 6.9 Precision values of hybrid-based method

based on second approach using Support Vector Machines

Sentiment Analysis Methods Class 1 Class 2 Class 3 Class 4 Class 5 Total

Hybrid-based
133

200

107

200

100

200

105

200

127

200

572

1000

As can be seen from Table 6.9, as the previous evaluation, the results of the second

method and the equal distribution of the number of correct predictions were similar, but

slightly worse than the first method.

6.5 Conclusion

This chapter discussed the effects of both the classifiers and sentiment analysis

approaches to predict fine-grained restaurants‟ review rating stars. For this purpose, we

wanted to show which one is the best for the related fields on the five class-based

review rating stars and whether there is a better sentiment analysis approach as we

called hybrid-based.

The results we have obtained from the researches to date show that the success of each

classifier can change in every chosen field. In this study, we observed that the SVM

classifier gives better results compared to other classifiers in determining the star ratings

of the restaurants based on the text of the reviews. In fact, the point to be considered

here is which classifier will perform better according to the sentiment analysis approach

chosen. Otherwise, as seen in Table 6.4., we observe that the MNB and LR also

performed closely, without selecting the sentiment analysis approach.

When we come to sentiment analysis approaches, we see that the DB method gives

worse results compared to other methods, except that it gives the best result in the DT

classifier. This shows that TextBlob, a simple API by Python, is not very good at

classifying short text in a fine-grained star ratings compared to other methods. The SB

method seems good in terms of the number of reviews correctly it classifies, but it is not

successful in distributing this number equally to each class. The RB method gives the

best results in classifiers such as RF and LR compared to other methods. In addition, the

number of correct predictions and the almost equal division of this number into each

class shows that this method is successful than the DB and SB methods. Similarly, HB

145

method gives the best results in MNB and SVM classifiers compared to other methods.

With its result in the SVM classifier, it gives the best result among all other classifiers.

It also gives the best result in the average error rate of all classifiers. Apart from this, as

we can see in Table VIII., it gives the best result in the number of correct predictions

and the success of distributing this number almost equally to each class.

We hope that our proposed hybrid-based sentiment analysis approach and the

experimental study results will help future researches according to the chosen field.

7. CONCLUSIONS

It is obvious that e-commerce, whose importance has increased more with the Covid-19

pandemic, will push companies to new fields of work in analyzing ever-changing

consumer needs and behaviors. In this sense, in order to analyze the users, besides the

behaviors of the users in e-commerce environments, many factors such as the society,

living conditions, spending habits, ways of spending time, communication forms and

channels, and opportunities to access reliable and effective information should be

examined. However, since studying human behavior as a whole requires a great deal of

effort and time or is impossible in the Internet environment, the problem has been

broken down into smaller parts to reach the whole. In other words, the necessary and

sufficient information is collected by examining the user's small behaviors such as

clicking, watching, listening, buying, sharing with other users. As a result, this

information is used to predict the next behavior of the user concerned. We can say that

one of the tools that will analyze this information best is the recommendation systems.

It has met and will continue to meet the needs of many e-commerce platforms to a large

extent with many practical and simple methods. However, due to the diverse e-

commerce environments, existing traditional recommendation systems have become

unable to meet the needs in this field. In this context, our research aimed to eliminate

146

the problems in this area to some extent by offering different methods such as trust

based, time decay based, review based recommendations.

In Chapter 3, we propose a method based on trustful users to troubleshoot fake accounts

especially for e-commerce platforms that offer services such as restaurant, café, hotel,

etc. Accordingly, we calculate the trust value of each user by evaluating the

relationships between users in the database. Then, while calculating the rating score of

each product, we enable the users who rated the product to affect the result according to

the trust value. Another suggestion is to calculate based on the experience of the most

trusted users in the system, especially for the rating score of the products that are not

rated or rated by a few numbers of users. The results we obtained show that the

products that are rated by many users and reached their real values are close to our

score, and that our method is efficient and can be used in related e-commerce platforms.

In addition, it has been observed that challenges such as sparsity and robustness

experienced in the recommendation systems can be solved to some extent.

In Chapter 4, a time-based recommendation system has been proposed to prevent the

unfair scoring system experienced in many e-commerce platforms, especially providing

services such as restaurants, cafes, hotels. It is determined that many companies can not

reach the value they deserve due to the ratings given to their workplaces years ago, or

they get the value they don‟t deserve. But we know that the hotter ratting we get for

such businesses, the healthier information we get. In order to overcome this situation, a

method considering the times of the ratings given by users has been proposed.

Accordingly, when calculating the rating score of a product, the result is reached by

evaluating the date of the ratings given by each user who rated the product. Thus, the

closer the rating given by a user to the present day, the more effective it is to calculate

the rating score of the product.

In Chapter 5, to predict fine-grained review rating stars, we focus on the impact of

simple text preprocessing decisions especially on restaurant reviews. According to the

experimental results, a simple stopwords elimination, lowercasing, removing common

words, and lastly the combination of 1-to-3 N-grams perform better than other

preprocessing methods for improving the classification accuracy of the five class-based

review rating stars. Besides this, results show that the effects of the preprocessing

methods can change in any domain. For this reason, all the possible preprocessing

147

methods should be considered to apply before used in any application. And applying the

order of the preprocessing methods can also be important.

In Chapter 6, another method is proposed in which we can ensure that the products get

the value they deserve. This method is the sentiment analysis that includes the

calculations we made based on the reviews made about the product while calculating

the rating score of the product. The proposed hybrid method is aimed to find a better

result by using the strengths of existing review-based, sentence-based, and dictionary-

based sentiment analysis. Besides, the results of our experimental studies also led to the

comparison of the sentiment analysis methods for the quality of the multi-class star

rating challenge, specifically on restaurant reviews. According to the results, the

average distance between real ratings and review ratings based on the proposed hybrid

sentiment analysis method gives the best results using the SVM classifier compared to

other methods. it also gives the best result in the average error rate of all classifiers.

Apart from this, it gives the best result in the number of correct predictions and the

success of distributing this number almost equally to each class.

As a result, we think that all the methods we recommend can play an important role in

improving the quality of the recommendation systems. In particular, in order to provide

more reliable and effective information to users, it can be presented to the users by

calculating multiple product rating scores on the same platform. Thus, the users can

make the final decision and prevent the possible frustration of the users. In other words,

while giving the general average score of a product, it can also be shown according to

the trusted users, time decay of the ratings, and review based. Therefore, users can get

healthier information by checking the rating scores of the products based on different

methods.

148

REFERENCES

[1] P. Winters and M. Zeller, "Social Media, Recommendation Engines and Real-

Time Model Execution: A Practical Case Study," 2011. [Online]. Available:

https://www.knime.org/files/knime_zementis_white_paper.pdf. [Accessed 10

August 2015].

[2] N. Tintarev, "Explaining recommendations," Aberdeen, 2009.

[3] "tf-idf," Wikimedia Foundation, 11 September 2015. [Online]. Available:

https://en.wikipedia.org/wiki/Tf%E2%80%93idf. [Accessed 12 December

2016].

[4] The Power of Reviews, "How ratings and reviews influence the buying behavior

of the modern consumer," November 2014. [Online]. Available:

https://www.powerreviews.com/wp-

content/uploads/2016/04/PowerofReviews_2016.pdf. [Accessed 1 June 2020].

[5] A. Ahsan, "Consumer ratings-reviews and its impact on consumer purchasing

behavior," KTH Royal Institute of Technology, Stockholm, 2017.

[6] N. I. Holleschovsky and E. Constantinides, "Impact of online product reviews on

purchasing decisions," International Conference on Web Information Systems

and Technologies, 2016.

[7] S. Deng, L. Huang and G. Xu, "Social network-based service recommandation

with trust enhancement," Expert Systems with Applications, pp. 8075-8084,

2014.

[8] P. Melville ve V. Sindhwani, «Recommender Systems,» 22 April 2010.

[Çevrimiçi]. Available: http://www.prem-

melville.com/publications/recommender-systems-eml2010.pdf. [EriĢildi: 21

August 2015].

[9] S. Owen, R. Anil, T. Dunning and E. Friedman, Mahout in Action, Shelter

Island: Manning Publications Co., 2012.

[10] "Pearson's Correlation Coefficient," University of the West of England, [Online].

Available: http://learntech.uwe.ac.uk/da/Default.aspx?pageid=1442. [Accessed 1

149

October 2015].

[11] J. D. Ullman, «Clustering,» 2 October 2015. [Çevrimiçi]. Available:

http://infolab.stanford.edu/~ullman/mmds/ch7.pdf.

[12] Q. Wang, J. D. Raj and R. LVN, "Recommending News Articles using Cosine

Similarity Function," 2014. [Online]. Available:

http://support.sas.com/resources/papers/proceedings14/1886-2014.pdf.

[Accessed 13 November 2015].

[13] J. B. Schafer, D. Frankowski, J. Herlocker and S. Sen , "Collaborative Filtering

Recommender Systems," 2006. [Online]. Available:

http://faculty.chas.uni.edu/~schafer/publications/CF_AdaptiveWeb_2006.pdf.

[Accessed 20 February 2015].

[14] Y. Chen, C. Wu, M. Xie and X. Guo, "Solving the Sparsity Problem in

Recommender Systems Using Association Retrieval," JOURNAL OF

COMPUTERS, pp. 1896-1902, 9 September 2011.

[15] M. A. Ghazanfar and A. Prugel-Bennett, "A Scalable, Accurate Hybrid

Recommender System," 10 January 2010. [Online]. Available:

http://eprints.soton.ac.uk/268430/1/Scalable_accurate_HRS.PDF. [Accessed 12

May 2016].

[16] X. Su and T. M. Khoshgoftaar, "A Survey of Collaborative Filtering

Techniques," Advances in Artificial Intelligence, 3 August 2009.

[17] P. Adamopoulos and A. Tuzhilin, "Probabilistic Neighborhood Selection in

Collaborative Filtering Systems," ACM Conference on Recommender Systems

RECSYS 2014, 6 October 2014.

[18] S. (. K. Lam and J. Riedl, "Shilling Recommender Systems for Fun and Profit,"

in WWW2004, New York, 2004.

[19] M. IĢık, H. Dağ ve Y. IĢıl, «E-TĠCARET SĠSTEMLERĠ ĠÇĠN BĠR ÖNERĠ

SĠSTEMĠ: MAHOUT,» %1 içinde YBS.2014, Ġstanbul, 2014.

[20] M. Trujillo, M. Millan and E. Ortiz, "A Recommender System Based on Multi-

features," in ICCSA 2007, Berlin, 2007.

[21] H. Ma, H. Yang, M. R. Lyu and I. King, "SoRec: social recommendation using

probabilistic matrix factorization," in CIKM’08, California, 2008.

[22] D. Shin, J.-w. Lee, J. Yeon and S.-g. Lee, "Context-Aware Recommendation by

Aggregating User Context," in IEEE Conference on Commerce and Enterprise

Computing, Vienna, 2009.

[23] M. Jamali and M. Ester, "Modeling and comparing the influence of neighbors on

the behavior of users in social and similarity networks," in IEEE International

Conference on Data Mining Workshops, Sydney, 2010.

[24] N. Zheng ve Q. Li, «A recommender system based on tag and time information

for social tagging systems,» 2010. [Çevrimiçi]. Available:

http://www.sciencedirect.com/science/article/pii/S0957417410010882.

[25] S. J. Yu, "The dynamic competitive recommendation algorithm in social

network services," Information Sciences, pp. 1-14, 6 November 2011.

[26] H.-N. Kim, A. Alkhaldi, A. El Saddik and G.-S. Jo, "Collaborative user

modeling with user-generated tags for social recommender systems," Expert

150

Systems with Applications, pp. 8488-8496, 2011.

[27] J. Zhang, Y. Wang and J. Vassileva, "SocConnect: A personalized social

network aggregator and recommender," Information Processing and

Management, pp. 721-737, 6 Ekim 2012.

[28] F. Ullah, G. Sarwar and S. Lee, "Social network and device aware personalized

content recommendation," Conference on Electronics, Telecommunications and

Computers– CETC 2013, p. 528 – 533, 2014.

[29] Z. Sun, L. Han, W. Huang, X. Wang, X. Zeng, M. Wang and H. Yan,

"Recommender systems based on social networks," The Journal of Systems and

Software, pp. 109-119, 5 Ekim 2014.

[30] L. Yu-sheng, S. Mei-na, E. Hai-hong and S. Jun-d, "Social recommendation

algorithm fusing user interest social network," July 2014. [Online]. Available:

https://www.researchgate.net/publication/265128498. [Accessed 11 May 2016].

[31] X. Han, L. Wang, N. Crespi, S. Park and Á. Cuevas, "Alike people, alike

interests? Inferring interest similarity in online social networks," Decision

Support Systems, pp. 92-106, 9 Aralık 2014.

[32] T. Yuan, J. Cheng, X. Zhang, Q. Liu and H. Lu, "How friends affect user

behaviors? An exploration of social relation analysis for recommendation,"

Knowledge-Based Systems, pp. 70-84, 12 August 2015.

[33] A. J. Chaney, D. M. Blei and T. Eliassi-Rad, "A Probabilistic Model for Using

Social Networks in Personalized Item Recommendation," in RecSys '15:

Proceedings of the 9th ACM Conference on Recommender Systems, Vienna,

2015.

[34] M. Gan, "COUSIN: A network-based regression model for personalized

recommendations," Decision Support Systems, pp. 58-68, 11 December 2015.

[35] F. Colace, M. D. Santo, L. Greco, V. Moscato and A. Picariello, "A

collaborative user-centered framework for recommending items in Online Social

Networks," Computers in Human Behavior, pp. 694-704, 5 Ocak 2015.

[36] A. H. Celdrán, M. G. Pérez, F. J. G. Clemente and G. M. Pérez, "Design of a

recommender system based on users‟ behavior and collaborative location and

tracking," Journal of Computational Science, pp. 83-94, 10 December 2015.

[37] C. Yang, Y. Zhou and D. M. Chiu, "Who are like-minded: mining user interest

similarity in online social networks," Proceeding of the AAAI Conference on

Web and Social Media, pp. 731-734, 7 March 2016.

[38] C. Biancalana, F. Gasparetti, A. Micarelli, A. Miola and G. Sansonetti, "Context-

aware movie recommendation based on signal processing and machine

learning," Proceedings of the 2nd Challenge on Context-Aware Movie

Recommendation, pp. 5-10, October 2011.

[39] D. Fijałkowski and R. Zatoka, "An architecture of a Web recommender system

using social network user profiles for e-commerce," in Proceedings of the

Federated Conference on Computer Science and Information Systems, Wrocław,

2011.

[40] W. Carrer-Neto, M. L. Hernández-Alcaraz, R. Valencia-García and F. García-

Sánchez, "Social knowledge-based recommender system. Application to the

movies domain," Expert Systems with Applications, vol. 39, no. 12, pp. 10990-

151

11000, September 2012.

[41] P. Bedi, H. Kaur and S. Marwaha, "Trust based recommender system for the

semantic web," Proceedings of the 20th international joint conference on

Artifical intelligence, pp. 2677-2682, January 2007.

[42] J. O‟Donovan and B. Smyth, "Trust in recommender systems," Proceedings of

the 10th international conference on Intelligent user interfaces, pp. 167-174,

January 2005.

[43] M. Jamali and M. Ester, "TrustWalker: A Random walk model for combining

trust-based and item-based recommendation," Proceedings of the 15th ACM

SIGKDD international conference, p. 2009, June 28- July 1 2009.

[44] H. Ma, I. King and M. R. Lyu, "Learning to recommend with social trust

ensemble," Proceedings of the 32nd international ACM SIGIR conference, pp.

203-210, 19-23 July 2009.

[45] N. Lathia, S. Hailes and L. Capra, "Trust-based collaborative filtering,"

International Conference on Trust Management, pp. 119-134, 2008.

[46] C.-W. Hang and M. P. Singh, "Trust-based recommendation based on graph

similarity," in Proceedings of the 13th International Workshop on Trust in Agent

Societies (TRUST), Toronto, Canada, 2010.

[47] Y.-M. Li, C.-T. Wu and C.-Y. Lai, "A social recommender mechanism for e-

commerce: Combining similarity, trust, and relationship," Decision Support

Systems, pp. 740-752, 13 Mart 2013.

[48] C. Chen, J. Zeng, X. Zheng and D. Chen, "Recommender system based on social

trust relationships," 2013 IEEE 10th International Conference on e-Business

Engineering, September 2013.

[49] B. Yang, Y. Lei, D. Liu and J. Liu, "Social collaborative filtering by trust," IEEE

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,

pp. 1633-1647, August 2017.

[50] D. O‟Doherty, S. Jouili and P. V. Roy, "Trust-Based Recommendation: an

Empirical Analysis," in Sixth ACM Workshop on Social Network Mining and

Analysis (SNA-KDD 2012), 2012.

[51] M. G. Ozsoy and F. Polat, "Trust Based Recommendation Systems," in

Proceedings of the 2013 IEEE/ACM International Conference on Advances in

Social Networks Analysis and Mining, Niagara Ontario Canada, 2013.

[52] H. Zhong, S. Zhang, Y. Wang and Y. Shu, "Study on Directed Trust Graph

Based Recommendation for E-commerce System," INTERNATIONAL

JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, pp. 510-523,

August 2014.

[53] R. Chamsi Abu Quba, S. Hassas, U. Fayyad, M. Alshomary and C. Gertosio,

"iSoNTRE: the Social Network Transformer into Recommendation Engine," in

2014 IEEE/ACS 11th International Conference on Computer Systems &

Applications (AICCSA), Doha, Qatar, 2014.

[54] G. Guo, J. Zhang, D. Thalmann, A. Basu and N. Yorke-Smith, "From Ratings to

Trust: an Empirical Study of Implicit Trust in Recommender Systems," in SAC

'14: Proceedings of the 29th Annual ACM Symposium on Applied Computing,

Gyeongju Republic of Korea, 2014.

152

[55] D. H. Alahmadi and X.-J. Zeng, "ISTS: Implicit social trust and sentiment based

approach to recommender systems," Expert SystemsWithApplications, pp. 8840-

8849, 2015.

[56] S. Deng, L. Huang, Y. Yin and W. Tang, "Trust-based service recommendation

in social network," Applied Mathematics & Information Sciences, pp. 1567-

1574, 1 May 2015.

[57] F. Keikha, M. Fathian and M. R. Gholamian, "TB-CA: A hybrid method based

on trust and context-aware for recommender system in social networks,"

Management Science Letters, p. 471–480, 18 June 2015.

[58] H. Wu, K. Yue, Y. Pei, B. Li, Y. Zhao and F. Dong, "Collaborative topic

regression with social trust ensemble for recommendation in social media

systems," Knowledge-BasedSystems, p. 1–12, 16 January 2016.

[59] N. ÇETĠN and N. ORHUN, Apache Mahout Scalable Machine Learning and

Data Mining, EskiĢehir: Anadolu University, 1998.

[60] R. Tanase and R. Radu , "Linear Algebra," 2009. [Online]. Available:

http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture1/lecture1.

html. [Accessed 28 October 2016].

[61] M. IġIK, Pagerank && Trustrank, Ġstanbul: Ġkinci adam yayınları, 2013.

[62] S. Brin, L. Page, R. Motwami and T. Winogard, "The PageRank citation

ranking: Bringing order to the web," Stanford University, Computer Science

Department, 1999.

[63] R. S. Wills, When Rank Trumps Precision: Using The Power Method to

Compute Google's PageRank, Raleigh: Nort Carolina State University, Dept. of

Mathematics, 2007.

[64] "Trust marks report 2013," Linnea Persson, European Consumer Centre Sweden,

2013.

[65] T. Nwaogu, V. Simittchieva, M. Whittle and M. Richardson, "Study on Online

Consumer Reviews in the Hotel Sector," European Commission Directorate

General for Health and Consumers (DG SANCO), 2014.

[66] Q. T. Lee, Y. Park and Y.-T. Park, "A time-based approach to effective

recommender systems using implicit feedback," Expert Systems with

Applications, pp. 3055-3062, 2008.

[67] R. Raju, I. Pradeep, I.Bhagyasri, P. Praneetha and P. Teja, "Recommender

systems for e-commerce: novel parameters and issues," International Journal of

Advanced Research in Computer Science and Software Engineering, pp. 248-

253, September 2013.

[68] Y. Zhang, M. Zhang, Y. Zhang, G. Lai, Y. Liu, H. Zhang and S. Ma, "Daily-

aware personalized recommendation based on feature-level time series analysis,"

in WWW '15: Proceedings of the 24th International Conference on World Wide

Web, Florence, Italy, 2015.

[69] X. Jiang and Y. Zhang, "Dynamic item-based recommendation algorithm with

time decay," 2010 Sixth International Conference on Natural Computation , pp.

241-247, 2010.

[70] "The 2018 Amazon Shopper Behaivor Study," 2018. [Online]. Available:

http://learn.cpcstrategy.com/rs/006-GWW-889/images/2018-Amazon-Shopper-

153

Behavior-Study.pdf. [Accessed 10 September 2018].

[71] "2018 ReviewTrackers Online Reviews Stats and Survey," Review Trackers,

[Online]. Available: https://www.reviewtrackers.com/reports/online-reviews-

survey/. [Accessed 19 September 2018].

[72] "TripBarometer 2016," June 21 – July 8 2016. [Online]. Available:

https://www.tripadvisor.com/TripAdvisorInsights/wp-

content/uploads/2018/01/TripBarometer-2016-Traveler-Trends-Motivations-

Global-Findings.pdf. [Accessed 15 August 2018].

[73] P. Sharma, A. Agrawal, L. Alai and A. Garg, "Challenges and Techniques in

Preprocessing for Twitter Data," International Journal of Engineering Science

and Computing,, pp. 6611-6613, April 2017.

[74] K. V. Ghag and K. Shah, "Comparative Analysis of Effect of Stopwords

Removal on Sentiment Classification," IEEE International Conference on

Computer, Communication and Control, 2015.

[75] Z. Jianqiang and G. Xiaolin, "Comparison Research on Text Pre-processing

Methods on Twitter Sentiment Analysis," IEEE Access, pp. 2870-2879, 22

February 2017.

[76] V. Srividhya and R. Anitha, "Evaluating Preprocessing Techniques in Text

Categorization," International Journal of Computer Science and Application

Issue, pp. 49-51, 2010.

[77] J. Camacho-Collados and M. T. Pilehvar, "On the Role of Text Preprocessing in

Neural Network Architectures:," Cornell University Library, 23 August 2018.

[78] K. V. Ghag and K. Shah, "Optimising Sentiment Classification using

Preprocessing Techniques," International Journal of IT & Knowledge

Management, pp. 61-70, Jan-Jun 2015.

[79] R. Gull, U. Shoaiba, S. Rasheed, W. Abid and B. Zahoor, "Pre Processing of

Twitter‟s Data for Opinion Mining in Political Context," 20th International

Conference on Knowledge Based and Intelligent Information and Engineering,

pp. York, United Kingdom, 5-7 September 2016.

[80] Z. Jianqiang, "Pre-processing Boosting Twitter Sentiment Analysis?," IEEE

International Conference on Smart City/SocialCom/SustainCom, pp. 748-753,

19-21 December 2015.

[81] I. Safeek and M. R. Kalideen, "Preprocessing on Facebook Data for Sentiment

Analysis," in 7th International Symposium 2017 on “Multidisciplinary Research

for Sustainable Development”, Oluvil, Sri Lanka, 2017.

[82] S. Vijayarani, J. Ilamathi and Nithya, "Preprocessing Techniques for Text

Mining - An Overview," International Journal of Computer Science &

Communication Networks, pp. 7-16, 2015.

[83] I. Hemalatha, G. P. S. Varma and A. Govardhan, "Preprocessing the Informal

Text for efficient Sentiment Analysis," International Journal of Emerging

Trends & Technology in Computer Science (IJETTCS), pp. 58-61, July-August

2012.

[84] N. P.Katariya and M. S. Chaudhari, "Text Preprocessing For Text Mining Using

Side Information," International Journal of Computer Science and Mobile

Applications, pp. 01-05, January 2015.

154

[85] T. Singh and M. Kumari, "The Role of Text Pre-processing in Sentiment

Analysis," in Twelfth International Multi-Conference on Information

Processing-2016 (IMCIP-2016), 2016.

[86] A. S. Nayak, A. P. Kanive, N. Chandavekar and B. R, "Survey on Pre-

Processing Techniques for Text Mining," International Journal Of Engineering

And Computer Science, pp. 16875-16879, 6 June 2016.

[87] A. Krouska, C. Troussas and M. Virvou, "The effect of preprocessing techniques

on Twitter Sentiment Analysis," in 2016 7th International Conference on

Information, Intelligence, Systems & Applications (IISA), Chalkidiki, Greece,

2016.

[88] H. M. Zin, N. Mustapha, M. A. A. Murad and N. M. Sharef, "The Effects of Pre-

Processing Strategies in Sentiment Analysis of Online Movie Reviews," in The

2nd International Conference on Applied Science and Technology 2017

(ICAST’17), 2017.

[89] J. Pomikalek and R. Rehurek, "The Influence of preprocessing parameters on

text categorization," World Academy of Science, Engineering and Technology,

no. 33, January 2007.

[90] A. Schofield, M. Magnusson, L. Thompson and D. Mimno, "Understanding Text

Pre-Processing for Latent Dirichlet Allocation," Widening Natural Language

Processing , 2017.

[91] M. Fan and M. Khademi, "Predicting a Business‟ Star in Yelp from Its Reviews‟

Text Alone," January 2014. [Online]. Available:

https://www.researchgate.net/publication/259578317_Predicting_a_Business_St

ar_in_Yelp_from_Its_Reviews_Text_Alone. [Accessed 12 June 2018].

[92] R. Duwairi and M. El-Orfali, "A study of the effects of preprocessing strategies

on sentiment analysis for Arabic text," Journal of Information Science, pp. 501-

513, 12 May 2014.

[93] M. K. Saad, The Impact of Text Preprocessing and Term Weighting on Arabic

Text Classification, Computer Engineering Department - The Islamic University

- Gaza, 2010.

[94] A. K. Uysal and S. Gunal, "The impact of preprocessing on text classification,"

Information Processing and Management, pp. 104-112, 16 September 2013.

[95] M. O. Shiha and S. Ayvaz, "The Effects of Emoji in Sentiment Analysis,"

International Journal of Computer Electrical Engineering, pp. 360-369, June

2017.

[96] K. Wegrzyn-Wolska, L. Bougueroua, . H. Yu and J. Zhong, "Explore the Effects

of Emoticons on Twitter Sentiment Analysis," Computer Science and

Information Technology, pp. 65-77, 2016.

[97] Y. Park and R. J. Byrd, "Hybrid text mining for finding abbreviations and their

definitions," IBM Thomas J. Watson Research Center.

[98] A. Kaur, P. Singh and S. Rani, "Spell Checking and Error Correcting System for

text paragraphs written in Punjabi Language using Hybrid approach,"

International Journal Of Engineering And Computer Science, pp. 8030-8032,

September 2014.

[99] N. Bertoldi, M. Cettolo and M. Federico, "Statistical Machine Translation of

155

Texts with Misspelled Words," Association for Computational Linguistics, pp.

412-419, June 2010.

[100] P. O. Müller, I. Ohnheiser, S. Olsen and F. Reiner, "Multi-word Expressions,"

October 2011. [Online]. Available: http://neon.niederlandistik.fu-

berlin.de/static/mh/Huening_Schluecker_2015_ms.pdf. [Accessed 11 August

2018].

[101] M. Constant, A. Sigogne and P. Watrin, "Discriminative Strategies to Integrate

Multiword Expression Recognition and Parsing," Association for Computational

Linguistics, pp. 204-212, July 2012.

[102] M. Schonlau, N. Guenther and I. Sucholutsky, "Text mining with ngram

variables," The Stata Journal, pp. 866-881, 2017.

[103] "European Ecommerce Report 2018 Edition," Ecommerce Operations,

Netherlands, 2018.

[104] Y. Wan and M. Nakayama, "The Reliability of Online Review Helpfulness,"

Journal of Electronic Commerce Research, pp. 179-189, 2014.

[105] G. Lackermair, D. Kailer and K. Kanmaz, "Importance of Online Product

Reviews from a Consumer‟s Perspective," Advances in Economics and Business,

pp. 1-5, 2013.

[106] P. JAIN, K. JAIN and P. K. JAIN, "Electronic-commerce and its Global

Impact," Journal of Engineering & Technology, pp. 1-6, 26 May 2016.

[107] M. Govindarajan, "Sentiment Analysis of Restaurant Reviews Using Hybrid

Classification Method," International Journal of Soft Computing and Artificial

Intelligence, pp. 17-23, May 2014.

[108] Y. Guo and Z. Wang, "Predicting Restaurants‟ Rating and Popularity Based on

Yelp Dataset," 2017. [Online]. Available:

http://cs229.stanford.edu/proj2017/final-reports/5244334.pdf. [Accessed 23 12

2018].

[109] M. Yu, M. Xue and W. Ouyang, "Restaurants Review Star Prediction for Yelp

Dataset," 2015. [Online]. Available:

https://pdfs.semanticscholar.org/43c5/6af59062ac41031ef80b5853cc323a20be26

.pdf. [Accessed 22 11 2018].

[110] N. Asghar, "Yelp Dataset Challenge: Review Rating Prediction," 17 May 2016.

[Online]. Available: https://arxiv.org/pdf/1605.05362.pdf. [Accessed 12 10

2018].

[111] B. Kapukaranov and P. Nakov, "Fine-Grained Sentiment Analysis for Movie

Reviews in Bulgarian," International Conference Recent Advances in Natural

Language Processing, pp. 266-274, 2015.

[112] A. Ghazvinian, "Star Quality: Sentiment Categorization of Restaurant Reviews,"

2007. [Online]. Available:

https://pdfs.semanticscholar.org/8afb/157ef26251b42bdf44e5d440e1aaa3297c90

.pdf. [Accessed 15 09 2018].

[113] J. L. Lee, P. B. Awayan and E. Mendoza, "A Comparative Study: Different

Automatic Approaches of Stars Generation for Reviews," International

Conference on Software and e-Business, pp. 28-32, 28-30 December 2017.

[114] T. Doan and J. Kalita, "Sentiment Analysis of Restaurant Reviews on Yelp with

156

Incremental Learning," IEEE International Conference on Machine Learning

and Applications (ICMLA), 18-20 December 2016.

[115] H. Zhang, X. Liu and K. Ying, "Reviews Usefullness Prediction for Yelp

Dataset," 2017. [Online]. Available:

https://cseweb.ucsd.edu/classes/wi17/cse258-a/reports/a040.pdf. [Accessed 12

12 2018].

[116] W. Huang and Y. Yu, "Is it truly a 5-Star Movie? Restoring the Movie‟s

Truthful Rating," IEEE/ACM International Conference on Advances in Social

Networks Analysis and Mining (ASONAM), pp. 1337-1338, 18-21 August 2016.

[117] M. Ochi, M. Okabe and R. Onai, "Rating Prediction using Feature Words

Extracted from Customer Reviews," International ACM SIGIR conference on

Research and development in Information Retrieval, pp. 1205-1206, 24-28 July

2011.

[118] Z. Jin, Q. Li, D. D. Zeng, Y. Zhan, R. Liu, L. Wang and H. Ma, "Jointly

Modeling Review Content and Aspect Ratings for Review Rating Prediction,"

International ACM SIGIR conference, 17-21 July 2016.

[119] H. Wang, Y. Lu and C. Zhai, "Latent Aspect Rating Analysis without Aspect

Keyword Supervision," International conference on Knowledge discovery and

data mining, pp. 618-626, 21-24 August 2011.

[120] Y. Xu, W. Lam and R. Fan, "Hidden Aspect Rating Discovery from Text

Reviews of E-commerce Web Sites," Big Data Science International

Conference, 04-07 August 2014.

[121] Y. Xu, X. Wu and Q. Wang, "Sentiment Analysis of Yelp‟s Ratings Based on

Text Reviews," 2009. [Online]. Available:

http://cs229.stanford.edu/proj2014/Yun%20Xu,%20Xinhui%20Wu,%20Qinxia

%20Wang,%20Sentiment%20Analysis%20of%20Yelp's%20Ratings%20Based

%20on%20Text%20Reviews.pdf. [Accessed 12 12 2018].

[122] H. Chen, P. Wu, N. Yi, S. Li and X. Huang, "Fine-grained Sentiment Analysis of

Chinese Reviews Using LSTM Network," Journal of Engineering Science and

Technology Review, pp. 174-179, 25 February 2018.

[123] S. K. Chauhan, A. Goel, P. Goel, A. Chauhan and M. K. Gurve, "Research on

Product Review Analysis and Spam Review Detection," International

Conference on Signal Processing and Integrated Networks (SPIN), 2-3 February

2017.

[124] U. Kumari, A. Sharma and D. Soni, "Sentiment Analysis of Smart Phone

Product Review using SVM Classification Technique," International Conference

on Energy, Communication, Data Analytics and Soft Computing (ICECDS), 1-2

August 2017.

[125] R. R. L. Barbosa , S. Sánchez-Alonso and M. A. Sicilia-Urban , "Evaluating

Hotels Rating Prediction Based on Sentiment Analysis Services," Aslib Journal

of Information Management, pp. 392-407, January 2015.

[126] H.-L. Yang and A. F. Chao, "Sentiment Annotations for Reviews: An

Information Quality Perspective," Online Information Review, pp. 579-594, 09

April 2018.

[127] G. Vinodhini and R. Chandrasekaran, "A comparative Performance Evaluation

157

of Neural Network Based Approach for Sentiment Classification of Online

Reviews," Journal of King Saud University - Computer and Information

Sciences, pp. 2-12, January 2016.

[128] X. Fang and J. Zhan, "Sentiment Analysis Using Product Review Data," Journal

of Big Data, 16 June 2015.

[129] M. Malik, S. Habib and P. Agarwal, "A Novel Approach to Web-Based Review

Analysis Using Opinion Mining," Procedia Computer Science, pp. 1202-1209,

2018.

[130] S. Rudolph, "The Impact of Online Reviews on Customers‟ Buying Decisions,"

25 July 2015. [Online]. Available:

https://www.business2community.com/infographics/impact-online-reviews-

customers-buying-decisions-infographic-01280945#xJ5oI7soj1AAJYlv.97.

[Accessed 10 01 2019].

[131] "Local Consumer Review Survey," BrightLocal, 2018. [Online]. Available:

https://www.brightlocal.com/learn/local-consumer-review-survey/#local-

business-review-habits. [Accessed 22 01 2019].

[132] A. Hogenboom, D. Bal, F. Frasincar, M. Bal, F. d. Jong and U. Kaymak,

"Exploiting Emoticons in Sentiment Analysis," ACM Symposium on Applied

Computing, 18-22 March 2013.

[133] P. Chakriswaran, D. R. Vincent, . K. Srinivasan, V. Sharma, C.-Y. Chang and D.

G. Reina, "Emotion AI-Driven Sentiment Analysis: A Survey, Future Research

Directions, and Open Issues," Applied Sciences, 12 December 2019.

[134] Y.-J. Tai and H.-Y. Kao, "Automatic Domain-Specific Sentiment Lexicon

Generation with Label Propagation," Information Integration and Web-based

Applications & Services, 2-4 December 2013.

[135] M. IġIK and H. DAĞ, "The impact of text preprocessing on the prediction of

review ratings," Turkish Journal of Electrical Engineering and Computer

Sciences, p. 1405 – 1421, 08 May 2020.

[136] G. Maria Di Nunzio and F. Vezzani, "A Linguistic Failure Analysis of

Classification of Medical Publications: A Study on Stemming vs

Lemmatization," CLiC-it, 2018.

[137] R. Ahuja, A. Chug, S. Kohli, S. Gupta and P. Ahuja, "The Impact of Features

Extraction on the Sentiment Analysis," International Conference on Pervasive

Computing Advances and Applications, p. 341–348, 2019.

[138] A. Tripathy, A. Agrawal and S. K. Rath, "Classification of sentiment reviews

using n-gram machine learning approach," Expert Systems With Applications,

pp. 117-126, 24 March 2016.

[139] L. Wright, "Classifying textual fast food restaurant reviews quantitatively using

text mining and supervised machine learning algorithms," East Tennessee State

University, 2018.

[140] G. DĠLKĠ and Ö. DENĠZ BAġAR, "ĠġLETMELERĠN ĠFLAS TAHMĠNĠNDE

K- EN YAKIN KOMġU ALGORĠTMASI ÜZERĠNDEN UZAKLIK

ÖLÇÜTLERĠNĠN KARġILAġTIRILMASI," Istanbul Commerce University

Journal of Science, pp. 224-233, 2020.

[141] Ö. Akar and O. Güngör, "Classification of multispectral images using Random

158

Forest algorithm," Journal of Geodesy and Geoinformation, pp. 105 - 112,

November 2012.

[142] S. Mohod, C. Dhote and V. Thakare, "Modified Approach of Multinomial Naïve

Bayes for Text Document Classification," International Journal of Computer

Science & Communication, pp. 196-200, April - Sep 2015.

[143] A. Ng, "www.joparga3.github.io," March 2018. [Online]. Available:

https://joparga3.github.io/standford_logistic_regression/#what-is-logistic-

regression. [Accessed 20 February 2019].

[144] R. Baly and H. M. Hajj, "Wafer Classification Using Support Vector Machines,"

IEEE Transactions on Semiconductor Manufacturing, pp. 372-383, August

2012.

[145] M. Awad and R. Khanna, Efficient Learning Machines, Elsevier BV on behalf of

Faculty of Engineering, Ain Shams University, 2015, pp. 39-66.

159

CURRICULUM VITAE

Personal Information

Name and surname: Muhittin IġIK

Academic Background

Bachelor‟s Degree Education…: Anadolu University, EskiĢehir (Turkey)

 Education of Computer and Instructional Technologies

Post Graduate Education……...: Kadir Has University, Ġstanbul (Turkey)

Information Technology

Foreign Languages……………: English (C2)

Work Experience

Institutions Served and Their Dates:

01/09/2017 – 01/07/201

Information Technologies and Software Applications Teacher

Ġhsan ġerif Elementary School, Ġstanbul (Turkey)

01/07/2014 – Present

Information Technologies and Software Applications Teacher

Hasköy Secondary School, Ġstanbul (Turkey)

Contact

Phone:

E-mail Address:

