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IMPROVING THE QUALITY OF RECOMMENDER SYSTEMS  

IN E-COMMERCE PLATFORMS 

 

 

ABSTRACT 

Especially Covid-19 pandemic process, which has taken the world by storm,  has shed a 

clear light on the place of e-commerce, which is already increasing its influence with 

the globalizing world, in the future world of commerce. This pandemic process has 

shown that companies that can carry out their business on the internet, regardless of 

their sector, may survive, and the rest may suffer a great deal. As people choose the 

way to meet even their daily needs online, it caused the majority of companies to 

quickly turn to and analyze this field and start to take their place in the e-commerce 

world as soon as possible. As such, the tricks of e-commerce systems gained great 

importance. The most prominent of these tricks are product ratings and reviews that 

completely change the shopping idea of users. The scope of this research consists of 

experimental studies on how to calculate these product rating systems, which change 

the profit margin of the companies in the world of e-commerce, more effectively. Our 

study suggests different methods for the calculation of product rating score to prevent 

fake accounts, biased or malicious users and companies that make guiding or deceptive 

interventions for their products and services. That is to say, our study includes 

alternatives to the primitive calculations used in such systems that can be used in 

different e-commerce platforms, which can perform various calculations based on 

reliable users, time factor and reviews of products. In our experimental studies, we have 

reached various results that can prevent both the deceptive and guiding effect of fake 

accounts and the primitive and inadequacy of calculation methods in e-commerce 

systems. In this way, it is aimed that individuals who shop in various e-commerce 

platforms can reach real information and values and help companies that offer products 

and services to mirror themselves and create intelligent business ideas. 
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E-TĠCARET SĠSTEMLERĠNDE  

TAVSĠYE SĠSTEMLERĠNĠN KALĠTESĠNĠ ARTTIRMAK  

 

 

ÖZET 

Tüm dünyayı kasıp kavuran Covid-19 pandemisi, globalleĢen dünya ile birlikte zaten 

etkisini her geçen gün artıran e-ticaretin, gelecek ticaret dünyasındaki yerine net bir ıĢık 

tutmuĢtur. Bu pandemi süreci, hangi sektörde olunursa olunsun iĢlerini bir nebze de olsa 

internet üzerinden yürütebilen Ģirketlerin ayakta kalabileceğini, geriye kalanların ise 

büyük bir hezimete uğrayabileceklerini gösterdi. Günümüzde insanlar günlük 

ihtiyaçlarını bile internet üzerinden giderme yolunu seçince, Ģirketlerin büyük bir 

kısmının bu alana yönelmesine, bu alanı çözümlemesine ve bir an önce e-ticaret 

dünyasındaki yerini almaya çalıĢmasına yol açmıĢtır. Hal böyle olunca e-ticaret 

sistemlerinin püf noktaları büyük bir önem kazandı. Bu püf noktalarının en göze 

çarpanları ise kullanıcıların alıĢveriĢ fikrini tamamen değiĢtiren ürün puanları ve 

yorumları olmuĢtur. Bu araĢtırmamızın kapsamı da e-ticaret dünyasında bulunan 

Ģirketlerin kâr marjını değiĢtiren bu ürün puanlama sistemlerinin nasıl daha sağlıklı 

hesaplanacağına dair deneysel çalıĢmalardan oluĢmaktadır. ÇalıĢmamız ürün puanlama 

sistemlerindeki kötü ve ön yargılı kullanıcıları, sahte hesapları ve kendi ürün ve 

servislerine yönelik yaptıkları yönlendirici veya aldatıcı müdahalelerde bulunan 

Ģirketleri önlemek amacıyla birbirinden farklı yöntemler önermektedir. Bir baĢka 

deyiĢle, çalıĢmamız güvenilir kullanıcılar, zaman faktörü ve ürünlerin yorumlarından 

yola çıkarak çeĢitli hesaplamalar yapabilen, farklı e-ticaret ortamlarında ürün puanlama 

sistemleri için kullanılan temel hesaplamalara alternatif yöntemler içermektedir. 

Yaptığımız deneysel çalıĢmalarda e-ticaret ortamlarındaki ürün puanlama sistemlerinde 

yaĢanan gerek sahte hesapların aldatıcı ve yönlendirici etkisini gerekse hesaplama 

yöntemlerinin ilkelliğini ve yetersizliğini önleyecek çeĢitli sonuçlara ulaĢılmıĢtır. 

Böylece hem çeĢitli e-ticaret ortamlarında alıĢveriĢ yapan bireylerin gerçek bilgi ve 

değerlere ulaĢması hem de ürün ve hizmet sunan Ģirketlerin kendilerine ayna tutmasına 

ve yeni iĢ fikirleri oluĢturmasına yardımcı olunması hedeflenmiĢtir.  
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1. INTRODUCTION 

With the increasing time spent by the people in the electronic environment with each 

passing day, the trade has changed its direction. E-commerce, which we can roughly 

describe as the online version of traditional trade, increases its market share day by day 

with many alternatives it offers. Whether it is due to the limited time of today‟s people 

or because it contains more options and convenience, it makes e-commerce more 

attractive and preferred. These advantages have been applied not only to users or 

customers but also to companies that provide products or services. Thanks to e-

commerce, small businesses have had the opportunity to survive by reaching more 

masses in a short period of time against dominated conglomerates that it has not been 

able to fight with traditional ways. The biggest advantages of e-commerce are that it 

can be accessed by users 24/7, requires less labor and expense costs for companies 

compared to traditional commerce, brings a wide variety of products, less costly than 

traditional shopping, transparent business systems, personalized customer experiences, 

accessible from all over the world, which are the signals that trade will shift in this 

direction over time. 

With the increasing market share of e-commerce, it has led companies to invest more in 

this area, whether to reach more audiences or retain existing customers. For this 

purpose, companies have tried many ways such as adding their website to search 

engines‟ databases, advertising on social media, providing quality customer service, 

creating simple, understandable, authentic and reliable content, and the most important 

one is to make new, interesting, user-specific, and reliable recommendations which are 

the main subject that we work on in this thesis. Let‟s explain roughly recommendation 

systems to understand the concept of the thesis. 

Recommendation systems have become an indispensable building block for companies 

to be successful in e-commerce platforms because they have the advantage to offering 

the right product at the right time to the right person by using them. Recommendation 

engines are roughly software tools for providing next best offer, next best decision or 

next best activity suggestion for a particular customer. These suggestions, decisions or 

offers  help customers or users to make a decision in numerous fields such as when 
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choosing a music to listen, when buying an item, when selecting a movie for watching 

or when trying to find a book similar with one before. Amazon, Netflix, eHarmony, 

Pandora, TripAdvisor are probably the most well-known examples that use 

recommendation systems [1] .  

There are a couple of techniques in recommendation systems such as non-personalized 

recommenders, content-based recommenders, collaborative filtering recommenders etc. 

In this thesis, we focus on content-based recommenders and collaborative filtering 

recommenders which are used especially in e-commerce systems.  

Content-Based Filtering: “Content-based recommender systems base recommendations 

on user ratings and similarity between items” [2]. Actually, this approach comes from 

information retrieval. Namely, it is based on content analysis. This content can be a 

document or a website, or it can be defined as a movie, music, or a restaurant. It tries to 

provide items that are similar to those that users preferred before. In order to 

recommend new items, this algorithm compares attributes of items by looking for a user 

profile in which preferences are pre-existed in the database. In other words, it is actually 

based on the prosperities of the products and a profile of the customer‟s personal 

preferences or interests.  

This algorithm usually uses the Term Frequency & Inverse Document Frequency (tf-

idf) weighting in order to summarize the features of an item in databases. The tf-idf 

value reflects how important a word in a document or in other words how many times a 

word appears in a document.  It is often used by search engines to calculate how much a 

document is related to a given query [3]. 

Collaborative Filtering: Collaborative Filtering is a technique in recommendation 

systems, especially used by the biggest websites like Amazon, Netflix, Pandora and 

others, that uses user behavior such as purchases, clicks, and ratings. In this way, it 

provides recommendations to users using user items such as movies, music, books, etc. 

Collaborative filtering has a couple of algorithms to provide recommendations. In this 

thesis, we focus on especially user-based and item-based algorithms. These two ways of 

generating recommendations are typical. 
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1.1 Problem Definition 

As the number of people shopping on the internet increases, the number of investments 

and researches in this area has also increased. In particular, the companies try to develop 

new strategies to increase their sales by examining the behavior of the people using their 

sites. For instance, according to the report [4], 95% of the respondents stated that they 

consulted customer reviews before buying any products. They also stated that product 

reviews are very important especially in products such as electronics (82%), appliances 

(80%), and computers (80%) that have high prices. Again, in the same research, 80% of 

users stated that they examined especially negative reviews while buying any products. 

According to the research results of [5], when purchasing any product, the product score 

and the number of the people scoring to the related product are taken into consideration 

by the users. Especially if a product has above 4.5 stars and reviewed by many people, 

the rate of buying that product increases even more. Interestingly, if a product has 

received a low rating, it is not preferred by users regardless of the number of reviews, 

even if the product is rated by only two people. According to the results of another 

study in [6], 98% of the users stated that they checked the reviews when they thought 

about buying a product and 60% of them checked often or quite often. Many types of 

research and reports that examine the behaviors of users on e-commerce platforms while 

purchasing a product or service have been examined in certain parts of our thesis.  

When researches and reports have shown that users pay close attention to product 

ratings and reviews when purchasing a product or service, this has prompted both 

companies and users to manipulate the results of recommender algorithms. Some 

companies started to create fake accounts on their respective e-commerce platforms and 

give high scores to their products or services, especially this is a problem for many 

recommender systems which have databases that suffer from sparsity problem. 

Likewise, biased bloggers or malicious users have tried similar ways to lower the 

ratings of companies they dislike. Apart from this, there are also errors arising from 

traditional recommender systems. Since some recommender algorithms prefer 

traditional methods when calculating product score, it is realized that products or 

services do not get the values they deserve. The reason for this may be some challenges 

such as cold start, sparsity, scalability, overspecialization, robustness problems 

encountered by recommender systems as well as logical errors . For example, as we 
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explain in the related Chapter 4 of our thesis, the values of some products or services 

may change over time. For instance, when calculating the star rating of a hotel, it may 

be a problem to keep a rating that was given ten years ago, and a rating given yesterday. 

Although the hotel has renovated itself completely over time, it may seem to be a hotel 

that offers bad services since it could not get rid of the stars given years ago and 

because of that it may not get the value it deserves. The opposite is also true. A very bad 

hotel due to the high stars it collected years ago can get high scores, which will affect 

the users most. 

In order to be a solution to the problems mentioned above in the recommendation 

systems, we suggest three different models that can be used in different e-commerce 

platforms in calculating the product or service rating score. 

The first one is to find reliable or trusted users based on the relationship between users 

and calculate the product rating score considering the trust values of users. In other 

words, as the trust value of a user who rated the related product increases, the effect of 

that user on the product rating score increases.  

The second one is based on time decay. As we mentioned above, the structure or value 

of some products may change over time. Perhaps the value of a movie or a piece of 

music may not change over time, but the quality of the companies offering services such 

as hotels, restaurants, may change over time. Namely, the red-hot ratings and reviews 

made to such businesses enable us to access the healthiest information about their 

products or services. In this model, which is considered for such e-commerce platforms, 

the score of the product changes according to the date of the user rating. In other words, 

as the user‟s rating date gets closer to the present day, its effect on the product rating 

score also increases. 

Our third model is about the reviews made on the products carefully examined by the 

users as we mentioned, that is on sentiment analysis. We find the rating score of the 

products based on the reviews made on the products. After investigating the effect of 

many texts preprocessing to accomplish this, a hybrid model is proposed in addition to 

already existing models such as review-based, sentence-based, and dictionary-based. 
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1.2 Aim and Objectives 

The main goal of this thesis is to research alternative methods to improve the quality of 

traditional product star ratings used in recommender systems in e-commerce platforms. 

In order to achieve this, there are three distinctive objectives. 

The first objective is to overcome the negative effects of fake accounts on e-commerce 

platforms. As we know that because of the sparsity problems in databases, fake 

accounts can easily affect the results of recommender algorithms especially a product 

that does not have enough votes by users. This situation represents a great sense for e-

commerce platforms especially when considering that majority of companies have less 

than 1% density of databases [7]. For this purpose, it is proposed a recommender model 

which finds the users who are trustful and have a great effect on other‟s opinion by 

analyzing the relationship between users. With the proposed model, the recommender 

systems are expected to provide recommendations to customers based on trustful users‟ 

opinions to improve the quality of the recommender system in e-commerce platforms. 

In this way, customers may be less regret if the product doesn‟t have good quality as 

expected when they buy or consume a product. Besides that, some products don‟t have 

enough ratings in order to calculate their real rating score. Sometimes products get very 

high or very low rating scores.  Therefore, we can get the real rating score of a product 

by looking at trustful users‟ opinions.  

The second objective is to calculate the product rating score based on time decay of 

users‟ ratings which is another proposed alternative method in place of the traditional 

calculation of the product rating score. As we know that the quality of some products or 

services changes over time and hot ratings give us more reliable information about the 

related products or services. For this reason, when the rating score of any product is 

calculated, the time decay of the ratings of each user who rated to product is considered. 

In this way, the effects of the old ratings given to the relevant product are broken.   

The third objective, which is another proposed alternative method in place of the 

traditional calculation to overcome the negative effects of the fake accounts and to 

improve the quality of product rating score, is to calculate the product rating score based 

on sentiment reviews analysis. For this purpose, the reviews are first processed in a 

series of preprocessing methods with explaining each preprocessing method‟s effect on 

the calculation of the rating score. Then, besides traditional sentiment analysis methods, 
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the scores of the products are tried to be calculated with the proposed hybrid model and 

comparisons are made between the related methods such as review-based, sentence-

based, and dictionary-based sentiment analysis. Besides, the classifiers that best adapt to 

the sentiment analysis methods used are tried to be determined. 

1.3 Contributions 

The main contributions of the thesis are as follows: 

In Chapter 3, the rating scores of the products are tried to be calculated by finding 

reliable or called trustee users in the system. Thus, it is tried to show how both fake 

accounts affect e-commerce platforms and how to overcome these types of problems 

with the relevant method. For this purpose, it is analyzed the relationship between users, 

and it is calculated a trustworthiness value for each of them. In this way, the rating score 

of each item is calculated by a weighted average of users‟ ratings according to their 

trustworthiness values instead of getting a direct average of the users‟ ratings. 

According to the results, there is a great difference rating score between average rating 

score and weighted rating score based on trustee users on the items, which are rated by 

between 2-20 users. On the other hand, when the number of users increases, especially 

more than 100 people, the difference between the average rating score and weighted 

rating score based on trustee users decreases almost “0”. It means that when the number 

of users who rated the item decreases, the effect of the fake accounts goes up. 

Consequently, if we think databases that are suffering especially from the sparsity 

problems, this model can be a nice solution. By this model, items may get a deserved 

rating scores more than in the traditional models. 

In Chapter 4, besides the trust-based calculation, to improve the quality of product 

rating score and reducing the effects of old ratings, the rating scores of the products in 

the dataset are tried to be calculated by finding time decay of users‟ ratings when 

creating the list of recommendations by the recommender. After introducing the concept 

time decay of users‟ ratings by explaining its mathematical definition, the product rating 

scores are calculated, and the effects of time decay of the users‟ ratings are analyzed via 

experimental results. In this way, we try to overcome some weaknesses of the 

traditional rating score calculation since ratings of the users given to the related 

products can be too old or vice versa. This is important because some products or 
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services may change over time and hot ratings can be more important when calculating 

the rating score of those products. Besides this, both time-based and trust-based 

methods are executed together to analyze the results. According to the results, if a 

product is rated by trustee users and their ratings‟ date is up to date enough, this 

indicates that the product received the score it deserves. 

Chapter 5 focuses on the impact of simple text preprocessing decisions in order to 

predict fine-grained review rating stars. The aim of this chapter is to analyze 

preprocessing techniques and their influence, at the same time explain the interesting 

observations and results on the performance of a five class-based review rating 

classifier. According to the experimental results, a simple stopwords elimination, 

lowercasing, removing common words, and lastly the combination of 1-to-3 Ngrams 

perform better than other preprocessing methods for improving the classification 

accuracy of the five class-based review rating stars on the restaurant reviews. Besides 

this, results show that the effects of the preprocessing methods can change in any 

domain. For this reason, all the possible preprocessing methods should be considered to 

apply before used in any application. And applying the order of the preprocessing 

methods can also be important. For instance, the effects of abbreviations, acronyms, 

stemming and lemmatization might be higher after executing lowercasing to the related 

text.  

In Chapter 6, it is tried to overcome the quality of multi-class star rating challenges, 

specifically on restaurant reviews, to calculate the overall star ratings via sentence-

based, review-based, dictionary-based, and proposed hybrid-based sentiment analysis 

methods. It is observed that the Support Vector Machines classifier gives better results 

compared to other classifiers in determining the star ratings of the restaurants based on 

the text of the reviews. In fact, the point to be considered is which classifier performs 

better according to the sentiment analysis approach chosen. Otherwise, according to the 

experimental results, the Logistic Regression and Multinomial Naïve Bayes also 

performed closely, without selecting the sentiment analysis approach. When we come to 

sentiment analysis approaches, we see that the Dictionary Based method gives worse 

results compared to other methods, except that it gives the best result in the Decision 

Tree classifier. The Sentence Based method seems good in terms of the number of 

reviews correctly it classifies, but it is not successful in distributing this number equally 
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to each class. The Review Based method gives the best results in classifiers such as 

Random Forest and Logistic Regression compared to other methods. In addition, the 

number of correct predictions and the almost equal division of this number into each 

class shows that this method is successful than the Dictionary Based and Sentence 

Based methods. Similarly, Hybrid Based method gives the best results in Multinomial 

Naïve Bayes and Support Vector Machines classifiers compared to other methods. With 

its result in the Support Vector Machines classifier, it gives the best result among all 

other classifiers. It also gives the best result in the average error rate of all classifiers. 

Apart from this, it gives the best result in the number of correct predictions and the 

success of distributing this number almost equally to each class. 

1.4 Thesis Outline  

Chapter 1 presents the possible solutions and roughly the results we obtained via 

experimental studies by shedding light on the reasons and needs in the emergency of the 

current thesis.  

Chapter 2 describes the building blocks, the most used methods, and the working 

principle of the Collaborative Filtering recommender system, which is one of the most 

used methods in recommendation systems. It also examines the most used similarity 

metrics in this field and the most common challenges. 

Chapter 3 describes an alternative method that can be used to calculate product rating 

score in recommendation systems. The mathematical background of the method, which 

we define as trust-based calculation, is explained first, and then the experimental results 

are shared by clarifying how this method is applied to the recommendation systems. 

Chapter 4 describes another alternative method that can be used to calculate product 

rating score in recommendation systems. First of all, the studies in this field are 

examined and then the mathematical background of the method, which we define as the 

time-based method, is explained. Then, the implementation of this method to the 

recommendation systems is explained, and also the experimental results are shared by 

combining with the trust-based method. 

Chapter 5 deals with product reviews which we can use in sentiment analysis to 

calculate product rating scores. However, before making the calculations, it explains the 

text pre-processing methods and experimental results are shared showing how the text 
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pre-processing methods affect the success of the classifiers used to calculate product 

rating score. 

Based on the previous section, Chapter 6 examines the existing methods of sentiment 

analysis and presents a hybrid model based on these methods in calculating the product 

rating score. In addition, the classifiers used in applying with these methods are 

examined and their success in calculating the product rating score is compared.
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2. COLLABORATIVE FILTERING RECOMMENDER SYSTEM

Collaborative Filtering (CF) recommender systems are based on the logic that similar 

groups exhibit similar behaviors as in real life. Mankind may exhibit far more 

exceptional situations rather than other living groups due to human complex behaviors, 

but this does not impair general perception. People tend to be divided into different 

groups in many fields ranging from the football team held among themselves, the style 

of music listened to, the type of movie watched, the style of dress worn, etc. In other 

words, people most likely show the same behavior as the group they are in. Based on 

this logic, CF recommender systems try to find similar users and similar products from 

the data set obtained from any platform to advise users. For example, when trying to 

find similar users, it analyzes users' behaviors, such as clicks, ratings, or purchases 

starting from the products chosen by similar groups of users. As a result, CF 

recommender systems perform a series of analysis operations based on users' past 

behavior, calculate similarities between users and their behavior, and advise users in the 

next step. Before explaining the methods used in 

CF recommender systems, Let‟s explain the 

general working structure. 

CF consists of some basic components as shown 

in Fig. 2.1. You can see this structure, especially 

in Mahout‟s Taste library. The Taste library has a 

fast and flexible structure and offers many options 

for user-based and item-based recommender 

systems. These basic structures that makeup CF 

can be briefly described as follows: 

DataModel: The memory created for preferences, 

products, and users. 

User-Similarity: The interface that defines the 

similarity between users. 

Item-Similarity: The interface that defines the 

similarity between products. 

Figure 2.1 The Structure of 

Collaborative Filtering 
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Recommender: The interface for providing recommendations. 

UserNeighborhood: The interface that enables neighboring relationships of similar 

users to be used by the recommender. 

The CF recommender has the opportunity to compare items and users with the help of 

the UserNeighborhood interface obtained through the DataModel. It uses these 

similarity results to offer target users as recommendations. These recommendations can 

be a numerical value called prediction like predicting a score of a movie in a movie 

dataset or can be a list of top N movies called recommendation that the target user may 

like to watch. As it is seen from the Fig. 2.1, CF recommender uses three kinds of 

objects: users, items, and preferences which are the relationship between users and 

items. 

Items can be any objects that are recommended such as books, movies, songs, 

computers, cars, mobile phones, etc., or services such as hotels, restaurants, 

supermarkets, transportation. Therefore, the item data may include different 

features/attributes that identify these products or services like genre, movie title, 

director, actors, year released, IMDB score of a movie. 

Users are those who evaluate, criticize, rate the items, or express their feelings about the 

products or services. Therefore, the user data may contain a lot of personal information 

that identifies users such as age, gender address, educational status, socioeconomic 

status, occupation, etc.   

Preferences express users‟ opinions about relevant products or services. The 

recommender engine can explicitly or implicitly obtain users‟ ideas about items. If the 

recommender engine tries to understand one‟s opinion through actions on the platform 

without prompting the user, then the implicit method is used. For example, starting 

from the products that the user navigates through the relevant platform, it perceives 

what kind of products the user likes, and then it offers similar products to that user. 

However, in the explicit method, the recommender engine asks the user directly to 

express his opinion/feelings about the item on a certain scale. The type of the used scale 

(called a rating) may vary like: 

Binary ratings: The system asks users to give a negative or positive opinion about an 

item, whether it is good or bad, like or dislike. 
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Ordinal ratings: The system asks users to comment on an item with rated expressions 

such as very bad, bad, neutral, good, very good, excellent.  

Numerical ratings: The system prompts users to rate an item with a numeric rating. For 

example, rating a movie out of 10 on a movie platform like Netflix, or rating hotels 

from 1 to 5 stars on a travel agency platform like TripAdvisor. 

Knowing how these three different types of objects that the recommender system uses 

are related to each other and how they look like on the data set can help us to 

understand how the CF recommender works. 

Our data set has a structure as in Table 2.1. The location of the rows and columns can 

be changed, and multiple categories can be included. As it is realized,  columns 

represent users, while rows represent products. To give an example, the second user 

rates the first item with the value 2. Similarly, the first user does not rate the item 1 but 

rates the second item with the value 4. By the way, each individual rating is within a 

numerical scale, 1 means the user doesn‟t like the relevant item while 5 means the user 

likes a lot, and 0/- means that the user has not yet rated the relevant item. In our study, 

we use a similar data set, based on the ratings given by users, similarities are found, 

item recommendations are presented, and lastly, results are examined. 

Table 2.1 User – Item Rating Matrix 

Users 

It
em

s 

 U1 U2 U3 U4 U5 … Un 

I1 - 2 - 3 5 … 3 

I2 4 - 5 - 3 … 5 

I3 5 - 3 - 4 … - 

I4 - 2 5 - - … - 

I5 3 1 - 5 - … 2 

I6 5 1 4 - 5 … 2 

… … … … … … … … 

Im - 2 3 - 5 … mn 
 

 

To understand the basic logic of the CF recommender, we can give a small example 

from the Table 2.1. For example, when we look at the second item carefully, we see that 

the users U1, U3, U5 rate the item I2. Likewise, we see the same users, U1, U3, U5, rate 

the items I3, I6. The CF recommender makes meaning out of these three products “If a 
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group of similar users rates three different items together, they are likely to be similar. 

The same logic can be considered for the opposite of this situation. If different items are 

rated by two or more similar users, there is a high likelihood of similarity between those 

items. CF recommender applies these types of similarity techniques between items and 

users in order to build a recommender system. Now let‟s take a look at the raw state of 

the data set that we use in our study before creating the item-user matrix. 

Table 2.2 The data set structure used in the research 

User_id Item_id Ratings 

1 1 3 

1 2 4 

1 3 4 

1 4 5 

… … … 

Usern Userm Ratingrnm 

 

Table 2.2 shows the score given by each user in the dataset to items that they rated for. 

For example, the first user rate the first item in the dataset with 3 points out of 5. 

Likewise, the first user rate the second item in the dataset with value 4. The CF 

recommender makes use of this table to create the user-item rating matrix and it 

calculates similarities between users or items, then gives item recommendations to 

users.  

Collaborative filtering recommender systems can be further subdivided into two main 

categories which are model-based and memory-based approaches. The model-based CF 

approach uses data mining techniques such as dimensionality reduction, regression, and 

clustering to make item recommendations. That is, this approach calculates the 

relationship between items through the user-item rating matrix and creates a model to 

estimate the user‟s scores for the items. Since model-based CF recommender uses data 

mining methods, this approach has also been a solution to the sparsity problems 

associated with recommender algorithms. The memory-based approach is also called 

neighborhood-based CF. As the name implies, it makes calculations by looking at the 

relationships between users or items and then makes recommendations to the users 

based on these calculations. This approach uses mostly two techniques: User-based and 

Item-based CF. In this section, we give some details about these two techniques.  
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2.1 User-based Collaborative Filtering 

The basic logic of the user-based CF is to 

search out the other users that are most similar 

(nearest-neighbors) to a target user and 

drawing conclusions from their experiences 

based on their close proximity in order to 

recommend some items in any fields such as 

games, movies, books, songs, etc. Namely, “a 

subset of users is chosen based on their 

similarity to the active user, and a weighted 

combination of their ratings is used to 

produce predictions for this user” [8]. User-

based CF is the most common technique in 

recommender systems and the general 

operating principle of the User-based CF is as 

shown in Fig. 2.2 [9]; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2.1: 

 

For every other user W 

Compute a similarity s between u and W  

Retain the top users, ranked by similarity, as a neighborhood N 

Figure 2.2 Visual representation of the user-

based CF 
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For every item i that some user in N has a preference for, 

  But that u has no preference for yet 

For every other user V in N that has a preference for i 

Compute a similarity s between u and V 

   Incorporate V‟s preference for i, weighted by s, into a running average 

 

As you can see from Algorithm 2.1, there are three nested loops. In the first loop, we 

calculate the similarities (s) between our target user (u) and all other users (symbolized 

as “W”)  in our dataset. We then select the users (symbolized as “N”) that are the most 

similar to our target user in the amount we previously determined (this amount can be a 

certain number of users, or it can be the sum of users exceeding a certain similarity 

threshold.). In the second loop, we select the users who experience the products we 

intend to recommend to the target user among the most similar users we have selected 

(“N”), and we eliminate the rest. In the last loop, we have users (symbolized as “V”) 

who are familiar with the product we intend to offer, and they are similar to our target 

user. We calculate the weighted score of the products, and we recommend based on the 

similarity rates of the nearest neighbors (“V”). Assuming similarities between users 

have been calculated, let us take an example with Formula (2,1) given below. 

( )

( )

| |

i

ui

i

uv vi

v u

uv

ЄV

uЄVv

W r

r

W






 

 

 

(2.1) 

In the Formula (2,1), user-based CF tries to estimate the rating (rui) of the target user (u) 

for the new item (i). Accordingly, user-based CF multiplies the score (rvi) given to the 

relevant item by the similar users (nearest-neighbor) with the similarity rate (Wuv) 

between our target user and similar users and then divides the result by the sum of the 

similarity rates. Let‟s clarify this with a small example. 

Table 2.3 Scores given by the users to the movies 

 Gladiator Godzilla Troy King Kong Braveheart 

Sheldon 4 1 5 2 ? 

Maria 2 5 2 4 1 

Rena 3 2 4 4 - 

Uygar 5 2 4 1 4 
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Our question is whether or not user-based CF should recommend to Sheldon to watch 

the movie “Braveheart”, which he has not seen before. Let‟s take a look at Table 2.3 

before finding the answer to this question with the Formula 2.1. As it is seen, the user 

Sheldon and the user Uygar both watched the movies in Table 2.3 and had similar 

tastes. Both users gave high ratings for the movies “Gladiator” and “Troy”, while low 

ratings for the movies “Godzilla” and “King Kong”. According to this observation, if 

Uygar has rated the movie “Braveheart” with value “4”, Sheldon will probably love the 

movie and give it a high score. We can also think of the opposite. Sheldon and the user 

Maria, for example, gave completely different scores to the same movies. Sheldon rated 

the movie “Godzilla” with value “1”, Maria rated with value “5”, or Sheldon rated the 

movie “Troy” with the value “5”, while Maria rated with value “2”. This situation 

shows us that Sheldon and Maria are two opposing characters about movie tastes. Based 

on this situation, if Maria rated with the value “1” to the movie “Braveheart”, Sheldon 

would probably give a high score. Let‟s calculate with the given Formula 2.1. 

Suppose that the similarities between Sheldon and neighbors are already calculated 

(how the similarity can be calculated are explained in Section 2.3) and they are 0,85 

with Uygar, 0,15 with Maria respectively. 

0,85*4 0,15*1
3,55

0,85 0,15
r


 


 

As a result, Sheldon would likely give a high score to this movie. In fact, as we 

explained before, we try to find the most similar users and then apply this formula. In 

this example, we had to take user Maria, who is not very similar to our target user, 

because we have a limited number of users. Therefore, the result is below than the score 

given by user Uygar. If we had calculated over much more similar users, this value 

could have risen.  

2.2 Item-based Collaborative Filtering 

The basic logic of this technique is that if a product similar to the products that a user 

has previously chosen is recommended,  she/he will most probably like it. Namely, it‟s 

like recommending a new horror movie to someone who likes to watch horror movies. 

Item-based CF recommender and the content-based recommender shouldn‟t be 
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confused with each other. In the content-based approach, the contents of the products 

are similar, namely attributes/features of the products that are similar. But the content of 

the products may not be similar in the item-based CF approach. For instance, those who 

buy smart television, they also buy a TV unit. Whereas one product is in the digital 

field, the other is in the field of furniture. Like the story you may have heard before in 

market basket analysis, it is found that an unexpected correlation between the sales of 

diapers and beer in the same transaction. As a result, item-based CF calculates the 

similarity between items instead of users in order to make recommendations. Thus, 

instead of finding similar users when giving a recommendation to a user, it tries to find 

out similar items by using his/her likes. The general operating principle of the item-

based CF is as follows [9]; 

Algorithm 2.2: 

For every item i that u has no preference for yet 

 For every item j that u has a preference for 

  Compute a similarity s between i and j 

  Add u‟s preference for j, weighted by s, to a running average 

Retain top items, ranked by weighted average 

 

As shown in Algorithm 2.2, in the first loop, we first identify the products (i) that our 

target (u) user has not experienced before. Then, in the second loop, we calculate the 

similarities (s) between the products our target user experiences (j) and not experiences 

(i) before. Then we offer the products that are ordered according to the weighted 

average calculated by the similarities to the target user respectively. To illustrate this, 

suppose that the similarities between items have been calculated, let us take an example 

with the given Formula 2.2 below. 

( )

( )

| |

u

ui

u

ij uj

ij

ij

ЄV

ijЄV

W r

r

W






 

 

 

(2.2) 

In Formula (2.1), user-based CF tries to estimate the rating (rui) of the target user (u) for 

the new item (i). Accordingly, in Formula (2.2), item-based CF multiplies the score (ruj) 

given to the relevant item by the target user with the similarity rate (Wij) between items 

and then divides the result by the sum of the similarity rates. Let‟s clarify this with a 

small example. 
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Table 2.4 Scores given by the target user to the movies 

 Gladiator Godzilla Troy King Kong Braveheart Kingdom of 

Heaven 

Sheldon 4 1 5 2 ? ? 

 

As it is seen from Table 2.4, Sheldon has not watched both the movie “Braveheart” and 

the movie “Kingdom of Heaven”. The answer we‟re trying to find is which movie 

should be the first to recommend to our target user. In other words, which one of these 

movies we should recommend first that our target user is more likely to click on it to 

watch. This time we use the item-based CF technique. As we mentioned earlier, we first 

find the weighted average of each movie based on the similarities between the products 

and order them according to the results. For this purpose, suppose that the similarities 

between the movies to be recommended and the other movies in our dataset are already 

calculated (how the similarity can be calculated is explained in Section 2.3)  and are 

shown below in Table 2.5. 

Table 2.5 Similarities between movies 

 Gladiator Godzilla Troy King 

Kong 

Braveheart Kingdom of 

Heaven 

Gladiator 1 0,2 0,8 0,1 0,9 0,8 

Godzilla  1 0,1 0,9 0,2 0,2 

Troy   1 0,2 0,7 0,9 

King Kong    1 0,2 0,1 

Braveheart     1 0,7 

Kingdom of 

Heaven 

     1 

 

Let‟s predict the ratings with given Formula (2.2). 

0,9*4 0,2*1 0,7*5 0,2*2
3,85

0,9 0,2 0,7 0,2
Braveheartr

  
 

  
 

 

0,8*4 0,2*1 0,9*5 0,1*2
4,05

0,8 0,2 0,9 0,1
KingdomofHeavenr

  
 

  
 

As a result, Sheldon would likely give a high score to both movies. But according to the 

results, it seems that the movie “Kingdom of Heaven” is more preferable.  In fact, as we 
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explained before, we try to find the most similar items and then apply the Formula 

(2.2). In this example, we had to take the movies “Godzilla” and “King Kong”, which 

are not very similar to our target movies, because we have a limited number of items. If 

we had calculated over much more similar movies, we could have achieved more 

satisfactory results.   

2.3 Exploring Similarity Metrics 

The most important part of the recommender algorithms is the similarity 

implementations. Both content-based and collaborative filtering (user-based and item-

based) use several types of similarity metrics. It is very important to determine the right 

similarity metric according to your data otherwise these approaches may fail. Since 

these components are quite important, we explain their basics briefly. 

2.3.1 Pearson Correlation-based Similarity 

Pearson correlation is a technique for finding out the relationship between two 

continuous variables. To understand this linear correlation between two continuous 

variables, we can draw a scatter plot of these two continuous variables otherwise it 

shouldn‟t be calculated [10].    

So, the Pearson correlation is a number between -1 and 1. “1” means that either variable 

increase or we can say decrease at the same time, and “-1” means that when one 

increases, so the other decreases or we can say one decreases, so the other increases. 

And zero means that there is no relationship between two variables.  

Figure 2.3 Similarity rates according to the each other 
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2.3.2 Euclidean Distance Similarity 

It measures the actual distance between users. Users in recommendation systems are 

considered as points in a space of many dimensions which are items. In other words, 

Euclidean distance is the square root of the sum of squared distance between 

corresponding items of the two users [11]. And as the distance value gets smaller, the 

similarity of the two users increases. 

2.3.3 Cosine Similarity 

In this similarity measure technique, items are represented as u-dimensional vectors 

over user space. The similarity is the cosine of the angle between two vectors. And the 

cosine score ranges between 1 and -1. If the cosine value is 1 (small angle), it means 

similarity is perfect. In other case, -1 (large angle) means two users are totally different 

[12]. 

 
Table 2.6 Ratings for each movie from each 

user 

 U1 U2 

A 0.8 0.45 

B 0.4 0.8 

C 0.3 0.3 
 

 

 

For instance, as indicated above, we have two users (U1 and U2) and three movies (A, 

B, and C). If we want to use cosine similarity for computing similarity between two 

items, the algorithm will look at the angle between two movies. If the angle between the 

two movies is smaller than the other, it means they are more similar. As in our example, 

the angle between movie A and C is smaller than the angle between movie B and C. So, 

we can say that movie A is more similar to movie C than movie B.  

2.3.4 Spearman Similarity 

It is a type of Pearson correlation similarity measure. In recommendation systems, it 

tries to find the least preferred item by the user. It gives “1” as the preference value for 

Figure 2.4 Vectors for each user 
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this item. After that, it executes the algorithm again to find the next least preferred item. 

In the same way, it gives “2” as the preference value for the second item, and so on. 

Lastly, it uses the Pearson correlation to compute the similarity on those converted 

values.   Actually, because of expensive calculations, Spearman correlation is not 

preferred much. 

2.3.5 Tanimoto Similarity 

 

Instead of considering preference value whether is high or not for an item, it takes into 

account that the user has a preference or not to that item. It is also known as the Jaccard 

coefficient. So, the Tanimoto coefficient cares about the ratio of the size of the 

intersection between two users. That is how many items that are preferred by those two 

users. Hence, if the two users‟ items are exactly the same, in other words, if they 

completely overlap, it means that they are totally similar [9]. 

2.3.6 Log-likelihood Similarity 

Its logic is similar to the Tanimoto coefficient or the Jaccard similarity. It does not also 

care about preference value whether is high or not. There are a couple of problems in 

the Tanimoto coefficient when computing the similarity ratio. For Instance, when both 

two users have only seen several movies which are the same movies, the ratio of the 

size of the intersection between these two users will be high. But are they similar? 

Because of this kind of problem, Log-likelihood tries to compute the overlap between 

Figure 2.5 Illustration of Tanimoto coefficient [9] 
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users without a chance. Although it looks for the number of items in common between 

two users, the log-likelihood is computing the similarity a bit different [9]. Namely, it 

checks dissimilarity between two users as well. 

2.4 Challenges in Collaborative Filtering 

To better understanding the aims of the research and compare the collaborative filtering 

recommender with other methods, we should take a quick review of the challenges in 

CF recommendation systems such as “cold start problem”, “sparsity problem”, 

“scalability”, “overspecialization”, “robustness”, etc. 

2.4.1 Cold Start Problem 

The cold start problem defines that the recommender does not have sufficient similarity 

measurements or ratings to make some product or service recommendations to the target 

user. Naturally, as long as these values do not exist, or the absence of these values 

increases, the operating performance of the CF recommender gradually decreases. In 

general, three scenarios are generally emphasized in the realization of this situation. 

New User Problem: This happens when a new user registers on the respective platform. 

In order to CF recommender advise the target user, at least some items are expected to 

evaluate or experience by the user. Thus, the CF recommender can find the users that 

are similar to the target user or products that are similar to the target user's preferred 

items. However, when a new user subscribes to the system, the CF recommender cannot 

calculate efficiently and cannot make recommendations. A few solutions are proposed 

to overcome this problem [13]. For example, the user can rate certain products or 

services without using the system, or providing non-personalized recommendations 

until the user is able to spend enough time on the system and score enough products, or 

asking the user directly about some information like "What kind of movies do you 

like?", or by providing demographic information within the capabilities of the system, 

to make some recommendations through similar users. 

New Item Problem: Just as in the new user problem, when a new item is entered into 

the system, the CF recommender cannot make the necessary similarity measurements 

since it is not experienced by any user. Since the added new items are difficult to 
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discern by the system users, the CF recommender suffers from the advice of these new 

products. Different methods can be tried to prevent this situation. For example, it is 

advisable to present and experience the newly added item on the home screen or make 

use of the content-based recommender to calculate the items that are similar to the 

content of the new product. 

New System Problem: The biggest and most complex cold start problem occurs when a 

new system is installed. In this case, the CF recommender cannot work because there is 

no information about both users and products. To overcome this situation, either a 

sufficient time is allowed for users to use the system and then CF recommender is used, 

either a small group of active users is encouraged to rate items in the system, or wait 

until sufficient data is generated using non-Collaborative Filtering recommenders. 

2.4.2 Sparsity Problem 

One of the problems that the CF recommender suffers most is the sparsity problem. 

Users that have not rated many items especially in large datasets give cause for empty 

cells in the user-item matrix. The CF recommender cannot work fully efficient in 

calculating user or item similarities before these empty cells are filled. As a result, the 

performance of the CF recommender decreases. To overcome the sparsity problem, 

there are a couple of approaches such as one of the techniques of dimensionality 

reduction, Singular Value Decomposition (SVD), or Latent Semantic Indexing. For 

instance, SVD actually uses an intenser user-item matrix that includes only the most 

relevant users and items [14] and removes insignificant users or items in order to 

decrease the dimensionalities of the user-item rating matrix. Some recommender 

systems use content-based filtering with CF filtering together to overcome the sparsity 

problem. Because content-based filtering uses the attributes/features of the items which 

don‟t need to rate. But these techniques do not always enhance the performance of the 

recommender systems, even sometimes may affect their performance worse.  

2.4.3 Scalability Problem 

Another problem associated with recommendation systems is scalability which means 

that “how quickly a recommender system can generate a recommendation and the 
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second is to ameliorate the quality of the recommendation for a customer” [15]. A good 

recommender system is expected to continue to operate in spite of rapidly increasing 

users and items in the dataset. Although the recommender system initially offers quick 

and effective recommendations, if it starts to stumble with an increasing volume of a 

dataset, it means that it suffers from scalability and decreases the quality of the 

recommender system. The scalability problem can be resolved by cleaning noisy data 

with pre-processing and clustering. As in Sparsity, SVD can also provide a solution for 

scalability, although it requires expensive matrix operations. In addition, this problem 

can be solved with item-based CF to some extent. That is, rather than calculating all 

similarities between all product pairs, similarities can only be calculated with the items 

co-rated by the target user [16].  

2.4.4 Overspecialization Problem 

Overspecialization problem occurs when the CF recommender system recommends 

only items that have a high score based on sales or ratings [17]. This means that the 

recommendations which are similar to the products in the user‟s profile are repeated in 

the same order. In this case, the user will be constantly exposed to items with the 

highest likelihood of his/her profile. A good CF recommender should be able to 

recognize such situations and create alternatives. For example, if the user does not click 

on the recommendation items list for a certain period of time, CF recommender can 

change the list according to the order, it can filter the items recommended continuously, 

present similar products randomly or offer different alternatives with the help of other 

recommenders such as content-based recommenders. For the sake of example, while the 

user likes drama movies, CF can also recommend different types of movies with the 

characters he likes in the movies he watches (with the help of the content-based 

recommender). To give another example, a user who is constantly exposed to 

recommendations from Italian cuisine will not be aware of Greek or Turkish cuisine. 

However, the food used by these countries in the Mediterranean band is likely to be 

similar and food tastes are also likely to be similar. That is, the recommender should 

notice some points that the user cannot see in the system and make the user realize the 

other options. Otherwise, users may be constantly exposed to the same 

recommendations by the CF recommender and this situation may bore users after a 
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while. This problem is more common in the content-based recommender. Because 

content-based recommender rates the items according to their content and features, each 

time an item is searched according to the user's profile, the relevant items that cover the 

most sought-after content will come to the forefront. 

2.4.5 Robustness Problem 

In today's e-commerce environments, the usage of recommender systems is increasing 

day by day due to the convenience provided to the users. But as e-commerce began to 

compete with the traditional trade, the value that the business world gave to 

recommender systems began to increase. With this increase, the number of fake 

accounts who want to take advantage of this situation has also increased. Namely, the 

number of malicious users, biased bloggers, and even the owner of the products that are 

trying to influence the systems have started to increase day by day. Malicious users who 

cannot get the service they expect, open multiple accounts and run a smear campaign on 

the relevant platform, while biased bloggers sometimes try to inflate a product or a 

service most of the time, sometimes scribbling a product or a service, sometimes for 

money, sometimes completely for pleasure. In addition to that, some users are the 

owner or provider of the product on the relevant platform, they open more than one fake 

account and give high scores to their products or offer positive opinions about their 

services. When such product or service owners swell the scores of their products, we 

call push attacks, to reduce the score of competitors' products, or to make scribbles of 

their services, we call nuke attacks. According to the research results [18], in order to 

overcome this problem, using item-based CF recommender that is thought better than 

user-based CF recommender, observing the results of the recommender and check for 

sharp changes, observing whether the newly added product to the data set is obtained 

from a trusted source or whether it is evaluated by reliable users, are the some 

suggested solutions.
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3. IMPROVING THE QUALITY OF RECOMMENDER 

SYSTEMS THROUGH THE TRUST RELATIONSHIP 

In this chapter, we propose a trust-based method for improving the quality of the 

recommender systems in e-commerce platforms. The proposed method is expected to 

provide a certain extent of the solution especially to the sparsity and robustness 

problems mentioned as in the previous chapter. Therefore, in order to overcome 

especially negative effects of the fake accounts in e-commerce platforms, the proposed 

recommender model finds the users who are trusted and have a great effect on other 

users‟ opinions by analyzing the relationship between them. With the proposed model, 

recommender systems are expected to provide better recommendations to users based 

on trusted users‟ ratings. 

The greater number of the customers shopping online increases with developed secure 

e-commerce systems, the more companies start to work on this field. Moreover, it is 

speculated that the amount of commerce done on e-commerce systems, will soon pass 

the amount in the traditional commerce [19]. But to be successful in this field, it is 

necessary to determine customers‟ behaviors for improving the quality of recommender 

systems. For this purpose, e-commerce companies of today analyze the click and 

purchase history of users or customers. Unfortunately, the feedback of users is 

insufficient for analyzing customers better. Even most of the companies state that the 

density of their database is less than 1% [7]. This is really a major obstacle in front of 

the further success of the companies. 

Today, when buying a product online, the product score is very important when making 

our last decision but due to the sparsity problems in databases, fake accounts can easily 

affect results of recommender algorithms especially when the product doesn‟t have 

enough votes by consumers. Generally, fake accounts are created either by the owner of 

the product in order to raise their product score or by the ill-wishers who want to 

denigrate a product or a company. For instance, on average 100 fake accounts can 

easily identify the score of a hotel on TripAdvisor if that hotel does not have too many 

votes. Thus, in order to overcome the negative effects of the fake accounts in e-

commerce platforms, we try to create a recommender model finding the users who are 

trusted and have a great effect on other users‟ opinion. 
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On the other hand, some products or items do not have enough ratings in order to 

calculate their real rating value or score. Sometimes items get very high or very low 

rating value because of this reason.  Therefore, we can get the real rating values of 

items by looking at trusted users‟ opinions.  The relationship between customers is 

revealed via the PageRank algorithm in order to find out trustful customers and 

recommendations are provided to customers based on those trusted users.  

The significance and implications of the proposed method can be listed as follows: 

-It is a different recommender model which is based on trusted users‟ ratings, unlike the 

current recommender systems. 

-It breaks down the power of the fake accounts on recommender algorithms in order to 

get a real score of a product. 

-It helps to overcome the sparsity problem of recommender systems in e-commerce 

platforms. 

-The system is based on trust relationships between users, but it is different from the 

existing trust-based recommender models since the trustworthiness value of a user is 

calculated by the consensus about an item not the similarity between target users to 

others.  

-It can be used for comparing with the traditional average score when buying or 

consuming an item to confirm the quality. This is really a big problem for the users 

because they generally buy the items by trusting the average score, and most of them 

are boomed values.   

Before starting to explain the background of the proposed method, it would be healthy 

to have a look at the recent studies conducted in the areas of CF recommender and trust-

based recommender, especially for comparison with the proposed study. 

3.1 Related Work 

In this section, to better understand the subject, we present the recent researches in the 

field of CF and trust-based recommender under two separated headings. 
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3.1.1 Studies in Collaborative Filtering Recommender Systems 

Traditional CF recommenders present some platforms to users analyzing their ratings, 

clicks, purchase histories, the relationship between items and users, or demographic 

information on the system in order to provide preferable products, information, 

services, people, etc. But nowadays, it is a necessity to develop personalized 

recommender systems due to the ever-increasing product range and intercompany race 

in e-commerce platforms, social networks, and search engines, etc. Therefore, in this 

part of the section, we review some related studies especially on social network-based 

recommenders that largely depend on one of the demographic information, influential 

ranking algorithms, content-based filtering, and especially collaborative filtering.  

Trujillo et al. [20] carried out research in order to work up the performance of the 

recommender system based on multi-features such as demographic and psychographic 

information to calculate the similarity between users. Demographic information defines 

the user‟s information such as age, gender, education, etc., while psychographic 

information defines user‟s interests and documents downloaded by the user. The 

similarity between users is calculated adding firstly based on demographic features, 

secondly based on interest areas, and lastly based on downloaded documents, 

respectively. According to the results, in order to cope with the main drawbacks of the 

CF recommender, all this information should take into account when providing 

recommendations. 

In order to overcome some challenges that every recommendation system suffers from 

such as sparsity, scalability, and prediction accuracy, Ma et al. [21] presented a novel 

approach called SoRec (Social Recommendation) integrating users‟ social network 

information with rating matrix. According to the authors, users are affected by their 

social connections, and recommender systems can deal with missing values using these 

relationships efficiently. In order to use users‟ social network information with a user-

item rating matrix, the authors use the conditional distribution on the social graph and 

the conditional distribution on ratings. According to the authors, trust value decreases 

when the target user trusts lots of users and it also increases when a user is trusted by 

the lots of users. 

In order to increase the performance of recommender systems, Shin et al. [22] proposed 

a context-aware recommendation system by clustering context information of a user. In 
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order to achieve this goal, firstly the authors obtain raw data and then they resume raw 

data to the conceptual level. After that, they aggregate user conceptual context 

information to create a better recommendation. According to the authors, the time of 

consuming an item is an important factor for the recommendation system. User 

preferences can be changed according to the time of the day or the day of the week or 

the season of the year. To provide a better-quality recommendation, firstly the authors 

calculate the similarity between the current context of the target user and clustered 

context by using cosine similarity. Secondly, they calculate the similarity between an 

item and clustered context and lastly, they multiply both results together in order to get 

the expected preference of a user for an item. Results verify that the performance 

improve with only context information if it is compared to conventional 

recommendation approaches. 

Jamali and Ester [23] analyzed and compared the importance of social influence 

network and similarity network in order to get rating prediction. They investigate 

whether user rates after exposed an item rated by the target user‟s neighbors in time or 

not. The authors explored both item adoption and ration adoption in social network and 

similarity network applied on Epinions and Flixster dataset. According to the 

experiment results, the influence of neighbors (direct neighbors) or rating items in the 

social network is higher than in the similarity network on both datasets when the user 

exposed to an item at a time. 

In order to provide better-personalized recommendations in social tagging systems, 

Zheng and Li [24] proposed a new computational approach using tag and time 

information. For this purpose, the authors use three strategies. The first one is the “tag 

weight” strategy aiming to compute the weight for every resource using users‟ tag 

information. The second one is the “time weight” strategy for computing the weight of 

interest drifts for every selected resource by the target user. The last one is the “tag and 

time” strategy for calculating the target user‟s rating values with the combination of tag 

and time information. According to the experimental results, all three strategies are 

effective and better than the log-based approach. 

Due to suffering from just using one algorithm in the recommender system, Yu [25] 

proposed a new method called dynamic competitive recommendation to use in social 

networks. For this purpose, Yu present an algorithm that calculates the recommendation 
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with several algorithms. The author carries out the experiment on the Twitter platform 

in order to recommend a friend to the target user by calculating several component 

algorithms such as “Number of Followers”, “Number of Tweets”, “Common Follower”, 

“PageRank”, and “Profile Matching”. Consequently, the dynamic competitive 

recommendation algorithm chooses the highest one according to the results of each 

algorithm. If the results are equal, the dynamic competitive recommendation algorithm 

tries to get the results from each algorithm according to the maximum, average, 

Standard Deviation, and size of the candidate list, respectively. 

Kim et al. [26] propose an enriched collaborative user model and rather than clustering 

users in accordance with the topics, they use a topic-driven user model. For this 

purpose, they integrate ratings and tags to discover frequent topics not only relevant to 

user interests but also irrelevant.  According to the ratings given by the target user, the 

algorithm determines tags that the target user would be interested in or not. In this way, 

the algorithm gathers tags, if these tags are frequently annotated in positive or negative 

items; it means the target user is interested in a particular topic or vice versa. The 

authors identify the neighbors based on tags labeled in items. According to the 

experiment results, the proposed collaborative user model is better than other CF 

recommenders. 

Because of difficulties to keep track of different social networking sites for a user, 

Zhang et al. [27] present a system or application called Social Connect (SocConnect) 

for getting social activities published by user‟s friends in different social networks. In 

order to achieve this goal, the authors design an application in which the user can select 

his/her friends from Twitter and Facebook, and also users can make some special 

groups using tags based on his/her relationships. In the proposed system users are 

allowed to give some ratings on his/her friends‟ activities such as “like” or “dislike”. In 

this way, the algorithm finds out the target user‟s interests in activities using some 

machine learning techniques. Consequently, Zhang et al. create a personalized system 

that allows users to blend and grouping their friends as well as tagging their friends and 

social activities obtained by different social networks domain and provide users some 

recommendations based on their interests from the related social networks. 

Ullah, Sarwar, and Lee [28] offer an interesting study of the use of recommender 

systems in a different area. The authors propose a smart device that recommends TV 
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programs according to user‟s preferences and social network data. The authors convert 

user‟s preferences to a rating value between 1 and 5. To calculate the rating value, they 

divide the time which the target user spends on the program during the broadcast, with 

the total time of the program.  After getting the rating value, the authors try to find the 

features of the related program such as genres, actors' information, etc. Then, they 

select the top-N most similar users. To find a similarity between two users, the authors 

calculate 3 different parts. The first part is the Pearson Correlation Coefficient 

similarity metric. The second part is direct trust between the users and the last part is 

the contribution of the user content. According to the simulation results, the proposed 

system performs well in terms of accuracy, precision, and recall. 

Sun et al. [29] suggest an approach that integrates the social network graph to improve 

the prediction accuracy of recommender systems using a bi-clustering algorithm finding 

the most suitable group of friends. According to the authors, when we do not separate 

the different friendships between users, all the friendships will be treated equally. But in 

this way, we can‟t improve the accuracy of the recommendation. For this reason, Sun et 

al. cluster the dataset in order to get smaller groups with similar favors. The experiment 

on the real dataset reveals that if we do not ignore the friendship among users, we can 

improve the prediction quality. 

Yu-sheng et al. [30] propose a model called interest social recommendation (ISoRec) 

consisted of a combination of the user-item matrix, implicit user interest information, 

and explicit user social information. To build up a new model, the authors combine the 

following two basic models. The first model is named social recommendation (SoRec). 

The model uses the user-item matrix and implicit interest relationships matrix 

simultaneously. Because of reflecting the interest of the user‟s friends‟ interest, the 

second model is named the social trust ensemble. Namely, to improve the prediction 

accuracy of recommender systems, it uses the users‟ explicit social connections. 

According to the comparing results, the proposed model outperforms PMF 

(Probabilistic Matrix Factorization) and SVD on the MovieLens dataset with respect to 

RMSE and MAE. The proposed model also outperforms the SoRec approach on the 

Epinions dataset. But the authors use implicit users‟ interest connection information 

when the explicit social connection information is not available. Actually, this is the 

main idea in the related study. 
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Han et al. [31] propose a prediction model in order to find the interests of a user who 

doesn‟t have enough information to the recommendation in an online social network.  

For this purpose, the authors utilize social information such as demographic information 

(age, gender, current city, etc.), social relationship (user friend list, friend similarity), 

and obtainable users‟ interests (interest entropy). According to the proposed solution, to 

calculate users‟ interest similarity, firstly we can compare and measure the geographic 

distance between users, secondly, we can count the mutual friends of two users, and 

lastly, we can employ entropy to determine a user‟s interest feature. In order to 

calculate the interest similarity, the authors use binary similarity measure and weighted 

cosine similarity measure (if the mutual interest is too common, it has less effect such 

as the movie “Harry Potter”). In the research, the authors use leave-one-feature-out 

evaluation to see the effects of each social feature on the interest similarity prediction, 

but they see that all the used features have an effect on the prediction. Since, each social 

feature has an importance on different domains such as location has a great effect on 

music similarity measure than movie similarity measure, while social relation has a 

great effect on movie similarity measure than music similarity measure. At the end of 

the research, the authors compare the proposed prediction model with several state-of-

the-art recommendation models for a new user. According to the experimental results, 

the proposed prediction model is better than other models with a great difference. 

Yuan et al. [32] show that friends have different influences on users‟ behavior in the 

social network. Some of them, called “buddy” in the research, have a strong influence 

on a user.  According to the authors, some users also are not influenced by other users 

when they make a decision. For this reason, in addition to finding buddies, Yuan et al. 

calculate the susceptibility of each user by the social relation analysis. So, the 

recommendation is done based on both friends‟ influence and individual taste.  To find 

the user‟s closest friends and calculate his/her susceptibility, the authors use rating 

similarity and edge embeddedness. If the target user and his/her buddy have high taste 

similarity and common friends (edge embeddedness), it means that the buddy has a 

great influence on the target user. The experiment is conducted on Douban and 

Epinions' real-world dataset which contains the users‟ rating and their social 

relationships. The proposed algorithm (BSSR) is compared with other algorithms such 

as ItemCF, PMF, SoRec (Social Recommendation), RSTE (Recommendation with 
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Social Trust Ensemble), etc. According to the results, the proposed algorithm model 

gets remarkable progress and can be better to use on social relations into the 

recommendation systems. 

Chaney et al. [33] present a probabilistic model called Social Poisson Factorization 

(SPF) combining user preferences for items in traditional recommendation systems with 

social networks influence information developing a scalable algorithm. According to 

the authors, when we decide to choose something, our behaviors are affected by our 

general preferences and influence of our closest friends. The computation of 

“influence” in the research is not the same as trust information. Because trust 

information is calculated by a binary structure (if it has a link between users, the trust 

value is equal to “1”, or “0” otherwise) and it is computed on the structure of the 

network without considering user activities and similarity degree between users. But 

SPF calculates the influence by looking at the similarity between the target user and 

others in addition to user behavior history. According to the results, SPF achieves top 

performance on five different datasets against the competing methods such as social 

factorization, poisson factorization, popularity baseline, etc. 

To improve the quality of personalized recommendations Gan [34] proposed a novel 

method called COUSIN which is a network-based regression model correlating object 

and user similarity profiles.  For this purpose, Gan creates two matrices consisting of 

user similarities and object similarities using historical data. Then in order to obtain a 

sparse similarity network, he carries out the power-law adjustment on these two 

matrices. After that, he creates two concordance vectors consisting of “user similarity 

profile” and “associated object similarity” obtained sum over similarities between 

selected objects by the user and candidate object. To obtain the “associated object 

similarity profile”, this process is repeated for all the users. Lastly, to calculate the 

concordance score, Gan applies a regression model on these two vectors. According to 

the result, the proposed method shows better performance over existing methods not 

only the accuracy but also the diversity of recommendations because the method uses 

both user relationships and object relationships in a single regression model. 

In order to improve the effectiveness of recommendations, Colace et al. [35] proposed a 

novel collaborative and user-centered recommendation approach using some aspects 

related to the target user such as preferences, opinions, behavior, feedbacks integrated 
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with item features and content information. For this purpose, the authors cluster items 

based on similarity considering all the different features. The authors filter out the set of 

features browsed by the user. Namely, users are defined by the set of features, not by 

items. The main idea of the research is to find similar items that the target user browses 

in the same session. So, if the target user browses an item oi after an item oj, the 

algorithm marks both items positively for rating. The authors also use the Mixed Graph 

of Terms (MGT) for refining items ranks with target user sentiments and feedback. The 

MGT includes some interrelated words which describe a certain sentiment belonging to 

a knowledge domain. The results show that the proposed approach can be easily used in 

some types of platforms to provide recommendations for more than one category of 

items. 

To provide better recommendations, Celdrán et al. [36] present a hybrid recommender 

to rank the suggested items by combining similarity between user to user, user to items, 

items to items, and location of users and items.   Firstly, the authors filter undesired 

items by looking at the properties of a given item. If any properties do not intercept 

between the item and target user‟s preferences, the algorithm filters that undesired item. 

In order to compute the similarity between user and item, the authors care about the 

number of common properties between item and target user preferences. They compute 

the item similarity looking at the number of common properties between the given item 

and all the items chosen by the target user without considering the importance of 

properties. To compute user similarity, the authors combine the items visited by both 

users and the ratings of two users with similar preferences. To compute the location of 

users and items, they use the Manhattan distance to measure the distance between users 

and items. To compute the users‟ tracking, the authors calculate the number of times of 

visiting and the direction of the user to recommend items on that location and lastly the 

date when the target user visited the related item last time. The experimental results 

show that the proposed solution is useful and efficient. 

Yang et al. [37] present a hybrid model in order to predict better how a user similar to 

one another. For this purpose, they use demographic information such as age, gender, 

and location and they use social network information such as friendship, relationship, 

and group information. To represent this goal, they carried out the experiment on the 

video domain using a tag-based user profile. The authors also combine that information 
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in order to predict user similarity based on different machine learning techniques. The 

authors use a popular Tag-Based Profile which is based on the frequency of common 

tags among users and Representative Tag-Based Profile which is based on tags 

representatives. The authors also take into account the time of the target user‟s interest. 

According to the authors, the performance of the recommender system is changed as 

regards the time of the user selecting an item. Namely, the current interest of a user is 

more effective on the performance of the recommender.  

Biancalana et al. [38] propose a hybrid recommender system that calculates contextual 

factors related to time to improve the quality of collaborative filtering approaches. 

According to the result, new items (which are movies in the study) can have a higher 

potential of being interesting than old ones. 

Fijałkowski and Zatoka [39] present a concept to improve the effectiveness of e-

commerce recommender systems using social network user profiles obtained via 

facebook Open API. The authors propose to obtain some objects from user‟s facebook 

profile such as user posts, published links, comments along with user‟s friends‟ posts, 

and comments liked by the user. These objects can be used to calculate similarity 

between users‟ interests based on keywords list in the context in order to enrich dataset 

in e-commerce platforms. 

Carrer-Neto et al. [40] use an application based on movies. According to the experiment 

results, adding social heritage to the recommender system decreases the quality of the 

recommender since more contents affect it. 

Bedi et al. [41] present a recommendation method using knowledge domain for 

generating a recommendation. According to the selected domain by the user, the 

algorithm brings the product based on trust calculating by that chosen product 

experiences. When a user selects a product, the related domain of the target user is 

changed by the system. So, the trust means, in the research, how many times the users 

selected that product, in other word it is based on experiences. 

3.1.2 Studies in Trust and Reputation Based Recommender Systems 

Because of providing remarkable improvements, many researchers have been 

investigated trust-based recommender systems on social networks in recent years. The 

basic idea is that our preferences are not completely independent from our relationships. 



36 

 

Namely, when we think of buying or choosing a product, our friends‟ opinions will have 

a significant influence on our decisions. In this section, we review several major 

approaches for trust-based recommendations in general. 

In place of using similarity between users‟ profiles in CF to calculate the ratings of an 

item, O‟Donovan and Smyth [42] proposed a new approach based on the 

trustworthiness of users on a specific rating prediction. In order to achieve this goal, the 

authors modified a lit bit the Resnick‟s prediction formula. Due to the fact that 

Resnick‟s prediction formula gets rating prediction by looking at profile similarity, the 

authors propose to add trust to the formula. Their algorithm calculates the trust by 

looking at the percentage of correct recommendations comparing predicted ratings 

between the target user and any other user. If the user has a greater number of correct 

recommendations with the same target user, the algorithm gives more trust value to that 

user. The algorithm also filters some users by looking at the trustworthiness degree by 

using a threshold. According to the results, the use of trust value has a great positive 

impact on overall prediction error rates. 

To improve the trustworthiness of rating prediction, Jamali and Ester [43] proposed a 

random walk recommender model, called TrustWalker, using both trust-based and item-

based collaborative filtering recommendations. In order to provide a recommendation to 

a user, the authors apply random walks on the trust network. If the user has already 

rated the target item, the random walker returns with that result, otherwise, it has two 

options to continue. The first option is to stay at that node and select one of the items 

similar to the target item and return with that value as a result. The second option is to 

continue to another trusted user. The results show that trust-based CF performs better 

than other CF methods to cope with fraudulent attacks. 

To construct an efficient and effective recommender system, Ma et al. [44] presented a 

novel approach called Social Trust Ensemble combining the user‟s preferences with 

trusted friends of the user. In order to fuse users‟ social network information with the 

user-item rating matrix, firstly the authors calculate conditional distribution on ratings 

(if the user rated the related movie, it is equal to “1”, or “0” otherwise). Then they 

calculate the conditional distribution on a social graph which is not symmetric, namely, 

if the user “u” trusts user “k”, it doesn‟t also mean user “k” trust user “u” and they use 

the weighted trust edge between two users. They also use a balancing parameter “α” 
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controlling the users‟ preferences and the trusted friends‟ preferences. So, when  “α” is 

equal to “1”, it means recommendation will use just user‟s preferences, while “α” is 

equal to “0”, it means recommendation will use social trust network in order to generate 

a recommendation. According to the experimental result, when the “α” is equal the 0.4, 

it is the best condition for a recommendation. In addition to that, results show that when 

the recommender uses just the social trust network, it is worse than just using users‟ 

own tastes. 

In order to improve the prediction accuracy of recommender systems, Lathia et al. [45] 

propose a variation of a k-nearest neighbor algorithm to reveal how much a user close to 

the target user in the recommendation system. For this purpose, firstly the authors use 

the traditional Pearson Correlation Coefficient in order to find the similarity between 

two users. When calculating the rating prediction, the algorithm gets all users who rated 

that item. The trust value is increased when the distance between two users‟ rating 

decreases and the trust value ranges from 0 to 1, whereas the similarity value ranges 

from -1 to 1. After completed trust values for all users, the algorithm gets some of them 

according to the k-Nearest recommenders which select the user who provides necessary 

information for rating prediction for that item. According to the results, the proposed 

method outperforms the similarity-based methods to cope with problems in CF. 

Hang and Singh [46] proposed a trust-based recommendation considering link structure 

and trust network. In order to calculate the similarity between graphs, the authors use a 

convergent iterative process. The method is applied to a vertex similarity measurement 

between graphs by calculating the similarity between the trust network and a structure 

graph. According to the results, the similarity measurement between the trust network 

and a structure graph shows how tightly a user connected to his neighbors. 

In order to increase the prediction accuracy of recommender systems in e-commerce, Li 

et al. [47] use the Multi-Criteria Decision Making method that consists of preference 

similarity, recommendation trust, and social relation. To predict a recommendation, the 

algorithm should calculate all three categories. According to the experiment results, the 

STR model (preference similarity, recommendation trust, and social relation) has higher 

success frequencies than others when “ɛ” (the absolute value of prediction error) is 

smaller than 0.6 and has lower success frequencies than almost all others when  “ɛ” is 

larger than 1.2. 
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To improve the prediction accuracy of recommendation systems Chen et al. [48] 

propose a novel approach based on social trust relationships called RSTR that explicitly 

and implicitly uses social trust relationships simultaneously. Actually, this study is a 

combination of SoRec proposed by Ma et al. [21] and RSTE proposed by Ma et al. [44]. 

The main goal of the research is to estimate the missing data in the user-item rating 

matrix using a social trust relationship between users. SoRec algorithm indicator 

function gives “1” value if the target user trust to another user or “0” otherwise and 

likewise, the indicator function gives “1” value if the target user rated an item, or “0” 

otherwise whereas in RSTE algorithm both target user‟s and his trusted friends‟  

preferences affect observed item rating. According to the results, the proposed method 

combines the advantages of SoRec and RSTE. 

To improve the quality of collaborative filtering recommendation, Yang et al. [49] 

propose an approach called TrustMF by way of compounding ratings and social trust 

network. With this object in mind, the authors use a trustor-specific feature vector and 

trustee-specific feature vector. The main mentality of this trust-based study is one can 

be affected by other users, and one can also affects to other‟s opinion.  Therefore, to 

calculate a user‟s ratings affected by other users, the authors use a trustor model. In 

order to get the value of a user who affects other‟s decisions, the authors use a trustee 

model. Results show that  TrustMF performs better than its competitors for the cold 

start problem on a real-world dataset. 

O‟Doherty et al. [50] presented an empirical analysis to compare trust-based 

recommendation algorithms. In the research, the first algorithm is like Pearson weighted 

mean just instead of the similarity measure, the algorithm uses trust value between two 

users. The second algorithm is also like Pearson collaborative filtering just instead of 

the weighted similarity measure, the algorithm uses trust value between two users. The 

third algorithm is like a simple mean but when the algorithm calculates the rating 

prediction, it just admits the raters who pass the trust threshold. The fourth algorithm is 

also like Pearson collaborative filtering but when the algorithm calculates the rating 

prediction over similarity, it just admits the raters who pass the trust threshold. The fifth 

algorithm goals consider all available ways to get a positive weight for a user of an item 

when verifying trust value over similarity. According to the experiment result, accuracy 

and coverage of trust-based algorithms are better than standard algorithms. 
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To improve the effectiveness of the recommendation system, Özsoy and Polat [51] 

compare existed recommender systems and propose an approach using a trust-based 

recommender system. They use a set of users, items, tags, and categories. The items are 

defined by tags and categories also have related tags. In order to find the probability of 

liking an item by the target user, firstly the algorithm controls the ratio of the number of 

items commented by the target user posted by a neighbor-user over all items 

commented by the target user in that specific category. Then the algorithm calculates 

the ratio of the number of all items commented by the target user over all items in that 

category. Lastly, it calculates the ratio of the number of items posted by the target user 

over all items in that related category. According to the results, using combined trust-

based recommender systems performs better for providing personalized services rather 

than the similarity-based method. 

Deng, Huang, and  Xu  [7] presented an approach to service recommendation using a 

trust relationship between social network users called as RelevantTrustWalker (RTW). 

To measure the trustworthiness degree between users, the authors use a matrix 

factorization. Then, they get recommendations results by the use of RTW which is a 

random walk algorithm based on trust relevancy among users. In order to predict 

ratings, RTW chooses the neighbors according to the weighted trust social network. 

Trust relevancy is calculated multiplying similarity and the degree of trust of the user 

“u” to the user “v”. Because the random walk is likely to never stop, the authors choose 

6 degrees for the maximum step. When the RTW chooses the user, it tries to find the 

rating of the related item giving by the chosen user. If the chosen user has rated the 

related item, that rating is returned as the result of that walk. Otherwise, the algorithm 

goes on to the next user who is again chosen by the trust relevancy formula executed on 

the last chosen user. If the next user has also not rated the related item, the algorithm 

gets the rating of the most similar item to the related item. So, the RTW gets the 

ultimate result through multiple iterations.  Results show that the proposed method 

chose the target node not randomly but based on trust relevance when a random walker 

tries to find a similar user. 

Instead of calculating the user similarity method in order to predict the rating of an item, 

Zhong et al. [52] propose to use a directed trust graph. For this purpose, firstly the 

authors reveal directed and undirected relationships between users. Thus, when 
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calculating the predicted rating, the algorithm takes into account if the target user has a 

direct or indirect relation to the other users. In order to achieve this goal, the authors use 

“direct and indirect trust nodes” together. Namely, there is a level of distance from the 

target user node to other node and according to this level of distance, the result is 

changed. If the neighbor node is in the first level (direct relationship), it affects the 

result more than other levels. So, when the level increases, the affection of that node on 

the rating value decreases. The experimental results indicate the good effects of the 

proposed trust-based recommendation approach. 

Chamsi et al. [53] propose an approach to transform concepts of users‟ profiles from 

social networks into a source of recommendation. They crawl the user‟s tweet, retweet, 

and replays via Twitter API in order to get concepts for each user. After applying 

cleaning operations, the authors try to find the frequency of each concept appeared in 

each user profile. In this way, they build a matrix of concepts for all users. Chamsi et al. 

apply the same filtering operation over the resources to build up a matrix of concepts for 

all resources. The authors use the memory-based collaborative filtering and apply a 

user-user based recommender algorithm to get the predicted value for the target user of 

an item related to a concept. Consequently, the authors use social information as a 

resource for the recommendation system to offer a resource to Twitter users. Results 

show that transforming the social network into a recommender can be useful. 

Guo et al. [54] carried out an empirical study in order to compare five different trust 

algorithms on two different datasets. In order to achieve this goal, firstly they present 

five trust definitions used in recommender models by taking into consideration four 

trust properties. These four trust properties are Asymmetry (trustworthiness is mutual or 

not), Transitivity (if user A trusts user B, user B trusts user C, then user A trusts user C), 

Dynamic (trustworthiness changes in time or not), Context-Dependence 

(trustworthiness bases on knowledge domain or not) respectively. According to the 

empirical study results, there is no single trust algorithm superior to others when the 

data set is changed. 

In order to personalize recommendations, Alahmadi and Zeng [55] present a new 

approach using trust relationships and users‟ friends‟ comments crawled from Twitter. 

The authors calculate the trust value between the target user and his friend by 

normalized average “RT” (re-tweet action means how many times the target user re-



41 

 

tweet the message of his friend over all the messages which are re-twitted by the user 

“u” from all his friends)  and “L” value which indicates the percentage of followers the 

overall number of followers and followings. According to the results, short and informal 

posts published by users in social data can improve the quality of the users' preferences 

data, especially for CF problems. 

In order to lead to improved predictive accuracy during recommendation, Deng et al 

[56] present an approach called Trust-based Service Recommendation using preferences 

of users and trust relationships among users by looking at invoked services by each 

user. For this purpose, firstly the authors prepare “History Service Records” which 

consist of services called by the active user, categories according to the service domain, 

and the rating value given by the active user to the related service. According to the 

trusted user set, the authors calculate the similarity between two users and provide the 

top-k services to the target user using those similarities. According to the experimental 

results, the proposed method performs better recall rate, precision, f-measure, and rank 

score. 

In order to increase the prediction accuracy of recommender systems, Keikha et al. [57] 

proposed a method called TB-CA (trust-based context-aware) using the information of a 

user trust networks to recommend items that are matched user preferences. For that 

purpose, the authors firstly apply a few preprocessing on raw data in order to get 

conceptual context data by Fuzzy function and they form the set of trust networks of 

each user.  Then with a given user and target items, the algorithm starts to find out the 

rating of the target item. Firstly, the algorithm looks at the user‟s item set which is 

formed with the same conceptual domain of the target item. Namely, if the target item is 

in that rated set, naturally the rating of the target item is returned. Otherwise, a random 

walker selects a neighbor of the target user and the same process is repeated. According 

to the results, the proposed method is successful with all contextual concepts and F-

measure compared with previous methods. 

To improve the quality of item recommendations in social networks, Wu et al. [58] set 

up a new algorithmic framework called collaborative topic regression (CTR) with social 

trust ensemble exploiting user-item feedback, item content, and social network.  The 

authors offer the rating prediction to the user “i” for item “j” by looking at user i‟s and 

item j‟s latent features with the social influence which is a weighted sum of the 
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predicted ratings for item “j” from all of the user i‟s trusted friends. Trust score is 

calculated via similarity between two users with the number of users who “i” follows or 

we can say “i” trusts and the number of users who trust the user “i”.  According to the 

experimental results, while the social influence is effective on one dataset's users, the 

individual tastes are more important on another dataset's users without considering 

different scales of training data. Actually, this situation shows us, the influence of social 

media on recommendation systems differs from the nature of our data. 

Now we will explain the basic mathematical background related to the calculation of 

product rating score. After that, we will give some basic information about graph theory 

related to our used formula. Let‟s explain how we calculate the rating scores of products 

based on trust relationship between users. 

3.2 Prepare Background and Context 

In recent years, with the rise of the importance of recommender engines in e-commerce 

platforms, people and companies start to affect the results of recommender algorithms 

in order to increase the rating scores of their products by creating fake accounts. 

Because, as in real life, when we make our decision about buying or choosing a product 

or service, obviously, we are influenced by the opinions of the people surrounding us. 

Especially in e-commerce platforms, people pay attention to the rating of products that 

they want to buy or use as a service and examine most of all, if not all, the reviews 

before making a final decision. For example, when we search for a hotel on 

TripAdvisor, at first, we are checking on how many stars that hotel has, and then we are 

reading almost all the reviews about that hotel. On these types of websites, people can 

also click like button if they agree with that comment or dislike button if they don‟t. 

This feature is also important to understand the quality of that hotel. In this section, we 

analyze the relationship among users to find users, who are trusted by others and 

calculate the ratings of products according to those trusted users‟ ratings. In this way, 

we can present two types of ratings to the users. The first one is the traditional average 

score and the second one is a weighted score based on the trustworthiness of the users. 

Therefore, people will have a chance to compare two rating results. Moreover, it can 

show the quality of the rating result if the two rating results are almost equal. For this 
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purpose, we first explain the basic mathematical background of the PageRank 

algorithm, which we use in our research to reveal the relationship between customers 

and then find trustful users.  

3.2.1 Mathematical Background 

Basic linear algebra operations: In math, 

creating a rectangular array adding m x n 

numbers in rows and columns is called a matrix. 

We represent m x n matrix A with real numbers. 

Namely, it means that someone can get a real 

number “Aij” on row “i” and column “j”. For 

instance, the value A23, which is pointed “1”, is 

located where the second row and third column 

coincide. 

 

 

We can add or subtract matrices via adding or subtracting the numbers in the same 

positions if two matrices have the same size. As it is seen in Figure 3.2, matrix “A” and 

matrix “B” have the same size, namely, they have both the same number of rows and 

columns. Therefore, we can add both matrices by adding the numbers in the same 

positions.  Furthermore, matrix addition between the same types of matrices has 

associative and commutative properties.  

Figure 3.1 Relationship between 

rows and columns in a matrix 

Figure 3.2 Adding and subtracting matrices 
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As it is seen in Figure 3.3, when multiplying a matrix by a single number (a scalar), 

each element in the matrix should be multiplied by this scalar. Accordingly, if we have 

a matrix “A” with single numbers “r” and “k”, we can say that (r+k)A = rA + kA and 

r(A+B) = rA + rB and also (rk)A = r(kA).  

In order to multiply a matrix by another matrix, the number of the columns of the first 

matrix should be an equal number of the rows of the second matrix. If they carry the 

condition, we can multiply two matrices to each other. Therefore, as it is seen in Figure 

3.4, firstly we get the first row of the first matrix “A”, then we match the first column 

members of the second matrix B, multiply them (3 with 9 and 5 with 5), and finally sum 

them up. Likewise, we do the same procedure for the second column of the second 

matrix “B” and for the third column of the matrix “B”. After finishing each column of 

matrix “B”, we do the same procedure for the other rows of the matrix “A”. 

 

Figure 3.3 Scalar multiplication 

Figure 3.4 Matrix multiplication 

Figure 3.5 Transpose of a matrix 
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It is called transpose of matrix “A” denoted “A
t
” by turning all the columns into rows or 

vice-versa. So that the first column of the matrix “A” will be the first row of the “A
t
”, 

and the second column of the matrix “A” will be the second row of the “A
t
”, and so on. 

Therefore, transpose of the “A
t
” will be the matrix “A” again. Transpose of two matrix 

multiplication is equal to the multiplication of transpose of each matrix “(A x B)
t
” = A

t
 

x B
t
. Likewise, transpose of two matrix addition is equal to the addition of transpose of 

each matrix “(A + B)
t
” = A

t
 + B

t
.
 

In a linear transformation T : V  V, a non-zero vector “x” for x ϵ V, if there is a 

number “λ” satisfying the equality T(x) = λx, there is an “x” called eigenvector 

corresponding to the eigenvalue “λ” [59]. To sum up this situation with an example: 

To find eigenvalue and eigenvector of matrix 

“A”, we should obtain the expansion of det(A-

λI) generating second-degree polynomial. λ
2
 - 4λ 

+ 3 = (λ-1) (λ-3), which is called the 

characteristic polynomial for matrix “A”. As a 

result, the eigenvalues for the matrix “A” are the 

solutions of the roots of the characteristic 

polynomial p(λ) = 0, and they are λ = 1 and λ = 

3. To find the corresponding eigenvector of 

eigenvalue λ = 3, we get a = 0 and b = 1. The 

transpose of matrix “A” has also the same 

eigenvalues, but they don‟t have the same 

eigenvectors that correspond to the common eigenvalues [60] in general.  
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For example, to find the corresponding eigenvector of 

transpose A
t
 for eigenvalue λ = 3, as it is seen in the 

example, there is more than one eigenvector corresponding 

to the same eigenvalue. Even if these eigenvectors have the 

same eigenvalue, they may have no relationship to each 

other. 

After explaining the mathematical background, it is 

important to mention about the matrix type often used in 

our research calculations. It is a matrix called column-

stochastic which all the values greater than or equal to zero, 

and also the sum of the values of each column is equal to 1. 

If all the values are greater than zero, it is called a positive matrix with real numbers. 

Assume that we have a matrix “A” with transpose “A
t
”: 

 

 

 

 

 

 

 

Figure 3.6 A matrix with transpose 



47 

 

As it is seen in Figure 3.6, all the values of the matrix “A” are positive, and the matrix 

“A” is a type of column-stochastic. But transpose “A
t
” is a row-stochastic because the 

sum of the values of each row is equal to 1. As it is mentioned before, the matrix “A” 

and its transpose “A
t
” have the same eigenvalue and it is equal to 1. Accordingly, we 

can say: 

- Any column-stochastic matrix has an eigenvalue which is equal to 1. 

- If our matrix is a column-stochastic matrix, the eigenvector corresponding to the 

eigenvalue (which is equal to 1) can have only positive values or only negative 

values.  

- If our matrix is a positive column-stochastic matrix, there is a unique vector to the 

corresponding eigenvalue (which is equal to 1) and this unique vector has only 

positive values and the sum of the values is equal to 1 [60]. 

3.2.2 Directed Graphs 

Graphs are objects reflecting the relationships between structures consisting of nodes or 

points. They are often used to represent the network formed by more than one web site 

on the internet [61]. 

 

 

As seen in Figure 3.7, we called “node” to each point and each node represents a web 

site on the internet graph. Each arrow between the nodes represents a link and it is also 

called “edge”. Therefore, this structure consisting of nodes and edges is called a graph. 

There are various graph types, but we focus on a particularly directed web graph in this 

study. Even if internet graphs can be very large, all graphs are thought as composed of 

finite points when calculations are done. 

Figure 3.7 Directed graph with four nodes 
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If there is an edge between a node “i” and a node “j” or vice versa, we can say that these 

nodes are adjacent in that directed graph, and node “i” and node “j” are the last points in 

the graph. If the edge between node “i” and node “j” exits from node “i” and enters to 

node “j”, the node “i” is called “tail” and the node “j” is called the “head” of the edge. 

For instance, as seen in Figure 3.7, there is an edge between node “1” and node “2”, so 

these nodes are adjacent and node “1” is the tail part, and node “2” is the “head” part. 

Since there isn‟t any edge between node “1” and node “3”, we cannot say that they are 

adjacent nodes. The number of edges to a node is called inlinks (internal links) to a 

website, likewise, the number of edges from a node is called outlinks (external links) 

from a website. 

When we look at the graph, node “1” has two outlinks and no inlinks. One of these 

outlinks goes to node “4” and the other one goes to node “2”. Likewise, node “2” and 

node “3” have just one outlink and node “4” has no outlink. But node “4” has two 

inlinks and one of these inlinks comes from node “1” and the other one comes from 

node “3”. Also, node “2” and node “3” have just one inlink.    

We can make a few comments about our graph in Figure 3.7, in general. As it is known, 

if a website (a node) is offered (getting a link) from other websites, it means that that is 

a recommended website which is important. When we look at the graph, node “4” has 

more inlinks than others, so we can say that node “4” is the most important node in our 

graph. Likewise, node “1” has no inlinks, so we can say that node “1” is the least 

important node in our graph. Of course, all the comments we make are from what we 

see on the graph, but we know that there are other factors indicated the importance.  

3.2.3 A glimpse of PageRank Computation 

PageRank algorithm was the backbone of the Google search engine in the 2000s. The 

importance of a web page in the ranking pages result was determined by the PageRank 

algorithm when given an inquiry to the search engine. As is known, the basic logic of 

the PageRank algorithm is that the importance of a website increases so long as the 

number of inlinks increases. In this regard, the PageRank algorithm can be considered 

as an election logic. But in this algorithm one can distribute his/her vote between 

attendees. Namely, you can distribute your vote between other websites by giving links 

if you think those websites are the best to represent your website. Then, when given an 
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inquiry to the search engine, the algorithm controls the scores of each page in that 

related field. The website which has more inlinks than others comes to the top of the 

result list.     

It is useful to explain one more thing in this election logic. Since the score of each 

website is calculated by inlinks, each website has a different score. So, it is important 

which website sent a link to your website and at what rate. Namely, because of getting 

more inlinks, bbc.com will have more effect than any ordinary website on your website 

if you get a link from. Of course, it is a dynamic structure and the score of each website 

is constantly changing. As a result, everyone‟s vote is not equal as in general election on 

the internet graph. Let‟s look at the mathematics of Google‟s PageRank. 

Brin et al. summarized the PageRank calculation with a simple sum Formula (3.1) [62].  

  

(3.1) 
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As it is seen in Formula 3.1, PageRank of a page “i”, r(Pi), is calculated by collecting all 

PageRanks coming from other webpages to the page “i”. B(Pi) represents the inlinks to 

the page Pi. |(Pj)|represents the outlinks from the page Pj. But how can we calculate 

r(Pj)? In order to overcome this problem, Brin and Page used an iterative calculation 

(3.2). According to this iterative calculation, each webpage has an equal PageRank 

score at the beginning of the calculation. 

  

(3.2) 

The PageRank value of each Pi is calculated by getting one before the value of the Pj. 

So, in order to get rk+1(Pi) of page Pi at iteration k+1, we use the Formula 3.2. This 

process is started for all pages in the graph with r0(Pi) = 1/n, where n is the number of 

pages in the related graph. To illustrate this calculation, let‟s apply on a simple graph. 

 

 

As seen in Figure 3.8, we have a “1” point value and 4 pages. So, when we start to 

calculate, each node will get 1/4 scores at the beginning. In the first iteration, node 1 

distributes its point between node 2 and node 4 (each node gets 1/8 points). Node 2 

gives all its points to node 3. Node 3 distributes its point between nodes 1, 2, and 4 

(each node gets 1/12 points). Lastly, node 4 gives all its points to node 2. At the end of 

the first iteration, node 1 has 1/12 points coming just from node 3. Node 2 has 11/24 

(1/8+1/12+1/4) coming from node 1, node 3, and node 4 respectively. Node 3 has 1/4 

Figure 3.8 A graph with four nodes 
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points coming just from node 2. Lastly, node 4 has 5/24 (1/8+1/12) points coming from 

node 1 and node 3. Let‟s show the first two iterations in the table. 

 

Table 3.1 First few iterates using on Figure 3.8 

 

As seen at the end of the second iteration from Table 3.1, node 1 is the last page, and 

node 3 is the first page on the raking page result. Even if node 1 gets a link from the 

winner node 3, it couldn‟t pass the others. Because the winner node 3 distributes its 

point to all pages, so it is meaningless to get a link from node 3. Likewise, even if node 

2 gets links from all nodes, node 3 comes first because of getting all points of node 2.  

3.2.4 Matrix Representation to Compute Page Score 

PageRank calculation can be considered as a matrix problem. We saw how we can 

calculate the PageRank score by the given formula (3.2). But it can be calculated easier 

and understandable way using matrices at each iteration. It can also be easier to apply 

other operations on a matrix. To accomplish this, we should just transform our graph to 

a  

matrix structure. To illustrate, let‟s apply on a simple graph.  

But first, we transform our graph into a matrix, for that we should obey the above rule. 

As can be seen in Figure 3.9, our directed graph consists of six nodes which represent a 

very small version of the web graph. There are two links from node 1 to node 2 and 3, 

respectively. It means that node 1 distributes its point between nodes 2 and 3 by half-

and-half. Node 2 does not distribute its point. Node 3 distributes its point between nodes 

1, 2 and 4 by a third, node 4 distributes its point between nodes 5 and 6 by half-and-

Iteration 0 Iteration 1 Iteration 2 Rank at 

iteration 2 

r0(P1) = 1/4  r1(P1) = 1/12  r2(P1) = 1/12 4 

r0(P2) = 1/4  r1(P2) = 11/24    (1/8+1/12+1/4) r2(P2) = 8/24 (1/24+1/12+5/24) 2 

r0(P3) = 1/4  r1(P3) = ¼ r2(P3) = 11/24 1 

r0(P4) = 1/4  r1(P4) = 5/24      (1/8+1/12) r2(P4) = 3/24 (1/24+1/12) 3 



52 

 

half, node 5 gives all its point to node 6, and lastly, node 6 distributes its point between 

node 4 and 5 by half-and-half. After distributing points, we can arrange our matrix: 

 

As it is seen in the “H” matrix, if there is no 

link from the page (node) Pi to another 

page, we put a “0” to that place. Namely, 

Figure 3.9 A graph with six nodes 
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we don‟t share Pi‟s point with that page. Accordingly, Hij indicates a directed link from 

page “i” to page “j”. Likewise, Ni indicates the total number of outlinks from page “i”. 

Thus, each row represents the outlinks from page “i”, whereas each column represents 

the inlinks to page “i”. Then, we can calculate the PageRank score for each page 

according to the obtained values by the iterative formula:   

r(P)T
(k + 1) = r(P)T

(k ) H,             k = 0, 1, 2, . . .                       (3.3) 

We denote the PageRank score with “π” in the following section. Thus, 

πT
(k + 1) = πT

(k ) H,                     k = 0, 1, 2, . . . (3.4) 

3.2.4.1 Random Walk on the Web Graph 

It will be useful to know Random Walker in order to understand the structure and 

problems of the PageRank algorithm since it will be easy to comprehend the transition 

between pages by the Random Walk model. As the name implies, Random Walker 

starts to move by selecting a random page and move on to one another web page using 

one of the external links on this page. This move is repeated for each occurrence of a 

new web page. But there is one thing we should pay attention to this movement. If the 

Random Walker chooses web pages according to the external links, it means that when 

a web page has too much inlinks, the probability of the Random Walker chooses that 

page will be more than other pages. Another important point of the Random Walker 

movement is that the probability of a page being selected by the Random Walker is not 

relevant to the previous page [63].  Namely, assume that Random Walker passed from 

page “i” to page “j”, the next movement of Random Walker is not affected by page “i”. 

Random Walker goes on its way by choosing an outlink on the page “j”.  It means that 

the probability of a page being selected by the Random Walker is changed by the ratio 

of the distribution of page j‟s score to other pages. For more details you can read 

Markov chains in the section 3.2.5. 

3.2.4.2 Dangling Nodes Problem in the PageRank Algorithm 

We have seen how the Random Walker provides the transition between web pages.  But 

if we look at the graph carefully in Figure 3.9, we can realize several problems when the 

Random Walker passes from one page to another. As we mentioned before, the Random 
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Walker passes to another page by choosing an outlink on the arrived page. But when the 

Random Walker arrives node 2, it cannot move from node 2 to another page since there 

are no outlinks on node 2. We called node 2 as a dangling node. For this reason, as it is 

seen in “H” matrix, all the entries are “0” on row 2. But how the Random Walker can 

move to another page in this circumstance. Actually, dangling nodes mostly consist of 

documents such as pictures, pdf, words, etc. in the gigantic web graph. Random Walker 

can stop the process, or it can start again from the beginning in such a case. But because 

of reducing the performance of the Random Walker, such a solution is not a very logical 

way. To overcome this problem, Brin and Page appealed to the following method [62]. 

If a webpage does not link to any other webpages, the PageRank score of that page will 

be distributed equally to all other webpages. For “n” dimensional matrices, all the 

entries of the row consisted of zeros will be replaced by 1/n. according to this process, 

our new matrix formulation will be as follows. 

S = H + (1/n) de
T
 (3.5) 

  

Where, “e” represents the column vector of all 1s and “d” indicates the dangling node 

and equal to “1”, or “0” otherwise. It can be stated as below.  

 

If we apply this Formula (3.5) on our graph in Fig. 3.9, the d2 column vector which is 

the second row consisted of zeros will get the value “1” in our matrix. 

 
 

Accordingly, when we also add “H” matrix, S matrix will be as follows: 
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We get the above result. Namely, we used a row stochastic matrix in which the sum of 

all the entries is equal to 1 in order to get the “S” matrix. Even though we solved the 

dangling nodes problem in our graph, we have still some problems if we look carefully. 

Let‟s take a glance at the next problem. 

3.2.4.3 Rank Sink Subgraphs Problem in the PageRank Algorithm 

We have seen how to solve the dangling nodes problem in the PageRank algorithm.  But 

when we take our graph as several subgraphs, we can see the Random Walker has 

another problem. Assume that Random Walker passed from node 3 to node 4, Random 

Walker will drive round and round in the subgraph consisted of nodes 4, 5, and 6 since 

there is no outlink from this subgraph to another consisted of nodes 1, 2, and 3. In this 

way, nodes 4, 5, and 6 will get more and more PageRank at each iteration.  We called 

this problem as a “rank sink” which refuse to share PageRank via not giving a link to 

other nodes or subgraphs. We can also see this problem in Figure 3.7. In that directed 

graph node 4 is also a rank sink node. In order to overcome the problem that Random 

walker gets stuck in a subgraph, we transform our matrix into an irreducible matrix. 

Let‟s explain how to deal with this problem. 

It is called the “teleportation” method providing the PageRank Algorithm to turn into an 

irreducible status. Even if there is a little chance, Random Walker will be able to make 

the transition between pages in this way. Let‟s represent this method with the Formula 

(3.6) below: 

G = αS + (1-α)(1/n)ee
T
 (3.6) 

As in the previous formula, “e” represents the column vector of all 1s, “α” is the 

damping factor or breaking the power factor of the rank sink of subgraphs (teleportation 

probability factor) which is between “0” and “1” (generally it is equal to 0.85). Let‟s 

apply this formula to our matrix. 
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. 

 

. 

 

. 

 

In this way, we got the irreducible “G” matrix. Namely, we let the Random Walker able 

to make the transition between all pages in the graph by adding (1-α)(1/n)ee
T
 on our “S” 

formula. 
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3.2.4.4 Computation of the PageRank Vector 

After solving the problems in the calculation of the PageRank Algorithm, it is time to 

calculate the PageRank vector which provides the importance of each page in order. For 

this purpose, let‟s review a few details of the calculation of the PageRank vector. 

If the Random Walker can pass from node “i” to node “j” in a given graph, we can say 

that there is a path between node “i” and node “j” and it is called as a connected graph. 

But if the Random Walker has a chance to pass any node “i” to any node “j”, we call 

these types of graphs as strongly connected graphs. As we saw in our graph, “H” matrix 

represents a connected graph (There is a link from node “1” to node “2” but there is no 

link from node “2” to any other page) but after solving dangling nodes and rank sinks 

problems, it is transformed into a strongly connected graph. In this way, Random 

Walker could make a transition between any web pages. Considering this case in terms 

of matrices, if B = I + A + A
2
 + A

3
 + … +A

k
 is a positive value, for a positive “k” value 

(multiplying our matrix by “k” times, i.e.  A
k
 for matrix “A”), we can say that our 

matrix is a strongly connected graph. Here, adding the identity matrix is that the cycle 

of the nodes themselves. Accordingly, if there is a path from node “i” to node “j” at “k” 

times, it means that we can pass from node “i” to node “j”. If the values of matrix “B” 

are all positive, it means we can pass from any node “i” to any node “j”, in other words, 

it will be a strongly connected graph. To illustrate, let‟s look at our previous graph. 

Let‟s say that “1” for each passing from node “i” to node “j”. 

 

 

 

 

Accordingly, matrix “A” is a connected graph, not a strongly connected graph. Let‟s 

calculate matrix “B” according to the matrix “A”. 

Figure 3.10 Directed graph with four nodes 
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As it is seen, since all the entries are not bigger than “1”, matrix “B” is not positive. 

Namely, there is no connection from any node “i” to any node “j”, matrix “B” is not a 

strongly connected graph. 

Before computing the PageRank vector of matrix “G”, let‟s take a glance at matrix “H” 

which is an untouched matrix before obtaining matrix “G”. Therefore, we can compare 

our guesses are true or not at the end of getting the PageRank vector.  

As seen in Figure 3.11, our graph consists of two 

subgraphs. The first subgraph consists of nodes 1, 2, 

and 3, the second subgraph consists of nodes 4, 5, 

and 6. When we look at the first subgraph, node 2 has 

two inlinks and no outlinks. So, node 2 most 

probably will be more important than others. Node 1 

and node 3 get link from each other, but because of 

dividing its score into three parts, the link comes 

from node 3 is less important than 1. Therefore, node 

3 will get more points than node 1. Consequently, our 

rank order will be like 2 > 3 > 1 in the first subgraph. 

In the second subgraph, each node gets two inlinks, 

but since node 5 gives all its point to node 6, node 6 

will be the most important node in the second graph. 

When we come to decide which one is more 

important between nodes 4 and 5, it is a bit 

complicated. Firstly, both node 4 and node 5 get a 

link from node 6. Thus, node 6 is not a determinant  
Figure 3.11 A graph with six nodes 
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node. In this case, if node 3 has more score than node 4, our rank order will be like 6 > 

4 > 5, otherwise if node 4 has more score than node 3, our rank order will be like 6 > 5 

> 4 in the second subgraph. 

After guessing the PageRank score order, we can start to calculate our “G” matrix now. 

Due to the fact that all the entries in matrix “G” are bigger than “0”, there is a path 

between any page “i” and “j”. As it is done before in an example, we can start with 

dividing our PageRank (which is equal to 1) to each node in equal in order to start the 

iterative process. We have 6 nodes in our graph. It means each node will get a 1/6 

PageRank score at the beginning of the iterative process. After the first process, the 

PageRank score of each node will change by the amount of importance value they have 

until they reach a threshold. After the threshold (after a certain iteration), each node will 

start to get an unchanged score, in other words, they will reach a balance or saturation 

point. This threshold (the number of iterations of the process) is changed according to 

the graph structure. We will get each result of the iterative process according to the 

logic as we mentioned before in Table 3.1. That operation is the same with multiplying 

matrix “G” with π
T
 (we denoted before with r(Pi) ). Accordingly, our first step of 

importance vector will be as follows: 

π
T

(k + 1) = π
T

(k ) G (3.7) 

According to Formula (3.7), 

1.step  π
T

(1) = π
T
 G, 

2.step  π
T

(2) = (π
T
 G)G, 

3.step  π
T

(3) = ((π
T
 G)G)G 

. 

. 

. 

At the last step (threshold) we can see that the PageRank score of each node reaches a 

saturation point and after that saturation point (iteration), the results do not be changed. 

Let‟s calculate the first iterate of the PageRank vector calculation. 
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π
T
 = 

 

 

 

(1/6  1/6  1/6  1/6   1/6   1/6)  

 

 

πT
1 = πT G = (0,095833333    0,166666667     0,119444444    0,166666667       0,190277778        0,261111111) 

If we go on to compute the PageRank vector, we can get the ultimate PageRank vector 

(π
T

* ). It is shown the PageRank vector of each iteration in Table 3.2 and the ultimate 

PageRank vector (π
T

* ). 

Table 3.2 Calculation of each page score at each iteration 

πT
2 0,082453704 0,12318287 0,089340278 0,193425926 0,230416667 0,281180556 

πT
3 0,067763985 0,102806809 0,077493731 0,187265721 0,244158661 0,320511092 

πT
4 0,061520855 0,090320549 0,068363992 0,197738069 0,255369444 0,326687092 

πT
5 0,057165209 0,083311572 0,063941774 0,196007223 0,260676104 0,338898118 

πT
6 0,054919309 0,079214523 0,061097686 0,198951009 0,264137242 0,341680231 

πT
7 0,053533069 0,076873775 0,059562764 0,198747167 0,265990334 0,345292892 

πT
8 0,052766568 0,075518122 0,058642006 0,199516047 0,267107476 0,346449781 

πT
9 0,052313636 0,074739427 0,058124192 0,199554793 0,267733878 0,347534075 

πT
10 0,052056607 0,074289902 0,057821381 0,199758589 0,268100854 0,347972668 

πT
11 0,051907127 0,074031185 0,05764846 0,199795511 0,268310187 0,348307529 

πT
12 0,051821482 0,073882011 0,05754828 0,199852182 0,268431543 0,348464502 

πT
13 0,051771964 0,073796094 0,057490748 0,199869378 0,268501209 0,348570607 

πT
14 0,051743492 0,073746577 0,057457531 0,199886 0,26854144 0,34862496 

πT
15 0,051727066 0,07371805 0,057438416 0,199892673 0,26856459 0,348659206 

πT
16 0,051717608 0,073701611 0,057427393 0,199897771 0,268577939 0,348677678 

πT
17 0,051712156 0,07369214 0,057421045 0,199900169 0,268585627 0,348688862 

πT
18 0,051709016 0,073686682 0,057417386 0,199901782 0,268590058 0,348695075 

πT
19 0,051707206 0,073683538 0,057415278 0,199902613 0,268592611 0,348698754 

πT
20 0,051706163 0,073681726 0,057414064 0,199903134 0,268594082 0,348700831 

πT
21 0,051705563 0,073680682 0,057413364 0,199903416 0,26859493 0,348702046 

πT
22 0,051705216 0,073680081 0,057412961 0,199903586 0,268595418 0,348702738 

πT
23 0,051705017 0,073679734 0,057412728 0,199903681 0,268595699 0,348703141 

πT
24 0,051704902 0,073679534 0,057412595 0,199903737 0,268595861 0,348703371 

πT
25 0,051704836 0,073679419 0,057412517 0,199903768 0,268595955 0,348703504 

πT
26 0,051704798 0,073679353 0,057412473 0,199903787 0,268596009 0,348703581 

πT
27 0,051704776 0,073679315 0,057412447 0,199903798 0,26859604 0,348703625 



61 

 

 

As it is seen our ultimate PageRank vector (π
T

* ) fixated at iteration 36. As a result, our 

ultimate PageRank vector (π
T

* ) is as follows: 

π
T

* = 0,051704746 0,073679263 0,057412413 0,199903812 0,268596082 0,348703685 

According to the π
T

*, our guess for the first graph is true and the order of the importance 

of the nodes is as 2 > 3 > 1. For the second subgraph, the order of the importance of the 

nodes is as 6 > 5 > 4 and the importance of node 4 is bigger than node 3 (4 > 3). 

Consequently, the order of the importance of the nodes is as 6 > 5 > 4 > 2 > 3 >1 in this 

tiny web. According to the result, the most important node is page 6, and the least 

important node is page 1. If we interpret the result, the Random Walker visit page 1 by 

5.170% and page 6 by 34.870% of the time. 

3.2.5 Markov Chains in PageRank Computation 

Markov chains, which is a special kind of stochastic process is used in many 

engineering fields, especially in the search engines. In Markov chains, the probability of 

a case that will take place next is only affected by the current state. Namely, the case 

which will take place next is not affected by the situation that occurred before the 

current state. Let‟s explain it by the graph with six nodes in Figure 3.11. Assume that 

Random Walker passed from node 3 to node 4, the probability of Random Walker 

passes to any other nodes from node 4 is not affected by node 3. The probability of 

passing to any other nodes is determined by the distribution of node 4‟s score. 

πT
28 0,051704763 0,073679293 0,057412433 0,199903804 0,268596058 0,348703651 

πT
29 0,051704756 0,07367928 0,057412424 0,199903807 0,268596068 0,348703665 

πT
30 0,051704751 0,073679273 0,057412419 0,199903809 0,268596074 0,348703674 

πT
31 0,051704749 0,073679268 0,057412416 0,19990381 0,268596077 0,348703679 

πT
32 0,051704748 0,073679266 0,057412415 0,199903811 0,268596079 0,348703681 

πT
33 0,051704747 0,073679265 0,057412414 0,199903811 0,26859608 0,348703683 

πT
34 0,051704746 0,073679264 0,057412413 0,199903812 0,268596081 0,348703684 

πT
35 0,051704746 0,073679263 0,057412413 0,199903812 0,268596081 0,348703684 

πT
36 0,051704746 0,073679263 0,057412413 0,199903812 0,268596082 0,348703685 

πT
37 0,051704746 0,073679263 0,057412413 0,199903812 0,268596082 0,348703685 

. . . . . . . 

. . . . . . . 

. . . . . . . 

πT
* 0,051704746 0,073679263 0,057412413 0,199903812 0,268596082 0,348703685 
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3.2.5.1 Graph Theory of Markov Chain  

Markov chain is actually an application of graph theory. Graph theory, as we mentioned 

before, is a set of a graph in which nodes represent states and edges represent the 

transition between states. Markov chains determine a situation would change according 

to certain statistical values. But the realization of current changes is independent of past 

states. Therefore, when the current state is affected by the former state, the future states 

are affected by just the current state. In this context, if a state is only dependent on the 

former state, it is called a time-dependent Markov process. Based on statistical Markov 

model, we can show the probability of each stochastic event by the following formula: 

)|(),...,,|( 11001111 tttttttttt xxxxPxxxxxxxxP    (3.8) 

In Markov chains, it is called the transition probability passing from the state “i” to 

subsequent state “j” at a time and depending on the  time it can be expressed as follows: 

Pij
t,t+1

 = P(π(t+1) = j, π(t)=i) (3.9) 

Accordingly, in Markov chains, the conditional probability of occurrence from the state 

“i” to subsequent state “j” at a time is; 

 

 

3.10 

 

We can show the conditional 

probability of occurrence as 

adjacent to Figure 3.12. N = 0 to 

reflect the current state, all states 

of the process are specified on 

each line for a given state. 

Accordingly, “i” indicates the 

number of row and πi indicates a 

row vector in the transition matrix 

“P”. For instance, π3 represents the third row. So, the transition matrix “P” consists of πi 

probabilistic vectors and each entry of πi indicates the probability of passing from one 

state to another. If we denote this passing probability by “K”, πi consists of finite 

passing probabilities. Let‟s show this on the web graph: 

 
Figure 3.12 The conditional probability of occurrence 
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Assume that N = 4 and we have four nodes K1, K2, K3, and K4. Pij indicates the 

passing probability from one node to another. For instance, P23 indicates the passing 

probability starting from node K2 to node K3.  

3.2.5.2 Formulizing Web Graphs with Markov Chains  

Table 3.3 Passing probability of Random Walker between nodes 

Present State (n=0) Next State 

 K1 K2 K3 K4 (Kj) 

K1 0 1/2  0 1/2   

K2 0 0 1 0  

K3 1/3 1/3 0 1/3  

K4 0 2 0 0  

(Ki)      

 

The Table 3.3 shows that the passing probability of Random Walker from node Ki to 

node Kj in the next step. Let‟s show these passing probabilities on the transition matrix. 

 

 

              
1P0 ij 

 

)4,3,2,1(1
4

1




iP
j

ij

 

Figure 3.13 A four-node graph given with passing probability 
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Our transition matrix satisfies the above conditions.  Let‟s calculate the passing 

probability of Random Walker from node K3 to node K2 after two steps.  

Table 3.4 Passing probability of Random Walker after two steps 

 

Starting 

Node 

 

First 

Step 

 

Second Step 

 

Probabilities 

passing 

probability 

from node 

2 to node 3 

 

K3 

K1 = 1/3  K1 = 0, K2 = 1/2, K3 = 0, K4 = 1/2 K3  K1    K2  = 1/3 * 1/2 = 1/6  

 

1/6+1/3 =1/2 

K2 = 1/3 K1 = 0, K2 = 0, K3 = 1, K4 = 0 K3  K2    K2  = 1/3 * 0 = 0 

K3 = 0 - 0 

K4 = 1/3 K1 = 0, K2 = 1, K3 = 0, K4 = 0 K3  K4    K2  = 1/3 * 1 = 1/3 

 

As it is seen in Table 3.4, the passing probability of Random Walker from node K3 to 

node K2 after two steps is 1/2. Therefore, we can formulate this movement as follows: 

πi
n+1

 = πi
n
 x P (3.11) 

“π” is the probability vector. So, for n = 2; 

 

Thus, Random walker would be at K1 with probability 0, at K2 with probability 1/2, at 

K3 with probability 1/3, and at K4 with probability 1/6. We can get all passing 

probabilities of Random Walker by multiplying matrix “P” for the two steps. 

 

According to the result, some entries still are zero. It means that Random Walker can‟t 

pass some nodes. In order to overcome this problem, we mentioned some solutions such 
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as dangling node problems and rank sinks problems. As a result, time-dependent 

Markov chains are perfect to fit for some search engines.   

3.3 Dataset 

Table 3.5 Rating Dataset 

Order User_id Item_id ratings 

0 1 1 3 

1 1 2 4 

2 1 3 4 

3 1 4 5 

 

For the research, we got a real-world dataset from http://www.jiliang.xyz/trust.html or 

https://www.cse.msu.edu/~tangjili/datasetcode/truststudy.htm because of having a trust 

relationship between users. It is publicly available and widely used to evaluate 

recommendation systems in the literature. The dataset consists of two sub-data sets. The 

first one is the rating dataset indicating “user id”, “item id”, “ratings” given to the 

related product by the related user and contains star values ranging from 1 to 5. The 

value of “1” indicates that the user does not like the item at all, while the value of  “5” 

indicates that he likes it very much. If the ratings column contains a value of “0”, it 

indicates that the relevant user did not score the relevant product. The ratings column 

consists of 48.891% 5 star, 31.152% 4 star, 11.016% 3 star, 5.04% 2 star, 3.889% 1 star, 

respectively. There are unique 7.353 users and 105.582 items in the dataset. So, when 

we look at Table 3.5 user 1 gives to item 1 “3” stars. And our dataset consists of 284086 

rows with 3 columns. It is a “.csv” file and 4.82 Mb. 

Table 3.6 Trust Network Dataset 

 Trustee trustor 

0 1 3 

1 1 4 

2 1 5 

3 1 6 

 

The second dataset shows the trust relationship between users. The trust-network dataset 

indicates the trustee and the trustor respectively. So, “user 1” trust to “user 3”, “user 4”, 

“user 5”, and so on. And our trust network dataset consists of 111781 rows with 2 



66 

 

columns. It is a “.csv” file and 998 Kb. Our algorithms are executed on 

Jupyter Notebook with python version “2.7.11”. 

3.4 Recommender Model Based on Trust Relationship 

We use the PageRank graph theory in order to find the reliable or trusted users in our 

dataset. In our recommendation model, we consider a user as a website or a node in a 

graph. So, we have a set of users U = {u1, u2, …., um}  and a set of items I = { i1, i2, …., 

in} and every user have  a set of rates Rui =  { ui1, ui2, …., uim}  and it is represented by 

ru,i for user “u” on item “i”. Lastly, we also have a trust network among users. If user 

“u” trusts user “v”, then we represent by tu,v for the value of this trust with a real number 

between “0” and  “1” and “0” means no trust and “1” means full trust. 

3.4.1 Creating User Matrix for Creating the Trust Relationship 

 

Figure 3.14 User vector with Trust-relationship Matrix 
 

As you can see in Figure 3.14 from the output of the program, we have a total of 7375 

users, and we define a vector for these users. Then, we define the matrix for showing 

each user‟s trust relationship with other users. 
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3.4.2 Specify Relationship Between Users 

 

Figure 3.15 The appearance of first user's vector in trust-relationship matrix 
 

As you see in Figure 3.15 from the output of the program, if the user trusts the other 

user we placed “1” in the relevant cell, “0” if he/she does not. The vector in the Figure 

3.15 shows just the trust relationship between the first user and just the first 200 other 

users. 

3.4.3 Sharing the Trust Values Between Trustee of the Trustor “H” Matrix 

 

Figure 3.16 Sharing the trust value of user 1 between trustee 
 

As mentioned earlier, we share the trust score of the relevant user equally with other 

trusted users. We called the resulting matrix as the "H" matrix. What you see in Figure 

3.16, it is the amount of trust that the first user shares with the other users he trusts. 
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Again, the vector in Figure 3.16 shows just the trust values between the first user and 

just the first 100 other users. 

3.4.4 Solving Dangling Nodes Problem “S” Matrix 

As you can see in Table 3.7, each user has a different 

number of trusted users, and each user's trust value is 

shared among other users he or she trusts. However, 

sometimes some users do not have a trust relationship with 

other users in the dataset. Users in this state are called 

"Dangling Users". Because these users have no trust 

sharing, they cause problems with matrix multiplications. 

Therefore, their trust values are shared equally among all 

other users. It means that if you don‟t trust anyone, you 

trust everyone. As seen in Table 3.7, user “155” doesn‟t 

trust anyone, while user “158” trusts 50 other users in the 

dataset. 

 

Figure 3.17 Sharing trust value of user 155 between all users 
 

As you can see from the program output in Figure 3.17, all trust value of user 155 is 

shared equally among other users since he does not trust anyone. As we mentioned 

before, the matrix formed after this process is called the "S" matrix. Again, the vector in 

Table 3.7 Dangling Users 

User 

Order 

Number of 

the Trustee 

152 22 

153 10 

154 25 

155 0 

156 43 

157 11 

158 50 
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Figure 3.17 shows just the trust values between the first user and just the first 100 other 

users. 

3.4.5 Solving Rank Sink Subgraphs Problem 

As we mentioned before, in order to overcome the problem that Random walker gets 

stuck in a subgraph and to break the power of the subgraphs, we transform our matrix 

into an irreducible matrix.  

For this purpose, we use the teleportation method to give a little chance to Random 

Walker to able to make a transition between users. 

In our calculations, we have given a value of 0.85 to the damping factor “α”. This value 

is a standard accepted in many studies. Therefore, Random Walker can move to any 

users or subgraphs at a rate of 0.15 as we showed in the rank sink part in Formula (3.6). 

As you see in Figure 3.18, all users have the same chance of Random Walker being able 

to stop by themselves in the rank sink part. 

 

Figure 3.18 Rank sink part in G formula 
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3.4.6 Computation of “G” Matrix  

 

Figure 3.19 "G" Matrix after solution of rank sink problem 
 

As shown in Figure 3.19, after the solution of the rank sink problem, we have obtained 

the “G” matrix. Therefore, the “G” matrix becomes an irreducible matrix. Namely, 

Random Walker can move between all users in our “G” matrix.  

3.4.7 Computation of the PageRank Vector:  

 

As we explained before, we start with dividing our PageRank (which is equal to 1) to 

each user in equal in order to start the iterative process. We have 7375 users in our 

graph. It means that each user gets 1/7375 trustworthiness score at the beginning of the 

iterative process as you see above. Let‟s go on the iterative process until the threshold. 

As we mentioned before, after a certain iteration each user will get an unchanged score.  

  

After “59” iterations, we get the ultimate PageRank vector (πT
* ), and as you see above 

each user gets his/her own score. Let‟s look at a few users who get the most trust value. 

Table 3.8 Trustworthiness of users in order 

Order User Trustworthiness value 

1 260 0.00150946708019796 

2 5957 0.0010692603167929203 

3 536 0.001049247566604396 

4 3555 0.0010418192034589357 

5 3556 0.0010405252123860767 
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As seen in Table 3.8, when we executed our algorithm on our dataset as we mentioned 

above, we got the trustworthiness score of each user in order. For instance, user 260 has 

approximately a “0,00150” point whereas user 5957 has almost a “0,00107” point. 

Namely, we can say that user 260 is more trusted than user 5957. So now we can 

calculate ratings of items based on trustworthiness score. Generally, any item‟s rating is 

calculated by the average of all users‟ ratings who has a preference/rate that item before 

but now we can calculate by looking at the trustworthiness score of user‟s. In other 

words, we calculate the rating of an item with a weighted average by trustworthiness 

score. In short, if user 1 has more trustworthiness score than user 2, it will affect the 

rating of that item more weighted by his/her trustworthiness score. 

3.4.8 Findings after Computation of the PageRank Vector  

Table 3.9 Comparing Average Rating Score and Weighted Rating Score Based on Trustworthiness 

Item_id  Number of Users Average Rating Score Rating Score Based on 

Trustworthiness 

1 1 3 3 

4 3 3,666 3,986 

17 5 4,8 4,866 

31 5 4,4 4,340 

33 12 3,91 4,155 

35 8 4,15 3,81 

491 972 4.201 4.197 

577 316 2.471 2.402 

612 119 4.050 4.045 

645 187 4.074 4.077 

 

 

                  ∑          = (Σ Rating*Trustfulness) / Trustfulness (3.11) 

 

As it is seen in Table 3.9, for item 1, there is no difference between Average Rating 

Score (ARS) and Weighted Rating Score Based on Trustworthiness (WRSBT) both are 

“3.0”. But when we look at item 4, 3 users rated this item, and the difference is almost 

0.3194. This means that some of these users have more trustworthiness value and rated 
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this item more than average. Let us look at who rated this item “4” and what are their 

trustworthiness score. 

Table 3.10 Trustworthiness of the User who rated item 4 

User_id  User’s rating for item 4 Trustworthiness of the user 

1 5 0,000763 

83 3 0,000307 

244 3 0,000114 

 

As you can see in Table 3.10, user 1, user 83, and user 244 rated item 4. Since the user 1 

is more a trustful user and rated with 5 points to item 4, WRSBT of item 4 is bigger tha

n ARS. 

The other important result is the average distance ratio between ARS and WRSBT when 

the number of users who rated the related items. Let us see the average difference 

between ARS and WRSBT when the number of rated users increases on 10.000 items in 

our dataset. 

Table 3.11 Changing the distance between ARS and WRSBT by the different range of users 

Number of users  2-5 6-10 11-20 21-50 21-50 > 100 

Number of items 3521 1104 753 403 73 51 

Average Difference 0.2368 0.1888 0.1484 0.1209 0.0901 0.0408 

 

According to Table 3.11, 3521 items were rated by between 2 and 5 users and the 

average distance between ARS and WRSBT is 0.2368, likewise, 51 items were rated by 

more than 100 people and the average distance between ARS and WRSBT is 0.0408. 

Moreover, 94.73% of items were rated by less than 20 people. It means that it is easy to 

change the rating of an item by fake accounts.  

3.4.9 Calculation of Items’ Ratings Based on Trusted Users via Iem-based 

Recommendation 

We calculate the rating scores of products according to the trustworthiness value of each 

user who rated relevant products. In this part, we try to predict the rating score of 

products based on trusted users especially for the missing values. To accomplish this 

goal, after calculating the trust values of each user and finding the most trusted users as 

it is seen in Table 3.8, we get our rating dataset to train our model with 7375 users and 
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105114 items. We train the model with ranking factorization recommender for 

recommendations and get 0.384422 final training RMSE. 

Table 3.12 ARS and WRSBT by first the 500 trusted users 

Items ARS WRSBT ARS by first 500 trusted users WRSBT by first 500 trusted users 

4 3,666 3,986 2,749 2,730 

17 4,8 4,866 3,026 3,067 

31 4,4 4,340 3,097 3,077 

33 3,91 4,155 3,073 3,102 

35 4,15 3,81 3,222 3,304 

491 4.201 4.197 4,019 4,160 

577 2.471 2.402 2,966 2,829 

612 4.050 4.045 3,721 3,829 

645 4.074 4.077 3,596 3,799 

 

For getting a prediction by the first 500 trusted users (this number can be changed 

according to the used e-commerce platform), we use item-based recommendation. 

Therefore, we calculate a prediction for each item by looking at each user‟s experiences 

via item-based recommendation. As seen in Table 3.12, we calculate ARS and WRSBT 

for a couple of items by the first 500 trusted users. As we know that in our dataset 

94.73% of items were rated by less than 20 people, So, it is important to consult 

experienced or trusted users to get opinions about related items especially for some e-

commerce platforms like websites selling electronic products. According to the results 

in Table 3.12, the product rating score of the items rated by a few users (items 4, 17, 31, 

33, 35) decreases significantly at different rates by ARS by the first 500 users. This 

means that, according to the first 500 trusted users, these items are not as good or 

valuable as it is thought. But for the items rated by many users (items 491, 577, 612, 

645), the difference between ARS/WRSBT and ARS/WRSBT by the trusted users 

decreases.  

The next calculation is the weighted rating score based on trustworthiness (WRSBT), 

this time we calculate the rating score of the products based on trust values of the first 

500 trusted users. According to the results in Table 3.12, each rating score of the 

products varies slightly between ARS by the first 500 trusted users and WRSBT by the 

first 500 trusted users. But again, the product rating score of the items rated by a few 
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users (items 4, 17, 31, 33, 35) decreases significantly at different rates by ARS by the 

first 500 users. 

We know that when a product is rated by a large number of users, the value it deserves 

emerges and the effects of the fake accounts on the results decrease. Therefore, the 

decrease in the difference between ARS/WRSBT and ARS/WRSBT by the trusted users 

for the items 491, 577, 612, 645 shows that we made an accurate calculation with our 

model that calculating the product rating score based on trusted users. We got the same 

results by executing the program many times for all the other items as well. 

Apart from Ranking Factorization, different similarity measures can be used to find 

similarities between products in the item-based model, as we mentioned in the previous 

chapter. Table 3.13 shows the RMSE results of some similarity measures in the scikit 

learn library, which gives the best result on our own data set. 

Table 3.13 Comparing Similarity Measures on Items 

 
 Similarity Measure  RMSE 

1 correlation 0.23597 

2 braycurtis 0.23730 

3 hamming 0.24641 

4 cosine 0.25982 

5 kulsinki 0.27004 

6 rogerstanimoto 0.27004 

7 jaccard  0.27005 

8 dice 0.27005 

9 matching 0.27005 

10 canberra 0.35545 

 

3.4.10 Calculation of Items’ Ratings Based on Trusted Users via User-based 

Recommendation  

In this part, we predict the rating score of the products based on trusted users via user-

based recommendation. To accomplish this goal, we use a similar formula called 

TrustWalker which combines trust-based and item-based recommendation from Deng, 

Huang, and  Xu  [7].   
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Therefore, the task of our recommender algorithm is as follows. Given an item i ϵ I for 

which rtu,i is unknown, predict the rating by trusted users on item i. we call “tu” trusted 

users and “i” for the target item. The predicted rating is represented by ȓtu,i.      

Generally, traditional recommender algorithms predict ȓi based on the average of all 

given ratings to item “i”. Basically, algorithms aggregate all ratings given to the target 

item and calculate the average of the ratings. However, in trust user-based 

recommendation, the trust relationship between users is used instead of the average 

rating. In order to predict a rating of a product, we ask directly trusted users whether 

they know the rating for the target item especially for the missing values or items which 

are rated by a few users. If so, the algorithm returns with that value, otherwise, they 

recursively consult users whom they trust. The trusted users in our recommendation 

model are defined on the row of source trusted users in the transition matrix. 

Consequently, the rating of the target item is the aggregation of all ratings based on the 

trusted users‟ ratings returned by different random walks. And a single random walk is 

as follow: 

Starting from the most trustful user on clustered domain, the random walker tries to 

obtain the rating of the target item given by the visited trusted user.  

-If the visited trusted user has the rating on the target item, the random walker returns 

with that rating value and it stops walking.  If the visited trusted user doesn‟t have a 

rating on the target item, then; 

-Random walker jumps to another user who is trusted by the target trusted user via user-

based recommender.  

-If the random walker cannot find the rating of the target item on the visited trusted 

user, it will continue forever. To overcome this problem, we terminate the walk when 

the random walker goes very far away from the first visited trusted user. Because when 

the random walker goes far away from the first visited trusted user, the rating captured 

by the random walker will be less trustworthy. Because of this reason we define the 

maximum depth (the number of iteration) to “6” as similar [7]. If the random walker 

cannot find the rating value of the target item at iteration six, we get the rating 

calculating the most similar item on the first trusted user via item-based recommender.   
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Table 3.14 WRSBT by the first 10 trusted users via user-based recommender 

Items ARS WRSBT WRSBT by the first 10 trusted users  

via user-based recommender 

4 3,666 3,986 2,997 

17 4,8 4,866 3,233 

31 4,4 4,340 3,379 

33 3,91 4,155 3,045 

35 4,15 3,81 3,291 

491 4.201 4.197 4,338 

577 2.471 2.402 2,588 

612 4.050 4.045 4,120 

645 4.074 4.077 4,130 

 

As seen in Table 3.14, we calculate WRSBT by the first 10 trusted users (this number 

can be changed according to the used e-commerce platform) via user-based 

recommender. According to the results, we get almost the same results calculated by the 

item-based recommender. Namely, the rating score of the items rated by a few users 

decreases significantly at different rates but the rating score of the items rated by a large 

number of users varies slightly between ARS/WRSBT and WRSBT via user-based 

recommender. But if we compare item-based and user-based recommender to each 

other, user-based recommender‟s results are closer to ARS/WRSBT as we observe by 

experimental results executing many times. 

Apart from Ranking Factorization, different similarity measures can be used to find 

similarities between users in the user-based model, as we mentioned in the previous 

chapter. Table 3.15 shows the RMSE results of some similarity measures in the scikit 

learn library, which gives the best result on our own data set. 

Table 3.15 Comparing Similarity Measures on Users 

 
 Similarity Measure  RMSE 

1 jaccard 0.20361 

2 rogerstanimoto  0.20361 

3 dice  0.20361 

4 matching  0.20361 

5 kulsinki  0.20361 
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6 hamming  0.20364 

7 cosine 0.20385 

8 correlation 0.20972 

9 braycurtis  0.21104 

10 canberra 0.30736 

 

3.5 Conclusion 

In this chapter, we tried to show how fake accounts affect rating scores of items in e-

commerce platforms and how to overcome these types of problems. For this purpose, 

we analyzed the relationship between users, and we found a trustworthiness value for 

each of them. Thus, we calculated the rating score of each item by the weighted average 

of users‟ ratings according to their trustworthiness values instead of getting a direct 

average of users‟ ratings. According to the calculations, the items rated by between 2 

and 20 people have a great difference between ARS and WRSBT. It means that when 

the number of users who rated the item decreases, the effect of the fake account goes up. 

On the other hand, when the number of users increases, especially more than 100 

people, the difference between ARS and WRSBT decreases almost “0”. Besides this, 

we calculated the rating score of the products based on item-based recommender by the 

first 500 most trusted users and user-based recommender by the first 10 most trusted 

users. Similar to one before calculation, the rating score of the products changes 

significantly at different rates for the items rated by a few users but for the items rated 

by many users, results are close to results of the item-based and user-based 

recommenders. Actually, this is also proof that our model works very well. 

Consequently, if we think databases which are suffering from sparsity problems, this 

model can be a nice solution. By this model, items may get deserved rating scores more 

than in the traditional models. 
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4. A RECOMMENDER MODEL BASED ON TIME DECAY 

Most of the existing product rating score algorithms ignore the time decay of users‟ 

ratings when creating a list of recommendations. The time decay of users‟ ratings to an 

item may improve the quality of product rating scores in e-commerce platforms, 

especially when it is thought that the majority of customers read the reviews before 

making a purchase. 

In this chapter, we first introduce the concept of time decay by explaining its 

mathematical definition and redefine the product rating score based on time decay of 

the users‟ ratings. Besides, we calculate the product rating score based on the trust value 

of users by looking at the trust relationship. After that, we execute both algorithms 

together in order to show their both effects on the quality of the product rating score. 

Finally, we present experimentally the effectiveness of three approaches on a large real 

dataset. 

Online consumer reviews bring a number of benefits such as saving time and money, 

finding experienced products by other consumers. But most of the e-commerce 

platforms do not have any verification or authentication mechanisms on their online 

users‟ reviews related to their products even if online ratings and reviews have become 

quite determinant on customers‟ purchasing decisions. Report [64] indicates that almost 

82% of internet customers read reviews before making a purchase. This information 

shows us that the importance of online reviews/ratings has a great effect on the 

purchasing behavior of customers in e-commerce platforms. Even if 78% of customers 

think the information found online is vital and more trustful than advertisements, it is 

confirmed that most of the reviews are fake [65]. Therefore, time is also an important 

factor while calculating product rating scores especially in some e-commerce platforms 

such as hotels, restaurants, travel agencies, and other service-based companies. Most of 

the existing algorithms calculate rating scores of products or services based on average 

ratings but they ignore the time of each user‟s rating. As we mentioned above, for some 

e-commerce platforms rating time is a crucial factor since their products or services 

change over time. That is to say, a rating given yesterday, and a rating given ten years 

ago should not be considered as having the same value when calculating a hotel‟s rating 
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score. For this purpose, we propose a simple algorithm considering rating time when 

calculating a product or a service rating score. At the end of this chapter, for the 

calculation of a product rating score, our algorithm finds each user‟s trust value based 

on the PageRank algorithm by looking at given users‟ relationships as we mentioned in 

the previous chapter, and at the same time, it calculates the time decay of users‟ ratings 

to that product. Thus, each user affects the rating score of the products regarding his/her 

trust value and time decay of his/her rating. 

4.1 Related Work 

The latest researches show that the time factor significantly increases the quality of 

recommender systems, especially on e-commerce platforms. According to the 

observations, more recent reviews and ratings better reflect the quality of products and 

services. In this section, we review several major approaches for the time-based 

recommendations in general.  

Lee et al. [66] present a novel based approach to building a recommender system based 

on implicit feedback. According to the empirical results, using two kinds of temporal 

information such as user rating time and product launching time improves both 

recommendation accuracy and performance. 

Jamali and Ester [23] investigate whether a user rates after being exposed to an item 

rated by the target user‟s neighbors at a certain time. According to the experiment 

results, the influence of direct neighbors or rating items in the social network is higher 

than in the similarity network on datasets when the user is exposed to an item at a time.  

Zheng and Li [24] propose a new computational approach using tag and time 

information. For this purpose, the authors use three strategies which are “tag weight”, 

“time weight” and “tag and time”. They use the “tag and time” strategy for calculating 

the target user‟s rating values with the combination of tag and time information. 

According to the experimental results, these three strategies give good results to 

personalize navigational recommendation rather than the traditional log-based method. 

Raju et al. [67] propose an approach using a graph-based structure that uses the 

relationships between customers, products, customers and products. The authors utilize 

a matrix that consists of visiting area information, visiting date, visiting time, need type 

and satisfaction level for recommendations. They apply Collaborative Filtering to find 
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the most similar users based on filtered items and other user‟s additional information 

including day, time and need type, etc. 

Ullah, Sarwar, and Lee [28] offer an interesting study that is the use of the 

recommender systems in a different area. The authors propose a smart device that 

recommends TV programs according to user preferences and the user‟s social network 

data. To calculate the rating value, they divide the time which the target user spends on 

the program during the broadcast, with the total time of the program. 

Celdrán et al. [36] present a hybrid recommender and to compute the users‟ tracking, 

the authors calculate the number of times of visits and direction of the user to 

recommend items on that location, and lastly the date when the target user visited the 

related item last time. 

Yang et al. [37] present a hybrid recommender model that considers the time of the 

target user‟s interest. According to the authors, the performance of the recommender 

system is changed as regards the time of the user selecting an item. Namely, the current 

interest of a user is more effective on the performance of the recommender system.   

Zhang et al. [68]  present a time series analysis for dynamic-aware recommendations to 

overcome data insufficiency. The developed algorithm called FARIMA deals with the 

year-long period of purchasing data to provide daily aware predictions. 

Jiang et al. [69] propose an algorithm that uses time decay to provide dynamic item-

based top-N recommendations. To show the effects of time decay on recommendations 

the authors use three patterns of time decay which are concave time decay function, 

convex time decay function, and linear time decay function. According to the result, the 

algorithm with time decay provides better recommendations if the value of the time 

decay coefficient is chosen properly. 

4.2 Prepare Background and Context 

Another important deficiency in calculating the rating score of a product is the time 

factor. Most of the existing rating score algorithms do not take into account the time of 

users‟ ratings. But as we mentioned above, time is an important factor in some e-

commerce platforms, and it is believed that more recently reviewed products better 

appeal to customers‟ needs. Namely, hot ratings give us more reliable and valuable 

information about products. For these types of reasons, in this section, we first 
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introduce the concept of time decay by explaining its mathematical definition then we 

calculate a product rating score based on time decay. 

In the method to be explained, we assume that a record is a quartet in which user u rate 

item i with r on the t
th

 day as shown in Table 4.1. 

4.2.1 Time Decay of a Rating 

The more current rate on a product by a user, the more current information for us about 

the quality of that product. To calculate the currency of a rate, we use the formula of the 

motion at constant or uniform acceleration. As it is known that acceleration is the rate of 

change of velocity of an object. It is so common in physics and daily life that some 

basic equations are derived to work out the situations in which acceleration is constant. 

As it is known the position equation for the constant acceleration is as follow:  

                                    d   
1

2
  t2 (4.1) 

Where d indicates the position,   is the acceleration and 𝘵 is the time. In the following 

sections, we indicate the currency of a rate as a position. Thus, our equation will be as 

follow:  

                                         
1

2
  t2 (4.2) 

According to Formula (4.2), the currency, or we can say that the importance of a rate 

increases as the time increases. If the currency-time data for such a product were 

graphed, then the resulting graph would look like the graph as below:  

 

 
Figure 4.1 Currency-time graph 

 

 

According to the graph in Figure 4.1, as the date of a rate gets closer to the current day, 

the importance of the rate increases. Let‟s show it with a real example on our dataset. 
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4.2.2 Calculation Rating Score of a Product Based on Time Decay  

Let‟s assume that we get the product 2 from our real dataset. 

 
Table 4.1 Information about product 2 

Itemid Userid Rating Day_Distance Date 

2 2244178 4 969 2002-02-27 

2 66286 4 931 2002-01-20 

2 1 5 3358 2008-09-12 

 

Where Day_Distance indicates the difference of the date of the rate to the date of our 

database is created (which is 1999-07-04). The normal average rating score of item 2 is 

4.333 but we want to calculate based on time decay. For this purpose, we first calculate 

the acceleration of our dataset according to the currency value which is set to over 100 

in this study. The equation of the acceleration is as follow:  

  = 2  †  t  – t  2 (4.3) 

It is assumed that the currency of any rating is from 1 to 100 and time is the difference 

between the date of our database is created (which is the first day of our dataset 

obtained, t2) and the date of the today (which is the last day of our dataset obtained, t1). 

Thus, our   value will be as follow: 

ɑ = 2 * 100 † (2011-06-16 – 1999-07-04)
2
 = 1.049  

Now we can calculate the rating score of item 2 based on the weighted average with the 

currency of the rates. The equation will be as follow (4.4):  

 

 = 
∑  rn

u=1

∑  n
u=1

 
 

(4.4) 

 

Where   indicates product rating score, c is the currency, and r is the rating of each user 

to the related product. Thus, we can calculate the weighted average of the ratings 

according to the currency of each rating. The currency of each user‟s rating is as follow: 

Table 4.2 Currency of each rating 

Userid Rating Day Distance (t1–t2) Currency ((1/2) *α*𝘵2
) 

2244178 4 969 (2002-02-27 – 1999-07-04) = (1/2)*1.049*(969)
2
=4,92 

66286 4 931 (2002-01-20 – 1999-07-04) = (1/2)* 1.049*(931)
2
=4,54 

1 5 3358 (2008-09-12 – 1999-07-04)    = (1/2)* 1.049*(3358)
2
=59,14 

 

Thus, the weighted average of the ratings based on time decay is as follow: 
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As you can see from the result, the rating score of the product has increased. The reason 

is that user 1 gives “5” star to the item and the date of the rate is more current than 

others. The other two users gave rates in 2002 but user 1‟s is in 2008. The difference in 

the date of the rates is about 6 years. This time difference is really important to us when 

we think about some e-commerce platforms such as hotels, restaurants, travel agencies, 

and other service-based companies. There can be many reasons for the increase in the 

rating score of the product 2. If we assume that the product 2 as a hotel, the owner of the 

hotel may have changed or the hotel could be renovated or the hotel‟s service policy 

may have changed, etc. 

4.2.3 Calculation Rating Score of a Product Based on Helpfulness Votes 

In order to compare our models (trust-based and time-based model) with traditional 

models, here we want to calculate the rating score of products based on helpfulness vote 

which is used in some e-commerce platforms. 

Reviews are another quality assessment of products on e-commerce platforms especially 

in making the customer‟s final decision. Some algorithms calculate the rating score of 

items based on the number of reviews since the popularity of product increases by the 

number of reviews. But because the majority of reviews are fake, weak, or meaningless 

nowadays some e-commerce platforms use a voting system for the review rating such as 

amazon, TripAdvisor, booking, etc. In such systems, customers can vote the reviews if 

they want and, in this way, it is easier for the algorithms to determine the quality of the 

reviews. In our study, in order to understand the effect of the reviews on the rating score 

of items, we try to calculate the weighted rating score based on the helpfulness votes.  

As seen in Table 4.3, the sixth column is the helpfulness vote of the review. We have 

five helpfulness categories, and these are „Very Helpful‟, „Helpful‟, „Somewhat 

Helpful‟, „Show‟, „Not Yet Rated‟. 
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4.2.4 Calculation Rating Score of a Product Based on True Bayesian Estimate 

In order to compare our models (trust-based and time-based model) with traditional 

models, here we want to calculate the rating score of products based on True Bayesian 

Estimate (TBE) which is used in some e-commerce platforms. 

To get healthy results when we calculate the average score of an item, it is important to 

regard the number of rated users to that item. We know that the more experienced item 

by users, the more known about the quality of that item for the other users. For instance, 

for a movie rating, it is not the same for the same average rating for two movies which 

one is rated by just two users and the other one rated by one million users. Of course, 

knowing the quality of the second movie will be healthier because of rated by a higher 

number of users. That‟s why web sites like IMDB use the TBE in order to assess the 

quality of movies.  

True Bayesian Estimate is commonly used for forecasting weighting value in order to 

get logically accurate rating results. Actually, it is based on Bayesian Estimate but 

specifically utilizes the number of users‟ rates and sometimes other features. Let‟s look 

at the Formula (4.5): 

                       (
 

   
)    (

 

   
)     

(4.5) 

Where:  

WR = weighted average rating for the item,  

v = number of users who rated the item,  

m = minimum number of users to be calculated by the formula,  

R = average rating of the item,  

C = Average rating of all items by the formula. 

4.3 Experimental Results 

In this part, we carry out several experiments in order to verify the quality of the 

proposed recommender model based on trust value and time decay. For this purpose, we 

perform 3 different methods, i.e., product rating score based on trust values, time decay, 

and both, and then we compare with a normal average score.  

In this section, the dataset we use to evaluate the proposed algorithm is a real e-

commerce dataset extracted from Epinions in June 2011. It is available at 
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http://liris.cnrs.fr/red/. It is worked on two datasets. The first one contains information 

about reviews from users on items and the second one contains trust relationships 

between users.  

Table 4.3 Appearance of the rating dataset 

Review id User id Rating Item id Date Review rating 

51902 182 4 43286 2001-06-21 Very Heplful 

557406 236320 5 83979 2000-01-29 Helpful 

557411 2377344 5 43032 2004-11-07 Somewhat Helpful 

557415 237344 4 166791 2004-11-05 Show 

510717 235 5 158368 2000-11-16 Not Yet Rated 

 

The rating dataset contains review id, user id, item id, user‟s rating, between 1 and 5, 

and the date of the review. There are 1127673 reviews which 113629 users have at last 

one rating. Table 4.3 shows that the user 182 has a review with id 51902 and gives 4 

points for the item 43286 on the date 2001-06-21. It is a .csv file and 62.0 Mb. 

Table 4.4 Appearance of the trust network dataset 

Trustor id Trustee id Value 

22 434 1 

 

The trust network dataset shows which user trust to whom, only positive values appear 

in the dataset and there are 538392 trust values which 47522 users have at last one trust 

relation. Table 4.4 shows the user 22 trusts the user 434. The value of 1 indicates that 

the user trusts to another one. It is a .csv file and 10.2 Mb. 

Our dataset contains 131228 users, 317775 items and 1127673 reviews, namely our 

dataset has 0.003% sparsity. Our algorithms are executed on the Jupyter Notebook with 

Python version 2.7.11. 

4.3.1 Rating Score Based on Trust Values 

Table 4.5 Trust values of some users 

User id Trust Values 

1 14.380358249 

2 10.348435726 

3 3.243809321 
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As we explained in Chapter 3, after applying the formula in (3.7) on our trust network 

dataset we get the results as it is shown in Table 4.5. Approximately, user 1 has 14, user 

2 has 10, user 3 has 3 trust value, and so on, respectively. According to the result, we 

can say that user 1 is the most trustworthy user among the three users. As it is known, 

most of the existing recommender algorithms calculate the product rating score by 

calculating the average of all ratings of the users who rated the related item. But we 

calculate a weighted average based on the trust value of each user who rated the 

product. That is to say, user 1 affects the rating score of a product more than user 2 if 

they both rated to the related product [46].  

            = 
∑ trn

u=1

∑ tn
u=1

 
(4.6) 

Where   indicates product rating score, 𝘵 is the trust value of the user, and r is the rating 

of each user to the related product. Thus, we can calculate the weighted average of the 

ratings according to the trust value of each user. Results are as follows: 

Table 4.6 Average ratings based on trust values 

item id Number of 

users 

Average of 

ratings 

Average of ratings based on 

trust 

1 2 4.0 4.0 

2 3 4.333 4.965 

3 9 4.555 4.117 

 

According to Table 4.6, the rating score of item 1 does not change because of the given 

the same rate by the rated users. But for item 2, there is a great difference between 

average rating (AR) and weighted average rating based on trust values (WARTV). Most 

probably one of the users who have a more trust value gives a rate to the item more than 

average. The same for item 3 but this time one of the users who has a more trust value 

gives a rate to the item less than average. Let‟s examine one of these items in detail. 

Table 4.7 Trust values of each user who rated item 2 

User id User’s rating for item 2 Trust values of Users  

1 5 14.380358249 

66286 4 0.325909815 

244178 4 0.201582285 
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As seen in Table 4.7, user 1 has great trust value more than other users. Because of this 

reason, even the other two users give 4 rates for item 2; item 2‟s rating score is almost 5.   

Another important output of the research is that the average difference between AR and 

WARTV decreases as the number of users increases. It  means that items rated by too 

few people are affected easier by the fake accounts but according to our dataset, rating 

score of items rated by more than 100 people have almost the same rating score based 

on trust values. Let us see the average difference between AR and WARTV when the 

number of rated users increases on 1.000 items in our dataset.  

Table 4.8 Average difference between AR and WARTV 

Number of users Number of items  Average Difference  

2-10 339 0,32080 

11-50 223 0,27434 

>50 195 0,19845 

 

As seen in Table 4.8, as the number of users who rated the products increases, the 

average difference between AR and WARTV decreases. Also, the number of items 

rated by more than 50 users decreases when we execute the algorithm on more than 

1000 items. Of course, these results are just for 1000 items and when we increase the 

items, the results emerge clearer. Actually, when we continue to calculate the rating 

score of the products rated by more users, we see that the average difference between 

AR and WARTV comes closer, almost 0. 

4.3.2 Rating Score Based on Time Decay 

Table 4.9Average ratings based on time decay 

item id Number of users Average of ratings Weighted Average of ratings by TD 

1 2 4.0 4.0 

2 3 4.333 4.862 

9 31 4.161 3.140 

17 2 2.5 3.936 

 

As seen in Table 4.9, after applying Formula (4.4) on our dataset, the rating score of 

each item changes according to the ratings‟ date of users. Some rating scores of the 

items increase while some decrease. That is to say, there is no regular structure.    
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4.3.3 Rating Score Based on Trust Values and Time Decay 

In order to find rating score of products based on TV and TD, we apply Formula (4.7) 

on our dataset. 

  { (
 

 
 
∑ 𝘵  

   

∑ 𝘵 
   

)    (
 

 
 
∑    

   

∑   
   

)} 
 

(4.7) 

 

Dividing one-half means that each method will affect the results equally.  

Table 4.10 Average ratings based an time-decay and trust value 

item id Number of users Average ratings With TV With TD With TV and TD  

1 2 4.0 4.0 4.0 4.0 

2 3 4.333 4.965 4.862 4.913 

9 31 4.161 4.388 3.140 3.764 

17 2 2.5 3.707 3.936 3.821 

 

As seen in Table 4.10, the weighted average rating score of products based on both 

methods is a balance between two other methods. This may be because of some users‟ 

having a high trust value, but their comments are too old or vice versa. 

4.3.4 Rating Score Based on Helpfulness Votes 

When we calculate a rating score of a product, we get all the ratings with „review rating‟ 

for that product. Then, in order to find the weighted average rating, we multiply each 

rating of that product with the review rating. Namely, if the rating has a „very helpful‟ 

review rating, we multiply the rating with 5 or if the rating has a „helpful‟ review rating, 

we multiply the rating with 4 and so on. The output of some items‟ rating score can be 

seen in Table 4.11. 

Table 4.11 Average rating based on helpfulness votes 

Item id Number of users Average rating Average rating based on helpfulness votes 

3 9 4.555 4.523 

9 31 4.161 4.21 

12 3 3.666 3.800 

15 34 4.323 4.307 
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As seen in Table 4.11, there is no regular decrease or increase in value between ARS 

and weighted average rating based on helpfulness votes (WARHV). In other words, 

while the rating score of some items increase, other decreases.  

4.3.5 Rating Score Based on True Bayesian Estimate 

We execute the algorithm according to the Formula (4.5) to see the difference average 

and weighted average based on True Bayesian Estimate. We got the „m‟ value as 1 and 

the average („C‟) of all products of this category was equal to „3.68863983712‟.  

Table 4.12 Average rating based on True Bayesian Estimate 

Item id Number of users Average rating Average rating based on TBE 

32820 1 5.0 4.344 

218694 2 3.0 3.229 

61559 66 4.424 4.413 

34328 99 4.040 4.036 

 

As seen on the Table 4.12, average rating results come close the general average („C‟) 

because of the formula. That is to say, if the average score of an item is less than 

average score of all items (which is overall average and equal to 3.688), the result is 

drawn towards the overall average because of the formula. Similarly, if it is higher than 

the general average, the result is drawn down. 

4.3.6 Comparison of all Weighted Averages with each other 

Table 4.13 Comparison the difference between average and all other weighted averages 

Number of users 

(Range) 

Number 

of items 

Trust 

Values 

Time 

Decay 

Helpfulness 

Votes 

True Bayesian 

Estimate 

1-5 249 0.302 0.163 0.040 0.004 

5-10 90 0.373 0.228 0.035 0.016 

10-20 100 0.269 0.244 0.043 0.000 

20-50 123 0.278 0.230 0.035 0.006 

50-100 83 0.248 0.227 0.022 0.000 

100-200 54 0.174 0.240 0.020 0.003 

>200 36 0.125 0.241 0.012 0.002 
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According to the results in Table 4.13, it seems the True Bayesian Estimate has the best 

results. But if we take into account the formula of TBE, the mentality of the formula is 

already pulling the rates of the items to the average. Because of this reason, the 

difference between the average and TBE is almost close to zero. But when we think of 

the increasing range, it seems not regular. Namely, when the range goes up the 

difference is not close to zero. It changes range to range. If you realized, Helpfulness 

Votes is the better than True Bayesian Estimate if we take into account the increasing 

range. Actually, this has not surprised us because of getting the help of people but it is 

too hard to get helping of people for voting the reviews. If you look at the Time decay 

results, we see there is no regular motion. Time Decay weighted average totally depends 

on the time of each user‟s rating date. Indeed, Time Decay weighted average would be 

better for some types of e-commerce platforms especially hotels, websites and other 

service-based platforms because of their nature. The weighted average based on trust 

values is also almost regular. Its results come to close zero according to the increasing 

range. It differs from other weighted averages as Time Decay. 

4.4 Conclusion 

In this chapter, we tried to improve the quality of the product rating score based on the 

trust values of users and time decay of the date of users‟ ratings. First, we introduce the 

concept of PageRank by giving its mathematical definition and redefine for revealing 

the relationship between users in Chapter 3. We tried to reduce the effects of fake 

accounts on the rating score of products by using the trust value of each user. As seen in  

Table 4.8, the normal average rating score of products comes close to the trust values 

based average as the number of users who rated the related products increases. This 

result shows us that our algorithm is on the right track. Then, we introduce the concept 

of time decay by giving its mathematical definition and redefine for reducing the effects 

of old ratings when determining the rating score of products. After that, we apply both 

methods to the dataset. In this way, we break down the power of one method on the 

results since a product can be rated by trustful users, but their ratings‟ date may be too 

old or vice versa. But if a product is rated by trustful users and their ratings‟ date is up 

to date enough, we can say that the product gets the value it deserves. Lastly, we 

compared average ratings with all weighted average. According to the results, Due to 
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the structure of the formula, the True Bayesian Estimate seems the best method. 

However, when we consider the products one by one, some products get a high rating 

score while others get low, but this is due to the structure of the formula, not the quality 

of the product. Apart from that, finding rating score of an item based on helpfulness 

votes gives good results, but this method requires extra user assistance and there is not 

enough data for many e-commerce platforms.  
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5. THE IMPACT OF TEXT PREPROCESSING ON THE 

PREDICTION OF REVIEW RATINGS 

With the increase of e-commerce platforms and online applications, businessmen are 

looking to have a rating and review system through which they can easily reveal the 

feelings of customers related to their products and services. It is undeniable from the 

statistics that online ratings and reviews charm new customers as well as increase sales 

by means of providing confidence, ratification, opinions, comparisons, merchant 

credibility, etc. Although considerable research has been devoted to the sentiment 

analysis for review classification, rather less attention has been paid to the text 

preprocessing which is a crucial step in opinion mining especially if convenient 

preprocessing strategies are found out to increase the classification accuracy. In this 

chapter, we concentrate on the impact of simple text preprocessing decisions in order to 

predict fine-grained review rating stars whereas the majority of previous works focused 

on the binary distinction of positive vs. negative. Therefore, the aim of this section is to 

analyze preprocessing techniques and their influence, at the same time explain the 

interesting observations and results on the performance of a five class-based review 

rating classifier. 

Especially over the past decade, fast-growing e-commerce platforms have begun to 

dominate the entire business world. Thanks to the many options provided by these 

platforms, customers started to feel more comfortable than traditional commerce by 

finding experienced products, which are reviewed and rated by too many people who 

are expressing and sharing their own feelings and thoughts about any products. Thus, 

customers‟ opinions began to play a major role in purchasing decisions, business 

intelligence, and keeping any product or service available. Many studies and surveys 

conducted by companies and researches have proved this situation that sentiment 

analysis is a constantly growing area in recent years [70]. Holleschovsky and 

Constantinides  [6] show that 98% of the sample research population read reviews 

before making a purchase and 60% of them read often or quite often. Last 

ReviewTrakers online survey shows that 6 out of 10 consumers look to Google for 

checking online reviews before visiting a business [71]. Tripadvisor indicates that 

travelers rely on reviews and opinions from other travelers before booking their trip 
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[72]. Therefore, the field of sentiment analysis, which is also called opinion mining 

suddenly, became a popular research field because of providing opportunities to the 

companies wanting to know the pros and cons of their products or services to identify 

new strategies as well as make crucial decisions. 

Specifically, sentiment analysis in reviews is the process of analyzing, monitoring, and 

categorizing thoughts, opinions, or feelings from an unstructured text about a product or 

a service, especially in e-commerce platforms. Namely, it works on unstructured review 

text to find useful information for business intelligence. There are a couple of steps for 

the text classification such as preprocessing, feature extraction, feature selection, and 

classification. 

Although sentiment analysis is a relatively new area of computer science, there are 

considerable researches except for the importance of text preprocessing on classification 

performance. Therefore, in this section, we specifically focus on the role of various text-

preprocessing stages which are the initial processes in sentiment analysis to demonstrate 

the effects by experimental results on the performance of a five class-based review 

rating classifier. Generally, preprocessing consists of some methods such as 

tokenization, lemmatization, stemming, lowercase conversion, replacing negation, 

reverting repeated letters, expanding acronym, removing stopwords, numbers, URLs, 

punctuations and special characters, etc. 

There are few types of research on predicting fine-grained rating stars in review texts 

which is a challenging task because of the low probability of estimation and use of 

similar words for closed classes by users. Thus, it is important to know which 

preprocessing method will increase the classification accuracy and how and why it 

affects the results. 

The rest of this chapter is organized as follows. After the introduction, Section 5.1 

presents some of the recent works especially focused on preprocessing techniques for 

text classification. In Section 5.2, we explain some details about each preprocessing 

method and give some specific examples about the related area. Section 5.3 introduces a 

real-life dataset used in our experiment and Section 5.4 reports some experimental 

outcomes and evaluates the results. Finally, we conclude and discuss in Section 5.5. 
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5.1 Related Work 

After the sentiment analysis is really drawn a great deal of attention among data mining 

researches in the last decades due to the charming commercial returns, researches 

related to this field started to increase, particularly on classification models aiming to 

improve the sentiment classification accuracy. In this section, we specifically focus on 

some recent related researches which deal with different types of preprocessing methods 

to improve the performance of a classifier. 

When we look at the recent studies in general, some of them indicate that certain 

preprocessing methods have a great effect on the performance of classifiers while some 

of them state that they are only slightly better or do not show any effects or even worse. 

Below is a close look at some of these studies. 

Sharma et al. [73] investigate the impact of preprocessing on four different Twitter text 

data i.e. sports, politics, entertainment, and finance. According to the results, removing 

stopwords, URL links, punctuations, and converting lowercase increase the 

classification accuracy of the Twitter sample data. 

Ghag et al. [74] investigate the impact of removing stopwords on several sentiment 

classification models using the movie document dataset. According to the results, while 

removing stopwords has a great effect on the classification accuracy for the traditional 

sentiment classifier, there is no significant change for the other classifiers such as the 

Average Relative Term Frequency Sentiment Classifier, Sentiment Term Frequency, 

Inverse Document Frequency, and Relative Term Frequency Sentiment Classifier. 

Jianqiang and Xiaolin [75] investigate the impacts of preprocessing techniques for the 

performance of sentiment classification on five Twitter datasets. According to the 

experimental results, while removing URLs, numbers and stopwords have a little effect, 

expanding acronyms and replacing negation have a huge impact on the classification 

accuracy and F1 measure for the classifying Twitter texts. 

Srividhya and Anitha [76] investigate some preprocessing techniques whether they have 

an impact on the classification accuracy on the Reuters dataset. According to the results, 

removing stopwords, stemming and TF/IDF have a great effect on the performance of 

classification. 

Camacho-Collados and Pilehvar [77] study on the role of simple pre-processing 

techniques on the performance of Neural Text Classifier using tokenizing, lemmatizing, 
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lowercasing and multi-word grouping. According to the research, using simple 

tokenization affects more than complex preprocessing techniques such as lemmatization 

or multi-grouping. The research also shows that the effects of pre-processing changes 

according to the size of the training data used. 

Ghag et al. [78] work on some pre-processing techniques for optimizing sentiment 

classification. For this purpose, they focus on some rules to handle apostrophe and 

punctuation symbols, unlike traditional pre-processing techniques. According to the 

results of the research, the accuracy of classification increases by the proposed pre-

processed data, and the elimination of the stopwords decreases, unlike traditional 

sentiment classification.  

Gull et al. [79] use pre-processing techniques in order to analyze useful political 

structured content. For this purpose, they get the data from Twitter, and then they clean 

tweets especially useless emoticons, punctuations and URL links using some pre-

processing techniques. After that, they extract hash tags and change of direction 

indicators on the selected parsed tweets for classification. According to the results, 

SVM is better than Naïve Bayes for tweet classification. 

Jianqiang [80] works on the preprocessing techniques in order to show their effects on 

Twitter Sentiment Analysis especially cleaning tweets from URL links, stopwords, 

repeated letters, negation, acronym, and numbers. According to the authors, some pre-

processing techniques hardly change the accuracy of sentiment classification such as 

removing URL links, numbers, and stopwords. 

Safeek and Kalideen [81] work on spell correction and emoticon analysis in order to get 

suitable data for Sentiment Analysis on Facebook data. According to the authors, 

writing “happppyyyyy” is more strength than “happy”. Namely strength of the word is 

defined how many times a character occurs in a word. 

Vijayarani et al. [82] explain various pre-processing techniques in their research 

especially stopwords elimination, stopwords removal methods and stemming algorithms 

for classification processes such as truncating methods, statistical methods, and mix 

methods. 

Hemalatha et al. [83] apply some preprocessing techniques to be ready for giving a text 

as an input to any Machine Learning algorithms. For this purpose, they remove URLs, 
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special characters, question words and repeated characters in order to help a given 

document to be ready as an input into any Machine Learning algorithms. 

To improve mining process, Katariya and Chaudhari [84] suggest using the text data 

with the use of side information such as web logs, links in the document and meta-data. 

Therefore, they get text documents from different sources and then they apply 

preprocessing techniques on the obtained information. The research shows that the 

domain specific application is more proper for text mining. 

Singh and Kumari [85] study on the effects of preprocessing and normalization on the 

short text like tweets. They especially evaluate the effects of slang words in a tweet to 

show how they change the accuracy for a better sentiment classification. 

Nayak et al. [86] work on two basic stemming algorithms to reveal the pros and cons of 

each of them. According to the authors, MF Porter‟s algorithm leads to a large degree, 

therefore it finds incorrect stem whereas the Krovetz algorithm is ineffective with a 

large document. 

Krouska at al. [87] execute some preprocessing techniques on three different Twitter 

datasets. According to the results, using appropriate feature selection and representation 

of the dataset may increase the classification accuracy in Sentiment Analysis such as 1-

to-3 grams perform better than other representations and feature extraction. 

Zin at al. [88] show the effects of various preprocessing strategies such as stopwords, 

numbers, punctuations, etc. with experimental results on online movie reviews. Their 

study proved that preprocessing affects the performance of the classification in a good 

way especially on the SVM with non-linear kernel. 

Pomikálek and Řehů ek  [89] study on preprocessing parameters such as stopwords list 

selection, stemmer selection, and tokenizers in order to compare them on three text data 

sets and they show how these parameters affect results. According to their results, the 

term weightier “ntc” (tf.idf) works best with the shorter documents whereas term 

frequency “atc” performs better with longer documents. 

Schofield et al. [90]investigate the effects of preprocessing in sentiment classification. 

According to the results, the influence of many common preprocessing techniques such 

as stemming, removing stopwords have little effect or even negative effects. They 

suggest that instead of applying the common preprocessing techniques on the text data, 

it can be more efficient to decide to preprocess techniques according to the application. 
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Fan and Khademi [91] concentrate on the effects of top frequent words in raw text 

reviews and top frequent words/adjectives after part of speech analysis results. 

According to the results, raw data has almost equal power for different feature 

generation methods whereas determining words and adjectives after part of speech can 

remove informative features out. 

There are not only researches about text preprocessing in English but also other 

languages. One of them is the research of Duwairi and El-Orfali  [92] who investigated 

the effects of text preprocessing methods on the classifiers‟ accuracy in the Arabic 

language. According to the results, stemming and removing stopwords affect the 

performance of the classification badly for the movie review texts while slightly 

improve for the political texts. The other one is Saad‟s research [93], which investigates 

the effects of text preprocessing on Arabic text classification applying term weighting 

schemes, morphological analysis, namely stemming and light stemming. According to 

the experimental results, light stemming with term pruning works very well for feature 

reduction and weighting schemes affect the accuracy of the distance-based classifier. As 

in the Arabic language, there are some challenges in some languages because of having 

very complex morphology as we compare to the English language. For this reason, 

preprocessing is very important for text mining. One another study in a language other 

than English is Uysal and Gunal‟s [94] research which shows the effects of 

preprocessing techniques on two different text domains and languages, namely Turkish 

and English. For this purpose, they use all potential combinations of preprocessing 

strategies by thinking of several ways. According to the results, using proper 

combinations of preprocessing strategies provide successful accuracy on text 

classification depending on domains and languages studied. 

5.2 Prepare Background and Context 

Online review websites play a vital role in all aspects of the business world especially 

with the increase in e-commerce platforms. Nowadays, most of the review-based e-

commerce websites like amazon.com, TripAdvisor, booking.com, alibaba.com, etc., are 

extensively dominate the market. The best parts of these kinds of platforms are that 

customers can comment on products, rate products, and can easily reach to the other 

reviews about products written by other users. For this reason, it is important to analyze 
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reviews and ratings in order to determine new strategies and provide better service to 

customers. 

Preprocessing is the first step of the sentiment analysis after getting a dataset. We apply 

this process to clean and prepare texts for sentiment classification because texts 

particularly written by users are unstructured.  Namely, unstructured texts usually have 

lots of noisy, unnecessary, useless information such as repeated words, numbers, 

punctuations, Html tags, URLs, scripts, advertisements, stopwords, abbreviations, 

emoticons, slang words, misspelling, shortcuts, specific terminology, etc. Because of 

treating each word as a dimension in the feature set, having all unnecessary words cause 

the models to be confused and loss of time. On the other hand, cleaning the text from 

noisy data may increase the performance of classifiers as well as accelerates the 

classification process. 

Even we can‟t show all the details in this research due to the space limitation, 

preprocessing contains very different steps such as tokenization, removing emoticons, 

punctuations, URLs, stopwords elimination, stemming, lemmatization, expanding 

abbreviation, lowercasing, multiword grouping, word correction, the strength of words, 

weighting scheme and removing common words. Although there have been remarkable 

researches on this field, finding the best preprocessing method is still an open issue. 

Researchers show that the best preprocessing methods change according to the 

application. Therefore, in this study, we concentrate on review texts specifically related 

to restaurants. Below are some of these preprocessing methods step by step. 

5.2.1 Tokenization 

Tokenization can be defined as splitting up a text into the desired list of practical pieces 

called tokens such as words, phrases, symbols, or other units, or even whole sentences 

in order to work on the text more effectively. It is considered an important process of  

Natural Language Processing because of being an input for the next processes. We use 

whitespace, punctuations, and sometimes line breaks to get tokens. In most cases, we 

use whitespace.  

There are a couple of tokenizers in Natural Language Toolkit (nltk) which is a platform 

to work on human language data. One of them is the Regexp tokenizer. This tokenizer 

split a sentence using regular expression for matching tokens. For instance, if we use 
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RegexpTokenizer(“[/w`]+”) for a sentence like, “We‟ll go on a picnic tomorrow.”. We 

will get a result like: [“We”, “ll”, “go”, “on”, “a”, “picnic”, “tomorrow”]. 

The second one is TreebankWord tokenizer.  This tokenizer split the sentence according 

to the regular expression but treats the punctuations as a word, so it splits commas, 

apostrophes, quotation marks, etc. For instance, if we use TreebankWordTokenizer() for 

the same sentence above, we will get a result like: [“We”, “ ‟ ”, “ll”, “go”, “on”, “a”, 

“picnic”, “tomorrow”, “.”]. 

The third one is WordPunct tokenizer.  This tokenizer split the sentence according to 

this \w+|[^\w\s]+ regular expression. For instance, if we use WordPunctTokenizer() for 

the same sentence above, we will get a result like, [“We”, “ ‟ ”, “ll”, “go”, “on”, “a”, 

“picnic”, “tomorrow”, “.”]. 

As it is seen we got the same result as TreebankWord tokenizer, of course for the given 

sentence. There are more tokenizers in nltk tool to use according to the need. 

5.2.2 Effect of Emoticons, Removing Punctuation and Urls 

Most of the time, it does not make sense to treat emoticons and punctuations as a token 

for the sentiment classification. Thus, removing emoticons (e.g. :-), :), :-), :-( are 

frequently used in social media and messaging applications), and punctuations 

(^!”#$%`()*+-/:;<=>?@[\\]|~{}) increase the accuracy of the classification because of 

being treated as a dimension in the feature set for each word. But sometimes especially 

emoticons can have a slightly good effect on the sentiment score according to the 

searching area [95]. The research in [96] shows that the importance of emoticons on 

polarity sentiment classification especially in social networks is undeniable and their 

popularity is getting higher and higher. 

In most literature, URLs do not have any information to analyze regarding sentiments in 

texts. For instance, when considering the following sentence, “I hate all those disgusting 

meals from www.mydeliciousmeals.com if you want better, you can click 

www.besteverdinner.com” actually the review is negative but because of the words in 

links, it may become a positive review. Thus, researchers want to remove URLs from 

texts to avoid such situations. But for some specific application URLs can be effective 

for providing insights about the text in a way that is not easily obtainable from the 

context. 
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5.2.3 Expanding Abbreviation and Acronyms 

We can say that abbreviation is a shortened form of words and most of the time, their 

full meaning is given at the first used place. We widely use the abbreviation to avoid 

repetition of words that are used too many times in a text and to save space. Usually, 

they are formed by getting the first few letters such as Aug. for August, CA. for 

California, univ. for university, etc. Sometimes they are formed by omitting letters such 

as TX. for Texas, St. for Street, Rd. for road, Dr. for Doctor, etc. 

The difference between abbreviation and acronym is that acronyms are formed by 

getting the first letters of each word of the phrase such as A.S.A.P for as soon as 

possible, PA. Personal Assistant, Lol. for Laugh out loud, TY. for Thank you, NP. for 

No problem, FBI. for the Federal Bureau of Investigation, AI. for Artificial Intelligence, 

etc.  

Expanding abbreviations and acronyms are important to understand the contexts in text 

mining. Compared to the past, the problem of abbreviation and acronym has attracted 

relatively more attention in text mining especially after increasing the number of 

messaging applications such as WhatsApp, Viber, Tango, Line, etc. and social media 

platforms such as Facebook, Twitter, Instagram, Snapchat, etc. For instance, the 

acronyms such as Omg (Oh my God), Lol (Laughing out Loud), 2moro  (Tomorrow), 

B3 (Blah, Blah, Blah), ASL (Age / Sex / Location), F2F (Face to Face), BTW (By the 

Way), XOXOXOX (Hugs, kisses,…), PAL (Parents are listening), BRB (Be right back) 

are just some of them and they are used too much in daily life conversations. The ability 

to expand abbreviations and acronyms is crucial for many natural language processing 

applications and to find out the information contained in documents for information 

retrieval [97]. 

5.2.4 Word Correction and Multiword Expressions 

Word correction which is also called misspelling checking is a method that identifies 

misspelled words in order to change with their most possible similar words. For this 

purpose, the misspelled word is checked whether it is presented in the dictionary or not. 

If it is not, the algorithm tries to provide the best similar word of it [98]. There are some 

types of misspelling such as keyboard errors (“yur” – “your”, “allways” – “always”, 
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etc.), cognitive errors (“piece”–“peice”, “sipritual”-“spiritual”, “freindly”-“friendly” 

etc.), phonetic errors (“calander”-“calender”, “katalog”-“catalog”, etc.), etc. 

Bertoldi et al. [99] empirically work on the effects of misspelled words to show the 

performance of the Machine Translation. According to the research results, performance 

is related to the noise rate and the noise source affects the capability of Machine 

Translation. 

There are some tools (e.g. nltk, word2vec, python grammar-check) for checking the 

misspelled words in texts according to the different languages. Some of them provide 

the best option, while others offer more than one alternative to the users classifying by 

types of misspelling. And some of them also check grammatical mistakes by examining 

everything that forms incorrect use of a person to subject-verb agreement. 

Another important challenge in Natural Language Processing is multiword expressions 

which are generally difficult to trace from their individual words. They can be 

metaphorical expressions such as “killing time”, “broke someone heart”, “time is a 

thief”, etc. or verbal idioms such as “give away”, “made out”, “take off”, “come along 

with”, etc. or phrasal verbs or stereotyped comparisons such “as nice as pie”, “swear 

like a trooper”, “cold as stone”, etc. [100], or some well-known group of words such as 

“United Kingdom”, “Galaxy note 9”, “Citizen of Humanity”, etc. and so on. Thus, 

tokenizing such multiword expressions for text mining causes words to lose their 

meaning in the sentences. Consequently, getting these types of multiword as a single 

word can increase the performance of the classifier. There are some studies specifically 

on this topic [77], [100], [101] to show their effects on text mining. The study [101] 

investigates two empirical methods to integrate multiword expressions in a real 

constituency-parsing context. 

5.2.5 Stopwords Elimination 

In general, stopwords mean the most common words in a language, for us in English 

such as “and”, “an”, “at”, etc. which are considered unnecessary and useless in text 

mining applications. These words can be pronouns (I, me, my, mine, myself, etc.), 

prepositions (on, in, next to, behind, under, around, etc.), conjunctions (once, until, 

when, why, since, after, etc.), articles (a, an, the), auxiliary verbs (be, do, have, will, 

can, may, etc.), etc. Most of the studies show that stopwords should be removed from 
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the corpus without losing valuable information before the feature selection because of 

their negative effects on the performance of the sentiment classifier. But sometimes 

removing the stopwords might reduce the accuracy of classification such as documents 

or texts related to prepositions, conjunctions, auxiliary verbs, etc. So, removing 

stopwords can make the matching impossible but as we said, generally due to reducing 

the size of the feature set comparatively, it has a good effect in text mining. Normally, 

researchers use compiled lists (Rainbow list, Van stoplist, Smart stopwords list, etc.)  

provided by text mining tools but sometimes researchers create and then use those 

predefined lists according to their application. In this study, we use nltk tools but also, 

we modified the stopwords list according to our text structure.  

There are some methods to eliminate stopwords from a text. The basic one is using pre-

compiled lists as we mentioned. The other one is finding the most frequent words which 

are not needed for matching in the texts. For instance, if you study on restaurants 

reviews, the word “food” or “meal” generally will not give meaningful results because 

these words are used in both negative and positive reviews. Maybe these words can be 

used with the combination of other words, namely bigrams or Ngrams combinations 

such as “terrible tasting”, “food tastes bad”, “never had a bad meal”, etc. Actually, this 

is another preprocessing method but for some researchers, it can be under the branch of 

stopwords elimination. One another method is selecting words that occurred rarely and 

not related to your texts. There are some additional methods that are examined and 

studied. 

5.2.6 Stemming 

The aim of the stemming is to take words in a way in which they occur in a text so that 

reduce them to root forms by removing of their affixes such as prefixes (cutting off the 

beginning of the word) and suffixes (cutting off the end of the word) according to some 

grammatical rules. In this way, they can be used as an indexing unit in the related 

research area. Although stemming algorithms in most application tools are commonly 

developed for English, there is a need for appropriate editing according to the language 

being studied because of differences in language structure. Nowadays, many different 

algorithms can be also used for some other languages.  
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Stemming is applied for a couple of reasons. One of them is to reduce the derivatives of 

the same root words to the common representations to increase the performance of 

classification. One of the other reasons is to reduce the size of the feature set so that the 

number of dimensions is reduced. 

We can apply the stemming to derivatives of the word such as number (cat, cats), tense 

(play, played, playing), gender (actor, actress), pronouns (I, me, my, mine), person 

(hate, hates), aspect (become, became), etc. For instance, the words select, selected, 

selecting, selects all can be stemmed to the word “select”. As it is seen, we cut off the 

end of the words which are semantically related to their root form. In this way, we 

reduce the number of words in memory space and save time. 

When applying stemmer, we should consider some points which are important and 

required for a powerful natural language processing application. One of them is 

overstemming which occurs when the words have the same root but not having the same 

meaning. For example, “general” and “generation” can have the same root “gener”. 

Similarly, “organization” and “organs” have the same root “organ” and this situation 

decreases the accuracy of the classifier. One another is understemming which occurs in 

some stemmer algorithms. For example, the stemmer takes the words “cooks” and 

“cooked” and reduces to “cook”, while “cookery” can be reduced to “cookeri” or 

“absorbtion” and “absorbing” are stemmed to “absorpt” and “absorb”. This causes 

corresponding documents to not be returned.  

Natural Language Toolkit platform uses a couple of stemmers such as PorterStemmer, 

LancasterStemmer, RegexpStemmer, Snowball Stemmer, etc. For example, while the 

PorterStemmer reduces the word “cookery” to “cookeri”, LancasterStemmer reduces to 

“cookery”. But if you want to use RegexpStemmer, you should determine your affix. 

For instance, when you use RegexpStemmer(„ing‟), it brings the word “cooking” as 

“cook” but you need to be careful in case the word has a prefix such as the word 

“ingrain”, it will be returned as “rain”. 

5.2.7 Lemmatization 

Both stemming and lemmatization are language preprocessing methods to provide that 

different versions of a word are not left out. Even they are closely related to each other, 

lemmatization is more complex than stemming because it reduces derivationally related 
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word form to its dictionary form categorized by a part of speech as well as by inflected 

form. Namely, stemming is applied without checking the position of the word in the 

sentence. So, if the user queries the plural and singular form of a word such as “mice” 

and “mouse” when the stemmer brings them as “mice”/“mic” and “mous”, the 

lemmatization brings “mice” and “mouse” both as “mouse”. By the time, for 

lemmatization we need to indicate the position of the word otherwise lemmatization 

gets the position of the word as “noun” by default. For example, when you use wordnet 

lemmatizer like, wordnet_lemmatizer.lemmatize(„are‟). Lemmatizer will bring it as 

“are”. For that, we should write as, Wordnet_lemmatizer.lemmatize(„are‟, pos=‟v‟). 

Then, lemmatizer will bring it as “be”. Let‟s look at some words results after executing 

lemmatization. 

Table 5.1 Difference between stemmer and lemmatizer 

Words Porter  

Stemmer 

WordNet Lemmatization 

(pos=verb) 

WordNet Lemmatization 

(pos=noun) 

Constructing construct construct constructing 

Extracts extract extract extract 

Decided decid decide decided 

Took Took take took 

Information inform information information 

Clearly clearli clearly clearly 

Is Is be Is 

 

As it is seen in Table 5.1, according to our indication lemmatizer finds a base form of 

the words. Namely, lemmatizing means that converting the word to its dictionary form 

or morphologically related form. For example, for the sentence like, "I loved cats, dogs, 

frogs, and geese secretly". Lemmatizer will bring it as, “i love cat dog frog and goose 

secretly”. We informed the lemma function that “love” is a verb, “cats”, “dogs”, 

“frogs”, “geese” are noun and “secretly” is an adverb, and then we get the above result. 

Whereas if we use stemming for the sentence, it will return as, “I lov cat dog frog gees 

secret”. Namely, stemming returns the root of the word whereas lemmatizing returns 

dictionary form according to the position of the word in the sentence. 
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5.2.8 Lowercasing 

Lowercasing is one of the first stages of preprocessing for text mining. All letters are 

converted to the lowercase to prevent case sensitivity. In this way, we can increase the 

performance of classifiers without considering the non-consistence of texts. Even 

though this simple preprocessing technique provides the easiest and important help to 

the classification, sometimes doing this might create some problems by increasing 

ambiguity. For example, Turkey is a country, but turkey is an animal or Opera is a 

browser, but opera is a musical play, so getting words in the lower case would be 

considered as identical entities for these types of words in text classification. 

5.2.9 Removing Common Words 

Removal of the common words does not guarantee that the accuracy of the classifier 

will be higher, but for most applications, it gives very good results. Common words and 

stopwords should not be confused with each other. Stopwords can be most common 

words but when we say common words here it means that they are found in almost each 

different class documents related to the studied field.  So stopwords are almost the same 

for all studied field while common words are totally different for each studied field. For 

instance, the words “meal”, “dinner”, and “menu” can be the most common words for a 

restaurant corpus while the words “room”, “reception”, “bed” can be the most common 

words for a hotel corpus. As you realize, these words are not enough to find the 

differences between hotel or restaurant rating classes. 

5.2.10 N-grams 

Recently, many types of research on text mining and natural language processing have 

focused on Ngram. According to Ngram, it is not a coincidence that the words in a text 

are found more than once together. In other words, these words together give us a clue 

about the text summarization. In particular, the surprising effect of the text classification 

has been proven by many types of research. Of course, N-grams‟s effect changes from 

research to research. For instance, according to the results of [102], Ngram works better 

on the shorter texts since the presence of words in shorter texts are more important than 
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longer texts. Namely, the value of a word loses its significance or value in a long text. 

Anyway, so what exactly do we mean by Ngram? Let‟s explain the Ngram with an 

example. If we want to use bigram for a sentence like, "An n-gram is a contiguous 

sequence of words in a text". After cleaning from the stopwords, the output of the 

program will be as, [(„n-gram‟, „contiguous‟), („contiguous‟, „sequence‟), („sequence‟, 

„words‟), („words‟, „text‟)]. 

As it is seen, Ngram takes each word with the adjacent word. According to the 

frequency of these adjacent words, the content of the text is estimated, and the 

classification is made according to the result. If we had done the same example for 

trigram, we would get an output like, [(„n-gram‟, „contiguous‟, „sequence‟), 

(„contiguous‟, „sequence‟, „words‟), („sequence‟, „words‟, „text‟)]. As it is seen, at this 

time Ngram takes three consecutive words. And again, according to the frequency of 

these adjacent words, the class of the text is decided. According to the studied field, the 

number of the N can be changed but, in this study,  we use the combinations of the 

Ngrams from one to three. 

5.3 Dataset Description 

In this paper, the dataset we use to evaluate the preprocessing methods is a real e-

commerce dataset extracted from Yelp in June 2018. It is available at 

https://www.yelp.com/dataset. We work on two datasets. The first one contains full 

review text data including the User_id that wrote the review and the Business_id the 

review is written for and the second one contains business data including location data, 

attributes, and categories. 

Table 5.2 Appearance of review dataset 

Business_id Date Review id Star Text User_id 

9yKzy… 2011-01-26 fWKv… 5 
My wife took me here on 
my birthday for breakf... 

 

 
rLtl8Z… 

 

The review dataset contains Business_id, the date of the review, Review_id, star, review 

text, and User_id. There are 229907 reviews, from which 43873 users have at last one 

review. Star column contains values ranging from 1 to 5. The value of “1” indicates that 

the user does not like the business at all, while the value of  “5” indicates that he likes it 
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very much. If the ratings column contains a value of “0”, it indicates that the relevant 

user did not score the relevant product. The star column consists of 33.141% 5 star, 

34.744% 4 star, 15.381% 3 star, 9.115% 2 star, 7.619% 1 star, respectively. Table 5.2 

shows that the user rLtl8Z… has a review with id fWKv… and gives 5 stars for the 

business 9yKzy… on the date 2011-01-26. It is a .json file and 206.0 Mb. 

Table 5.3 Appearance of business dataset 

Business_id Categories Address Name Review_count Star 

qarob… 
[Sandwiches, 

Restaurants] 

891 E Baseline 

Rd\nSuite 

102\nGilbert, AZ 

85233 

Jersey 

Mike's Subs 
10 

 

 

 

3.5 

 

The business dataset shows business location data, category, its name, how many 

reviews it gets from users, and its average star rating. There are 11527 businesses which 

have at last one review. There are 509 different categories from 61 different cities. 

11.034% of businesses 5 star, 15.151% 4.5 star, 23.178% 4 star, 22.874% 3.5 star, 

13.097% 3 star, 8.763% 2.5 star, 3.493% 2 star, 1.474% 1.5 star and 0.936% received 1 

star. 14.577% of the businesses are restaurants, 5.442% shopping, 5.231% food, 2.473% 

Beauty & Spas, 2.072% Nigthlife and the rest are other categories, each below 2%. 

Table 5.3 shows the business qarob… which reviewed by 10 people and got 3.5 stars on 

average and it is in the restaurant category. It is a .json file and 4.08 Mb. Our algorithms 

are executed on the Jupyter Notebook with Python version 3.6.5. 

5.4 Experimental Results 

In this section, we carry out several experiments in order to verify the effects of 

preprocessing methods on the performance of the classifier. For this purpose, we 

perform ten different methods, i.e., tokenization, effects of emoticons, removing 

punctuation and URLs, expanding abbreviations and acronyms, word correction and 

multiword expressions, stopwords elimination, stemming, lemmatization, lowercasing, 

removing common words and lastly Ngrams effects.  

In order to get meaningful results, we created our feature set on 10000 restaurant 

reviews. Our aim is to analyze the effects of preprocessing methods when finding the 

star ratings of restaurants by analyzing the reviews. Star ratings range from 1 to 5. As 
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we mentioned above, the biggest challenge is to find the star rating of close categories 

because of using very similar words.  

We use  K Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), 

Logistic Regression (LR), Stochastic Gradients Descent (SGD),  Naïve Bayes Classifier 

(NB), Support Vector Machine (SVM) classifiers of nltk to get accuracy results for all 

types of preprocessing methods. Over the created feature set, 10000 reviews are applied 

for training the classifier (Classifiers are applied for each rating category in equal 

number, namely, 2000 training reviews are selected from each rating category.) and 

1000 reviews are applied for testing (200 testing reviews are selected from each rating 

category) in order to see the performance of the classifier. 

To get stable results from the effects of a random selection of reviews, we run each 

experiment by selecting 20 times shuffled reviews for each preprocessing method. 

Namely, for each run, a different subset of reviews is selected from the pool of all 

available five rating categories. 

5.4.1 Performance of the Classifiers Based on Different Tokenizers  

In this part, we report the results obtained after tokenizing the text of the reviews as we 

mentioned above. In addition to those techniques, we also used WhitespaceTokenizer 

which is simply used for tokenizing the text according to the white space between the 

words. WhitespaceTokenizer method can be considered as the result without any 

preprocessing. In other words, at least this basic tokenizer form must be applied to the 

data before the other preprocessing method can be performed. Therefore, for the rest of 

the preprocessing methods, we choose space tokenizer to create a dictionary with the 1-

to-3 n-grams in order to get directly simple effects of the methods. 

 

Table 5.4 Performance of the classifier based on different tokenizers 

Tokenizer KNN DT RF LR SGD NB SVM 

WhitespaceTokenizer() – 

Base Form 

0.260 0.287 0.374 0.476 0.446 0.491 0.444 

RegexpTokenizer(“[w‟]+”) 0.284 0.318 0.404 0.513 0.486 0.512 0.478 

TreebankWordTokenizer() 0.281 0.303 0.366 0.510 0.485 0.518 0.465 

WordPuncTokenizer() 0.266 0.338 0.403 0.503 0.478 0.518 0.476 
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As shown in Table 5.4 after running the methods 20 times shuffled reviews, there is no 

significant difference between RegexpTokenizer(“[\w']+”), TreebankWordTokenizer(), 

and WordPunctTokenizer() tokenizers, all the tokenizers gave almost the same results. 

But we should also indicate that we observed the WhitespaceTokenizer() gives a little 

bit worse results on general average all the times rather than others when we run the 

program multiple times. 

5.4.2 Classifier Performance Based on Replaced Emoticons and Removing 

Punctuations 

In this part, we report the results obtained after removing emoticons and punctuations 

separately. We don‟t apply the removing URLs method due to a lack of the remarkable 

number of reviews as we observed from reviews text.  

To see the effects of emoticons on the rating stars, we investigate the usage of 

emoticons in the text reviews. For this purpose, we create a simple word replacer in 

order to change emoticons to words. In this way, our program can find a relationship 

with a combination of words. For example, we replace the emoji “:)” as a “smile”, “:(” 

as a “sad”, “:-o” as a “surprised”, etc. which are commonly used in messaging 

applications and social media. 

 

Table 5.5 Classifier performance based on replaced emoticons and removing punctuations 

Preprocessing Methods KNN DT RF LR SGD NB SVM 

Base Form 0.260 0.287 0.374 0.476 0.446 0.491 0.444 

Replaced Emoticons 0.281 0.311 0.314 0.474 0.428 0.492 0.438 

Removing Punctuations 0.276 0.289 0.379 0.474 0.435 0.491 0.436 

 

As shown in Table 5.5 after running the methods 20 times shuffled reviews, the average 

accuracy result of replaced emoticons is sometimes worse than without execution of the 

method if we compare with the results base form without preprocessing. Actually, this 

result shows us there are no significant effects of this method for categorizing the rating 

stars of the reviews unlike the effects in messaging applications and social media as 

proved in some researches. Almost the same result for removing punctuations even after 

we execute multiple times for each method. 
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5.4.3 Classifier Performance Based on Expanding Abbreviations and Acronyms   

In this part, we try to find some abbreviations and acronyms in the reviews of the 

restaurants but unfortunately, there is no remarkable number of the most common words 

of this specific field in the text of the reviews. Thus, we use general abbreviations and 

acronyms which are the most commonly used in messaging applications and social 

media. For example, omg (Oh my God), Lol (Laughing out Loud), 2moro (Tomorrow), 

B3 (Blah, Blah, Blah), etc. which we got from https://www.smart-

words.org/abbreviations/text.html. Again, we use a replacer class for this purpose and 

choose space tokenizer for the review text in order to get direct simple effects of the 

method.  

The accuracy results are 0.263 (KNN), 0.305 (DT), 0.393 (RF), 0.484 (LR), 0.470 

(SGD), 0.498 (NB), 0.453 (SVM) after running the methods 20 times shuffled reviews. 

The average classifiers‟ accuracy results of expanding abbreviations and acronyms are 

not better than without execution of the method significantly if we compare to the 

results with the base form given in Table 5.4. Actually, this result shows us there are no 

significant effects of this method for categorizing the rating stars of the reviews unlike 

the effects in messaging applications and social media as proved in some researches. 

5.4.4 Classifier Performance Based on Word Correction 

In this part, we report the result obtained after executing the auto corrector of python on 

each review text for the misspelled words in order to change with their most possible 

similar words. As we mentioned above, misspelled words are checked according to the 

English language. We don't apply the removing Multiword Expression method due to a 

lack of a remarkable number of reviews as we observed from reviews text. 

The accuracy results are 0.243 (KNN), 0.254 (DT), 0.321 (RF), 0.412 (LR), 0.393 

(SGD), 0.421 (NB), 0.401 (SVM) after running the methods 20 times shuffled reviews. 

The average accuracy result of the word correction is much worse than other methods. 

As we observed from the output of the program, the tool which we used is not 

successful at all for the text of the reviews. Consequently, this result shows us there are 

no significant effects of this method for categorizing the rating stars of the reviews 
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unlike the effects in messaging applications and social media as proved in some 

researches. 

5.4.5 Classifier Performance Based on Stopwords Elimination 

In this part, we report the result obtained after removing the stopwords in each review 

text using nltk stopwords. As we mentioned above, stopwords are checked according to 

the English language. 

 

 

Table 5.6 Classifier performance based on stopwords eliminations 

Preprocessing Methods KNN DT RF LR SGD NB SVM 

Base Form 0.260 0.287 0.374 0.476 0.446 0.491 0.444 

Removing Stopwords 0.261 0.376 0.389 0.494 0.454 0.512 0.462 

Removing Stopwords with 

Modified List 

0.299 0.293 0.406 0.494 0.461 0.523 0.486 

 

As shown in Table 5.6 after running the methods 20 times shuffled reviews, the average 

accuracy results of the stopwords elimination are better than other methods. Especially 

the modified stopwords list method according to our text structure (like not removing 

comparative adverbs such as good, better, best) is slightly better than directly removing 

stopwords. As we observed from the output of the program after executing multiple 

times, we conclude that this method has a significant effect on categorizing the rating 

stars of the reviews. 

5.4.6 Classifier Performance Based on Stemming 

In this part, we investigate the stemming algorithms such as Porter Stemmer, Lancaster 

Stemmer, and Snowball Stemmer and their efficiencies on the restaurant reviews. We 

reduce words to root forms by removing prefixes and suffixes according to some 

grammatical rules of the nltk stemmers. We execute the stemmer algorithms on space 

tokenizer base form in order to get directly simple effects of them. 

Table 5.7 Classifier performance based on stemming 

Preprocessing Methods KNN DT RF LR SGD NB SVM 
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Base Form 0.260 0.287 0.374 0.476 0.446 0.491 0.444 

PorterStemmer() 0.248 0.297 0.376 0.512 0.459 0.511 0.463 

LancesterStemmer() 0.232 0.297 0.373 0.501 0.453 0.498 0.448 

SnowballStemmer 0.254 0.316 0.363 0.499 0.461 0.517 0.450 

 

As shown in Table 5.7 after running the methods 20 times shuffled reviews, all the 

stemmer algorithms slightly change the average accuracy results, especially for Logistic 

Regression and Naive Bayes classifiers in a good way. In general, these results show us 

there are no significant effects of these methods for categorizing the rating stars of the 

reviews as we expected. 

5.4.7 Classifier Performance Based on Lemmatization 

This time we investigate the effects of the lemmatizer on the restaurant reviews. Again, 

we execute the lemmatizer algorithms on space tokenizer base form in order to get 

directly simple effects of them. 

Table 5.8 Classifier performance based on lemmatization 

Preprocessing Methods KNN DT RF LR SGD NB SVM 

Base Form 0.260 0.287 0.374 0.476 0.446 0.491 0.444 

WordNetLemmatizer() 0.263 0.309 0.373 0.473 0.421 0.479 0.439 

WordNetLemmatizer() with position 0.305 0.349 0.382 0.513 0.467 0.524 0.481 

 

As shown in Table 5.8 after running the methods 20 times shuffled reviews, the 

lemmatizer without indicating the word position does not change the accuracy results 

significantly but the lemmatizer with position increases the accuracy results even we 

execute the program multiple times. As we observed from the output of the program, 

these results show us there are no significant effects of this method for categorizing the 

rating stars of the reviews as we expected but indicating the position of the word for the 

lemmatizer gives us better results. 

5.4.8 Classifier Performance Based on Lowercasing 

In this part, we report the result obtained after executing the lowercasing on each review 

text to increase the performance of the classifier without considering the non-
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consistence of texts. We execute our lowercasing method on 20 times shuffled reviews 

and on space tokenizer base form in order to get directly simple effects of the method. 

This time the accuracy results are 0.314 (KNN), 0.333 (DT), 0.399 (RF), 0.523 (LR), 

0.473 (SGD), 0.522 (NB), 0.497 (SVM) and surprisingly the average accuracy result of 

the lowercasing method is much better than before if we compare to the results with the 

base form given Table 5.4. As we observed from the output of the program after 

executing multiple times, this result shows us there are significant effects of this method 

for categorizing the star ratings of the reviews. Because of treating each word as a 

dimension in the feature set, having the same words in different case cause the models 

to be confused and loss of time. 

5.4.9 Classifier Performance Based on Removing Common Words 

In this part, we report the result obtained after removing the common words on each 

review text to increase the performance of the classifier. We execute the algorithm on 

20 times shuffled reviews and on space tokenizer base form in order to get directly 

simple effects of the method. 

This time the accuracy results are 0.294 (KNN), 0.324 (DT), 0.374 (RF), 0.500 (LR), 

0.471 (SGD), 0.518 (NB), 0.458 (SVM) and the average accuracy result of the 

removing common words method is much better than before if we compare to the 

results with the base form given Table 5.4. As we observed from the output of the 

program after executing multiple times, this result shows us there are significant effects 

of this method for categorizing the star ratings of the reviews. Because the classifier 

confuses the class of rating when seeing those common words in the review text. 

5.4.10 Classifier Performance Based on Removing N-grams 

In this part, we report the result obtained after executing some combination of Ngrams. 

In the beginning, we apply each Ngrams alone, and then we apply a combination of 

three in order to see the effect of each combination. Same as before, each obtained 

result is the average of 20 times shuffled restaurant reviews. 

Table 5.9 Classifier performance based on removing N-grams 

Ngrams KNN DT RF LR SGD NB SVM 
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Unigram() 0.304 0.332 0.364 0.370 0.371 0.365 0.361 

Bigram() 0.332 0.403 0.415 0.426 0.398 0.445 0.435 

Trigram() 0.255 0.297 0.307 0.336 0.331 0.344 0.305 

Unigram() & Trigram() 0.325 0.325 0.365 0.388 0.371 0.389 0.377 

Unigram() & Bigram() 0.324 0.387 0.411 0.486 0.455 0.483 0.458 

Bigram() & Trigram() 0.219 0.362 0.406 0.469 0.432 0.458 0.445 

Unigram() & Bigram() & 

Trigram() 

0.335 0.420 0.425 0.495 0.469 0.511 0.472 

 

As shown in Table 5.9, we observed from the output of the program after executing 

multiple times, while the effect of the Bigram is bigger than Unigram, the effect of the 

Unigram is bigger than Trigram. When it comes to the combination of the Ngrams, the 

effect of the combination Unigram() & Bigram() is more than Bigram() & Trigram() 

while the effect of the Bigram() & Trigram() is more than Unigram() & Trigram(). We 

get the best result even after executing multiple times when we apply all the Ngrams 

together. 

5.4.11 Classifier Performance Based on Preprocessing Order 

In this part, we report the results obtained after executing some combination of 

preprocessing methods in order to see the effects of executing order. For this purpose, 

we use lemmatization, stopwords, and lowercasing preprocessing methods which have a 

positive effect on chosen classifiers on the review data set as we mentioned above. In 

order to see the difference between preprocessing orders we execute all the 

combinations of three methods, respectively. This time we don't shuffle the review set 

to see the effects of executing the order of three methods on the same dataset. 

Table 5.10 Classifier performance based on preprocessing order 

Order of the Methods KNN DT RF LR SGD NB SVM 

Base Form 0.260 0.287 0.374 0.476 0.446 0.491 0.444 

Lemmatization – Stopwords - 

Lowercasing 

0.345 0.394 0.439 0.553 0.512 0.564 0.521 

Lemmatization – Lowercasing - 

Stopwords 

0.358 0.398 0.423 0.535 0.514 0.547 0.524 

Stopwords – Lemmatization - 0.360 0.376 0.423 0.567 0.522 0.567 0.536 
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Lowercasing 

Stopwords – Lowercasing - 

Lemmatization 

0.344 0.371 0.448 0.542 0.512 0.570 0.527 

Lowercasing – Stopwords – 

Lemmatization 

0.339 0.404 0.445 0.547 0.494 0.561 0.514 

Lowercasing – Lemmatization - 

Stopwords 

0.344 0.391 0.433 0.545 0.507 0.542 0.515 

 

As shown in Table 5.10, we observed from the output of the program after executing 

multiple times, executing the order of the preprocessing methods affects the accuracy 

results of any classifier by almost 2%. In addition, when we compare the accuracy 

results of each classifier with the base form, the preprocessing methods applied to 

change the accuracy results up to 10% in some classifiers. These results show us how 

important applying preprocessing methods are when classifying our data. 

5.5 Conclusion 

In this chapter, we discussed the experiments involving some simple text preprocessing 

methods that give an impact on the classification performance when we predict fine-

grained review rating stars. For this reason, we wanted to show their effects on the five 

class-based review rating stars, individually. 

Although less attention has been paid to the text preprocessing in the researches, our 

evaluations highlight that it has a remarkable impact on the performance of classifier 

but of course not for all the methods. Some of them have a positive effect on 

classification accuracy, while some have a negative effect, and others have a neutral 

effect. 

In general, a simple stopwords elimination, lowercasing, removing common words, and 

lastly the combination of 1-to-3 Ngrams perform better than other preprocessing 

methods for improving the classification accuracy of the five class-based review rating 

stars. As we mentioned before, the challenge of this field is to predict fine-grained 

review rating stars because of being used almost the same words for the close classes. 

Otherwise, it might be useful to apply the mentioned methods, for instance, for the 

binary distinction of positive vs. negative. Namely the effects of the preprocessing 
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methods can change on any domain. So, it should be considered all possible 

preprocessing methods and their combination before used in any application. And 

applying the order of the preprocessing methods can also be important. The effects of 

abbreviations, acronyms, stemming and lemmatization might be higher after executing 

lowercasing to the text.  It is believed that our study results will help future researchers 

to carefully select these text preprocessing methods. 
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6. CALCULATING OVERALL STAR RATINGS  

BASED ON REVIEWS 

Through the instruments of increased e-commerce platforms, the customers‟ reviews 

and ratings have started to play a significant role in marketing strategies. Customers do 

not hesitate to share their negative or positive opinions on these platforms. Since most 

of the customers generally choose a product with at least 4 stars over 5 or 8 stars over 

10, calculating the quality star rating of a product or a service has become extremely 

important. But, determining the star ratings of a multi-class rating system is quite hard, 

not only because of probability ratio but also used words which are very similar among 

the close classes. Hence, a binary classification is preferred. There are several ways to 

calculate the quality ratings according to the need, such us views of trustful users, 

usefulness of votes, number of the users providing ratings, date and time of the ratings, 

and the sentiment analysis, which is the method this paper is concerned with. We 

propose a methodology to overcome the challenges when calculating the quality of 

multi-class star ratings, specifically on restaurant reviews, to calculate the overall star 

ratings via sentence-based, review-based, dictionary-based, and the newly proposed 

hybrid-based sentiment analysis methods. 

E-commerce can be broadly defined as the purchase and sale of a product or a service 

through the Internet and it is one of the most important building blocks in today‟s 

modern business world, as online shopping ranges from 13% to 82% in just European 

countries and B2C e-commerce expected to rise to €602 billion just in 2018 [103]. 

Namely, the importance of e-commerce is growing day by day. Thus, almost all types of 

businesses start to find out the most effective ways to influence the customers for their 

e-commerce market. Online ratings and review websites are some of the most powerful 

ways to changing purchasing decisions and increasing customer confidence. Especially 

it has become vitally important for small businesses to fight with conglomerates that 

dominate the related market.  

Ratings and reviews are not just for customers to find good quality products and trustful 

sellers but also for the product producer to identify the pros and cons related to their 

products and to determine competitive intelligence. But due to the charming market 

share, countless misleading reviews and ratings are showing up with each passing day 
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by malicious users, biased bloggers, even owners of the related products. Some systems 

try to solve this problem by helpfulness votes, but it is found that the ratings for the 

most helpful reviews are consistently inflated compared with the ratings provided [104]. 

Of course, today‟s product ratings and reviews systems are very useful for the 

purchasing decisions of the customers but there are still weaknesses, particularly the 

difference between the product ratings and reviews text [105].   

For an efficient and productive online shopping, not only there should be a secure 

system, easy to understand content, prompt delivery and quality services, business 

credibility, etc. [106], but also a high-quality star rating calculation in order to increase 

customer confidence since more and more customers rely on the opinions of other users 

when making a purchasing decision. Thus, to get a more reliable and comprehensive 

rating system for products, a few methods such as views of trustful users, usefulness of 

votes, number of the users providing ratings, date and time of the ratings, and the 

sentiment analysis are needed. In this way, the effects of the fake accounts on the rating 

systems can be lowered significantly or eliminated. Amongst above mentioned methods, 

we focus on the sentiment analysis of reviews, which is one of the ways to check the 

quality of star ratings of products and services. To this end, we compare sentiment 

analysis methods and develop a hybrid model to classify each review text.  

There are a lot of existing work on similar topics of various scopes, most of which 

focused on the binary distinction of positive vs. negative but our model predicts the 

user‟s numerical star ratings in a Likert scale, which is the main challenge to determine 

the exact star among close classes. After training model on the feature set, we calculate 

each restaurant‟s star rating from users‟ reviews by a hybrid model consisted of 

supervised learning (document level and sentence level) and dictionary-based approach 

and then analyze the results by comparing to the real ratings to see the pros and cons of 

each different approach.  

The rest of this chapter is organized as follows. After the introduction, Section 6.1 

presents some of the recent work especially the research on review rating prediction 

using sentiment analysis of the reviews. In Section 6.2, details about research methods 

and some specific examples about the related field are provided. Section 6.3 introduces 

a real-life dataset used in our experiment and Section 6.4 reports some experimental 

outcomes and evaluates the results. Finally, we conclude and discuss in Section 6.5. 
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6.1 Related Work 

Although advertising still has a substantial effect on the increased product sales, 

sentiment analysis of product reviews and ratings has attracted a great deal of attention 

in recent years because of providing high-profit share in e-commerce platforms. In this 

section, we specifically focus on some recent related research, which aim to put into 

practice binary or fine-grained classification and latent aspect rating. So, the research 

that is close to the content of our research is summarized below. 

Govindarajan [107] proposes a hybrid model consisted of Naïve Bayes, Genetic 

Algorithm, and Support Vector Machine (SVM) in order to indicate the effects on the 

restaurant reviews with a comparative analysis. For this purpose, classification accuracy 

was evaluated by each model individually first, and then by the ensembled ones. 

According to their results, the recommended hybrid model delivers better performance 

than the base classifiers on the restaurant reviews with regard to classification accuracy.  

Guo et al. [108] investigate two types of estimations, the first one is the star rating of 

restaurants and the second one is the popularity change of restaurants. They use features 

such as price, location, available services, etc. by using a couple of machine learning 

methods such as Logistic Regression (LR), Naïve Bayes, Neural Network and SVM. 

However, according to their results, actually, none of the methods tried gives good 

results due to lack of relevant data. 

Yu et al. [109] compare the performance of some machine learning algorithms in order 

to predict star ratings of reviews related to restaurants. They use linear regression, 

random forest, and the latent factor model. According Yu et al., the Random Forest (RF) 

is the best model for predicting the rating of reviews because of using reasonable 

features extracted from the rich dataset. 

Asghar [110] tries to find out the best model for predicting the star rating of reviews, as 

a five-class classification problem, among sixteen different models combining four 

feature methods like 1-to-3 N-grams and Latent Semantic Indexing. According to the 

results of four machine learning algorithms, LR seems the best one, obtained by 

unigram & bigram on the set of the top 10.000 features with the accuracy of 64%, 

among the others such as Naïve Bayes classification, Perceptrons, and Linear Support 

Vector Machine classification. 
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Kapukaranov and Nakov [111] focus on comparing classification, regression, and 

ordinal regression in terms of performance on the reviews text and contextual features 

such as movie length, director, actors, etc. According to their results, regression and 

contextual features model is better than the other combinations. While country, 

directors, or genre, namely factual information, except actors do not seem to be useful, 

user average score is the most useful contextual features. As a result of the research, we 

now know that adding contextual information has a positive impact on performance. 

Ghazvinian [112] tries to categorize numerical ratings of multi-class restaurant reviews 

rather than to predict them simply positive or negative. He implements a maximum 

entropy classifier with a selected feature set (unigram, preprocessing, bigram, etc.)  and 

the sentiment models such as language models and sentiment modeling. According to 

the results, the selected/tried model after a couple of experimental results can predict the 

rating of a review at 60% precision. 

Lee et al. [113] focus on the evaluation of the user-generated and machine-generated 

star ratings using Naïve Bayes and SVM. After applying some preprocessing methods 

on the obtained data and then vectorizing it, they calculate star ratings of reviews using 

sentiment analysis. According to the results, the combination of the VADER-Sentiment 

Analysis tool to produce star value and sending directly vectorized data to the train is 

the most viable approach. 

Doan and Kalita [114] study on an incremental learning approach by a modified online 

RF model in order to overcome retraining the whole system problem whenever new 

data become available, namely streaming data. According to the experimental results 

after a couple of data processes, the proposed approach comes in third place in five 

different models following by Factorization Machine and Hoeffding Tree, but it needs 

longer run time because of high computation involved. 

Zhang et al. [115] suggest a model for Yelp Dataset to predict reviews‟ usefulness and 

examine three well-known classification models: K-Nearest Neighbors (kNN), SVM, 

and RF Classification. To improve the success of the model, they choose some users, 

reviews, and business-related features and evaluate their performance using LR. 

According to the experimental results after selecting features, RF without TF-IDF 

features gives the best results with the accuracy 0.699. 
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Huang and Yu [116] suggest a novel task to restore the truthful rating in order to 

overcome fake reviews problems that mislead not only users but also service providers. 

For this purpose, they evaluate the performance of a couple of models such as Linear 

Regression, kNN, Deep Neural Network (DNN), etc. on the two weeks summarized 

ratings. Especially DNN with some sub-models for different features at a specific layer 

and full connection in the following layer gives the best performance among all the 

other methods. 

In order to increase rating prediction accuracy,  Ochi et al. [117] work on a novel 

feature vector, dimension of which is reduced using extracted feature words in order to 

execute algorithms on a large and sparse dataset practically. For this purpose, they 

create a feature set finding words, which is appeared in the reviews too many times to 

increase the density of the matrix. According to their results, the studied approach 

improves the prediction accuracy on a corpus of golf reviews. 

Jin et al. [118] suggest a model for review rating prediction to improve the accuracy by 

obtaining semantics of review text and completing the value of missing ratings looking 

at the history of the user‟s behavior applying on two different datasets. According to the 

experimental results, using the skip-thought vector of review text and filling missing 

ratings improve the prediction accuracy more than that of the other combined methods. 

Since the reviews are written for more than one field about a product or service, Wang 

et al. [119] suggest a new method based on their previous work called LARA which 

generates rating on a set of predefined aspects and relative weights placed by a reviewer 

on each aspect. In contrast with the previous method, the new method called LARAM 

doesn‟t need to specify aspect keywords by users. According to their results, LARAM 

can effectively find latent topical aspects, ratings on each identified aspect, and weights 

placed on different aspects when generating the overall rating. 

Xu et al. [120] propose a model to predict hidden aspect ratings such as “cleanliness”, 

“food”, “service”, etc. from the users‟ reviews. Actually, the proposed model is 

compared with LARAM [119] because of having the same concept. According to their 

results, it can also alleviate the aspect sparsity issue, where it is claimed that LARAM 

cannot effectively handle. Experimental results show that the predicted aspect ratings 

for each review is more accurate and reliable based on the proposed model. 
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Xu et al. [121] compare the performance of different learning algorithms in order to 

predict reviews ratings received from the Yelp Dataset. After executing several 

preprocessing on the data, they use an existing opinion lexicon and build a feature 

dictionary to evaluate the algorithms based on precision and recall. According to the 

results, binarized Naïve Bayes is more effective than both Perceptron and Multiclass 

SVM algorithms to predict star ratings. 

Chen et al. [122] use long short-term memory (LSTM), which is a part of deep learning 

method, to fine-grained sentiment analysis on Chinese phone reviews. The study also 

compares the algorithm with polarity analysis on Chinese and English texts by accuracy 

and F-score. Even though the method is applied to Chinese text, the result shows that 

the application of the LSTM on fine-grained sentiment analysis is effective after a series 

of modifications. 

Chauhan et al. [123] focus on the polarity sentiment analysis in order to detect whether 

electronic product reviews are fake but not by calculating the words‟ weight from the 

created dictionary. After calculating the sentiment score of the reviews by using NLTK 

and VADER with a set of discriminative rules, the proposed model shows effective 

results. 

Kumari et al. [124] investigate the polarity sentiment analysis in order to determine 

whether the smartphone product reviews are positive or negative using SVM. Obtained 

performance results by using the values of precision, recall and f-measure, and 

accuracy, the proposed SVM work performs very effective, robust, and better than those 

other methods compared. 

Barbosa et al. [125] study on sentiment analysis to determine overall ratings of hotels 

from the review text by comparing three different algorithms: OpinionFinder, Stanford 

CoreNLP, and the Naïve Bayes combined with sentiment lexicon. Actually, the authors 

try to understand whether reviews are correlated with overall rating, namely whether the 

reviews‟ texts are reliable or not. Consequently, the results show that reviews are 

correlated with overall ratings and they can be used for predicting numerical ratings. 

Yang and Chao [126] focus on the sentiment annotation to highlight the effectiveness of 

their approach on the overloading information about tourism reviews in Chinese at the 

sentence level. Even though it is applied on a limited corpus the proposed approach 

shows that adding sentiment annotation at sentence level improves the information 
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quality of the original review, namely it makes them sufficient, concise information, and 

more understandable. 

Vinodhini and Chandrasekaran [127] evaluate the performance of the neural network 

based on sentiment classification methods with five quality measures and two statistical 

methods which are Support Vector Machine and Linear Discriminative Analysis on 

online reviews. According to their experimental results, feature reduction is important 

for learning methods and homogenous ensemble methods give better results than other 

classification methods. 

Fang and Zhan [128] elaborate on the problem of sentiment analysis especially on 

focusing sentence-level and review-level categorization experimenting on a set of online 

product reviews. Both categories‟ results are promising that average sentiment scores 

are satisfied enough for polarity categorization. 

Malik et al. [129] evaluate reviews when calculating the overall sentiment obtained 

from an e-commerce website. They estimate the opinion polarity using the weight 

method but for particular features of a product entered by a customer. Namely, they 

prove that the proposed model depending on the priority of user wishes works more 

effectively. 

As mentioned above, while most of the studies focus on the performance of different 

classifiers in sentiment analysis, some of them examine the effects of the properties in 

the dataset on the performance of classifiers. Another part of the studies investigates the 

effect of sentiment analysis in different corpus. According to the results obtained from 

the researches, different classifiers can perform differently on different data set. In 

addition, we see that the effect of each feature in the data set varies according to the 

relevant field and preprocessing methods also affect the performance of the classifiers. 

As it is mentioned, the effect of product reviews on e-commerce platforms is known. 

The fact that there are not enough studies on data sets that contain numerical star ratings 

in a Likert scale, and that the product reviews consist of short text and that these texts 

contain similarities in close classes, bring difficulties in terms of scoring the product. 

In this context, apart from the performance of the classifiers that are frequently 

investigated in the relevant field, we are also looking for better results using different 

sentiment analysis methods. In addition, the success of ready-made libraries used in this 

field is compared with related methods. 



124 

 

6.2 Prepare Background and Context 

Nowadays, almost no one buys any online product without reading other users‟ 

comments and experiences since user-generated content has become the mainstream of 

the e-commerce platforms. Actually, it would be wrong to limit it just with the e-

commerce platforms, experiences in our daily lives are also important, sometimes 

crucial. Even for some basic things, we need advice such as when we want to watch a 

movie, listen to music, or read a column. In fact, this situation is due to the limited time 

and internet pollution created by the modern world. Of course, people intrinsically want 

to reach the highest quality content as soon as possible. At the same time, it is an 

opportunity to be informed in the related field in a limited time, and having a grasp of 

concept helps to measure the quality and price conditions without any effort related to 

the service to be received or to be offered.  

On the other hand, reviews make a dynamic content for the related e-commerce 

platforms. A wealth of worthwhile customer feedback can provide electronic word-of-

mouth (e-WOM). Although companies generally produce original contents, since they 

identify with the corporate language of the brand very much, they produce generic 

content without realizing it, but when the customers make an evaluation, they make 

both emotions and original reviews, which are the most valuable facts in marketing 

efforts and make remarkable influences on purchasing decisions of other customers.  

Increasing the importance of reviews and ratings in e-commerce platforms, malicious 

users and companies that want to increase their profit margin have come up with 

indirect ways such as creating fake accounts or voting just positive reviews to influence 

such systems and increase their products‟ ratings since a lot of recent researches show 

that almost over the 90% of consumers read online reviews and 88% of them trust the 

online reviews and ratings as much as personal advice [130]. Likewise, 57% of 

consumers do not want to use a business with less than 4 stars [131]. Thus, rating 

algorithms have tried to find new methods to rule out fake accounts or reduce their 

impact on the star rating calculation such us based on trustful users, usefulness votes, 

the number of the rated users, time, sentiment analysis, etc., according to the platform 

used. In this research, we focus on sentiment analysis on product reviews in order to 

classify multi-class review ratings more effectively. As we mentioned above, it is a 

challenge that classifies multi-class review ratings because of the similar words used in 
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closed classes. For this purpose, we try to create a hybrid model consisted of supervised 

learning (document level and sentence level) and a dictionary-based approach.   

6.2.1 Sentiment Analysis 

Sentiment analysis is a field that focuses on specifying people feelings (such as being 

happy, surprised, angry, funny, sad, pleased, satisfied, etc.), opinions (such as thinking 

about a product that it is useless, good quality, waste of time, too expensive, worth a try, 

etc.) or sentiments towards a situation, entity or event, specifically a product or service 

for our research by looking at a piece of writing or document. In fact, as can be seen in 

recent research it is not restricted just with writings but also can be specified by other 

structures such as emoticons, emojis, etc [132]. Sentiment analysis in terms, our 

research refer to evaluating reviews about a product or service sometimes to classifying 

them whether they are positive, negative, or neutral, sometimes grading them within a 

certain range. Actually, sentiment analysis can be used not only for classifying of 

opinions but also summarizing the main subject of a document, determining whether a 

sentence is subjective, finding related document for a given query or for other reasons 

such as determining types of the writing, owner of the writing, spam texts, etc. 

Sentiment analysis used for examining review ratings in our research by comparing it 

with star ratings. In Figure 6.1, you can see how to sentiment analysis can be branched 

according to the approach used.  
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Figure 6.1 Sentiment analysis techniques [124] 

6.2.1.1 Machine Learning Approach 

Machine learning, which is based on artificial intelligence, is a learning method that 

provides the most appropriate response to the new situation obtained by its past 

experiences. In this context, the characterized, sized and well-prepared data set directly 

affect the quality of the response to the new situation. So, making a good prediction in a 

completely new situation is its weakest point. For the sentiment analysis, it uses this 

logic to classify an opinion of a text with the help of linguistic features. 

In supervised learning, each record, in our case reviews, in a given data set is labeled 

including a specific class. Then, for an unknown class instance, this model uses past 

experiences which are the given data to make a tag to predict the new instance. In our 

case, tagging a new review as a positive, negative or neutral, or giving a star rating out 

of 5. 

In unsupervised learning, data has no class information. The main purpose is to extract 

information from this data by clustering it based on a relationship between variables. In 

our case, clustering reviews by similarity (in terms of meaning) or by their usage 

together.   
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6.2.1.2 Lexicon Based Approach 

This approach works by processing the data generated according to the structure of a 

language. The strongest side of this approach is that it does not require any labeled 

training data. Namely, for categorizing the text it calculates the polarization (it can be 

negative, positive, neutral, or numeric scores) of the words that convey feelings used in 

the text according to the pre-prepared domain dictionary. Then, to get the overall 

sentiment of the text based on that sentiment polarity calculation it uses some 

classification algorithms. Consequently, the lexicon-based approach is a collection of 

words, in other words, it is a sort of pattern matching. There are a lot of popular 

lexicons such as SentiWordNet, SentiStrength, OpinionFinder lexicon, AFINN lexicon 

(emotional ratings), NCR lexicon, etc. There are two general approaches in the lexicon-

based approach. The first one is the manual approach which is really hard to generate it 

with all aspects, namely, it takes too much time to fix it and requires some experts 

corresponding to the studied field. The second one is the automated approach which 

consists of dictionary-based and corpus-based. 

In the dictionary-based approach, the words related to general-purpose fields are 

determined, which start with a smaller set called seed words collected manually in a 

dictionary. Then this small set is iteratively expanded by adding synonyms, antonyms, 

etc., finding with the help of a dictionary-like WordNet until a new word cannot be 

found [133]. After that, the model compares the text with the dictionary in order to 

determine the polarity degree. The key point is to convert all the words of the text 

according to the prepared dictionary form otherwise the words in the text can‟t match 

with the words in that dictionary. Of course, this process is not easy for all languages in 

which words‟ roots often change and become unrecognizable when deriving new words 

and sometimes words also have a complex suffix and prefix structures as in Arabic, 

French, Farsi, etc.  

The corpus-based approach can be particularly used for domain-specific applications 

and words are collected in the same way as the dictionary-based approach, but the 

collected words are polarized according to the field. Namely, while some words are 

thought to have a positive polarity in some specific domain, they can have a negative 

polarity for some others. For example, for the word “long”, saying that “It was a too 

slow and too long movie” for a movie domain can be carried a negative meaning, 
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“Taking a long position here” for a financial domain can be carried positive meaning or 

“that‟s a long noodle” for a restaurant domain can be carried neutral meaning. Namely, 

the meaning of a word can be different in different situations or domains [134].  

6.2.2 Data Preprocessing 

In our research, we use the dictionary-based approach and supervised sentiment learning 

under the branch of the Machine Learning approach. The following section presents the 

methods and classifiers used in the study as shown in the flow diagram in Figure 6.2.  

 

Figure 6.2 Flow of the proposed model 
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6.2.2.1 Tekonization 

In order to get as an input in Natural Language Processing (NLP) processes, a review 

text must be divided into the smallest meaning units called tokens such as words, 

phrases, symbols, or sometimes whole sentences. For this purpose, generally several 

Natural Language Toolkit (NLTK) are used according to the needs of the field studied. 

Some of the NLTK tokenizers are space tokenizer which breaks up a sequence of strings 

using space between two tokens, TreebankWord tokenizer which also treats 

punctuations as a token, and Regexp tokenizer which breaks up the text using regular 

expressions. In our research,  we use Regexp tokenizer. 

6.2.2.2 Lowercasing 

In order to prevent case sensitivity in sentiment analysis, we need to convert all text into 

the lowercase or vice versa. In this way, when we create our feature set, our algorithm 

does not treat the same words which are in a different form as a different dimension. 

Actually, this preprocessing method has a great effect on the accuracy of classification 

as we experienced in chapter 5. 

6.2.2.3 Removing Punctuation and Digits 

As in lowercasing, when the tokenizer split up a review text into tokens, it treats 

punctuations and digits as sperate tokens which increase the feature dimensions and are 

useless as it can be seen in most of the sentiment analysis studies. We also remove all 

punctuations in our feature set which don‟t have any significant effect on the accuracy 

of the classification. 

6.2.2.4 Removing Stopwords 

Removing stopwords is another important step of preprocessing and it has a really great 

effect on the accuracy result as we explained the reason for dimensions.  Namely, since 

the stopwords increase the dimensions of the feature set and there are numerous of them 

in texts, it is better to get rid of them. As it is known, we define stopwords as the most 

common words found in a language. So, having stopwords in the feature set is not a 
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distinctive feature to catch the difference between classes. If we give some examples to 

the stopwords, we can list words like “a”, “the”, “an”, “me”, “your”, “will”, etc. Of 

course, removing stopwords can be changed according to the application. Namely, 

while “once”, “when”, “since”, etc., can be important words for some application, 

“will”, “can”, “do”, etc. can be important for some others [135]. According to the 

application, researchers can change the stopwords list. 

6.2.2.5 Lemmatization 

One another important method is lemmatization. Actually, while some researchers use 

stemming which tries to find out the root form on the words by removing suffix and 

prefix according to the related language grammatical rules, some of them use 

lemmatization which finds dictionary forms of the words categorized them as a part of 

the speech. Namely, lemmatization reduces words according to the position in a 

sentence. In this way, we find a base structure of all words in a review. Otherwise, it is 

meaningless to store all versions of a word which have the same meaning such as “go”, 

“went”, “gone” or “interesting”, “interested”, “interest”, “interests” due to the same 

reason that all these versions are considered as a unique feature [136].   

6.2.3 N-grams Feature Extraction 

In order to identify discriminative and useful features from the text of the reviews, we 

should determine the words which represent their own related category. For this 

purpose, we create a feature vector called indexing which is generally used by 

Information Retrieval. Of course, there are other methods to represent textual data, but 

the feature vector is one of the easiest structures. In this method, for each different word 

passing in the text of the reviews, a separated dimension is created. Because of this, a 

matrix is created which shows which review has which words and how many times. It is 

called a bag of words that is used for training a classifier. So, the matrix consisted of 

vectors or arrays would be quite large because of containing all elements for each 

possible word and for the each occurred word in the related review text weight is 

calculated by the function tf-idf (term frequency-inverse document frequency) measure 

that calculates how important a word in a text document. While TF calculates how often 
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a word occurs in a review text by dividing a total number of words in the review text, 

IDF calculates a logarithm that measures a total number of the reviews dividing by the 

number of reviews which have that specific word [137]. Namely, in IDF, if a word 

occurs in almost all the reviews text, it means that that word is not a discriminative 

word for classification, namely less importance is given to common words. You can see 

an instance vector space model from Table 6.1. 

Table 6.1 Tf-Idf vector space model 
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Word_1 8 0 1 0 2 … 3 

Word_2 0 2 4 0 1 … 0 

Word_3 2 0 0 1 0 … 3 

Word_4 5 0 0 0 1 … 0 

Word_n 1 2 1 2 0 … 4 

 

One another important point about text representation is the N-grams method. It has a 

very great effect on the performance of the classifier, especially for categorizing the 

product review. Because sometimes combining of the words can represent better than 

handling each word separately. For instance, a review that contains phrases such as 

“Meals weren‟t delicious in that restaurant”. If we get the words individually, because 

of the words “delicious” which has a positive meaning, a classifier can classify as a 

positive review but if we get the text as a combination of words with one before and one 

after word (“weren‟t delicious”), the classifier can easily find out that is a negative 

review [138]. So, it gives unsurprisingly better results because of capturing relationships 

between occurred words in the text.   

In N-grams, the number of the “N” can be changed according to the application field.  

After observing many experimental results, we decide to combine unigrams, bigrams, 

and trigrams. Although the overwhelming supremacy of the bigrams, the effect of 

combining all three types of N-grams is slightly more than other N-grams combinations 

on the review text. Even the same trigrams rarely occur in different review text, it can 

make the classifier‟s job easier.  
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6.2.4 Dimensionality Reduction 

In order to increase the performance of the classifier, we also reduce the dimensions by 

removing some features that occurred in some review categories at the same time. 

Firstly, we remove some words/N-grams phrases which occur in all categories and are 

not discriminative features anymore. After that, we remove some other specific 

words/N-grams phrases that belong to the closed classes. Because while the classifier 

can determine the exact class between distant classes easily such as between 1 to 5 or 2 

to 5, it has difficulties in distinguishing close classes such as between 1 to 2 or 4 to 5. 

We came to this conclusion as a result of some experiments we repeated many times 

and we got better results. After this last pre-processing, our data is ready for 

classification models.  

6.2.5 Existing Classification Methods 

Since the past decades, researchers have focused on designing a better model that 

provides the right predictions to classify a piece of text written by people looking at the 

data at hand. This is quite important because analyzing people‟s thoughts from what 

they write can give strong clues for their next behaviors, and this is a piece of vital 

information for especially e-commerce platforms. Nowadays hundreds of applications 

using this logic such as in search engines, spam detection, speech recognition, fraud 

detection, advertisements, etc. 

Here we use some machine learning models to analyze the text of the reviews to classify 

them for better recommendations by all types of e-commerce platforms or by those that 

are basing their customers to digital platforms. Our ultimate goal is to compare the 

sentiment analysis methods whether the star ratings match the comments in general and 

create a hybrid model to get better results. For this purpose, we use a couple of models 

to see which one gives better results for our aims, some of them are Decision Tree (DT), 

k-Nearest Neighbors, Random Forest, Multinomial Naïve Bayes (MNB), Logistic 

Regression and Support Vector Machines. 
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6.2.5.1 Decision Tree 

Decision Tree is one of the most preferred machine learning algorithms due to the fact 

that the logic of it is easily understood by people and gives good results. It is used for 

both classification and regression problems. The decision tree creates a training model 

over a data set that contains a large number of records and try to divide this data set into 

smaller subsets with a set of rules that it creates from this model. Thus, with these 

decision rules, it tries to determine which subset it is in, starting from the root of the tree 

for a new record. Then, at each iteration, the value of the new incoming record is 

compared to the value in the next internal node, and according to the comparison result, 

this process goes up to the leaves of the tree, thus the location of new incoming record is 

determined [139].  

 

Figure 6.3 A simple Decision Tree 

 

As is seen in Figure 6.3, the root node represents the entire population, except the root 

node, if a node can split into further sub-nodes, it can be called an internal node, 

otherwise, it is called a leaf or terminal node. The most important point when forming a 

decision tree is to divide it into homogeneous sub-sets as much as possible. For this 

purpose, various algorithms such as Iterative Dichotomiser 3 (ID3), Classification and 

Regression Tree (CART), CHi-squared Automatic Interaction Detector (CHAID) are 

selected. 
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6.2.5.2 K-Nearest Neighbors 

The k-Nearest Neighbors algorithm is one of the supervised learning methods and it is 

an algorithm used in the solution of both classification and regression problems. The 

algorithm tries to find the class of newly arrived data by comparing it with the examples 

in the training set. For this purpose, it uses similarity measures such as Euclidean, 

Manhattan, Minkowski, Hamming, etc. It is a lazy learning technique as it memorizes 

the data set rather than learning the training data for classification. That is, when 

algorithm classifies a new data, it returns to the raw data each time to find the closest 

neighbors in the data set [140]. We can say that the basic working principle of the kNN 

consists of the following stages: 

- “k” value, indicating the number of neighbors to be selected, is determined. 

- With any similarity measurement, the distance of new data to other data is measured. 

- The distances are listed, and the closest neighbors are found according to the “k” 

value. 

- The number of each separate category is determined. 

- The most found category determines the class of new data. 

One of the important points in the algorithm is to determine the “k” value. For this 

purpose, an optimum “k” value can be determined by testing various “k” values on the 

training set. Otherwise, if the value of “k” is determined to be greater than the optimum 

value, it will cause an increase in dissimilar categories, and a small determination of the 

“k” value will cause the probable real class of the new data not to be found. 

Another important point is the similarity measured used. Euclidean distance, one of the 

most used similarity measurements in this field, is the square root of the sum of squared 

differences between corresponding attributes of the two data [11]. With given x1 = (x11, 

x12 … x1n) and x2 = (x21, x22 … x2n), 
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(6.1) 
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6.2.5.3 Random Forest 

Although the basic operating structure is similar to Decision Trees, the Random Forest 

algorithm instead of a single decision tree, it randomly divides the data set into multiple 

subsets and creates a separate decision tree for each subset that operates as an ensemble. 

Then, if our problem is a regression, the algorithm gets the average of the results, and if 

it is a classification problem, this time the one with the most votes is chosen. This 

means that the same algorithm can be used for both classification and regression.  

Besides this, the random forest algorithm gives more accurate results as the number of 

trees in the generated forest increases. Therefore, the overfitting problem, which is one 

of the missing points of decision trees, is overcome to some extent [141]. 

The most important point in this algorithm is that the most important feature is not to be 

searched when splitting a node like in decision trees. Instead of this, a subset of all the 

features is considered for splitting each node in each decision tree created by the 

algorithm. 

6.2.5.4 Multinomial Naïve Bayes 

The Multinomial Naïve Bayes is actually a type of specialized version of Naïve Bayes 

and it is generally used on multinomially distributed data for more text categorization. 

Namely, when the simple Naïve Bayes checks that particular words are included in the 

related review text or not (binary check), MNB explicitly takes into account that how 

many times those words occur in the related review text [142]. So, in the feature vector, 

each dimension represents the number of occurrences of each word in a review text. To 

predict the class of a review we use (6.3): 

 

      
  

 
  ,              

           

            
 

 

(6.2) 

Where, 

-P(c) represents the probability of a class, 

-Nc represents the number of reviews in that class, 

-N represents the total number of the reviews the dataset, 

-P(w\c) represents the likelihood of a word given a class, 

https://sebastianraschka.com/faq/docs/random-forest-feature-subsets.html
https://sebastianraschka.com/faq/docs/random-forest-feature-subsets.html
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-Count(w, c) represents the count of the word occurring in that class, 

-Count(c) represents the count of all words in that class, and 

-|V| refers to the total number of unique words in reviews text. 

6.2.5.5 Logistic Regression 

Logistic Regression is another popular and widely used models for classification 

problems. The emergence of Logistic Regression is due to some shortcomings in Linear 

Regression, particularly when some outlier samples change the decision boundaries in 

Linear Regression especially in classification problems [143]. We can say that Logistic 

Regression provides the probability of a certain class, namely, predict only possible 

discrete outcomes but Linear Regression‟s outcomes can be any continuous values.  For 

our research, the Logistic Regression algorithm uses the words and ratings of the 

reviews from the feature vector to create a model to predict the class of a given review. 

The logic of this algorithm is based on the prediction of two possible outcomes (Binary 

Logistic Regression), but also for the multi-class classification problems it uses the 

same logic. That is to say, firstly it gets the first class as a positive class and gets the rest 

as a negative class like doing it binary classification, and then it trains the classifier on 

this training set and gets the result. In the same way, it calculates for the other classes. 

In the end, it decides the class of example according to the obtained results. As a result, 

it calculates the highest probability computing for all class labels (for us star ratings 

from 1 to 5). The general equation of this algorithm is as follow: 

          
 

            
 

(6.3) 

          is the probability of a class yi ε {0, 1} be in class 1 given the set of feature 

vector xi. 

6.2.5.6 Support Vector Machines 

Support Vector Machines are supervised machine learning models used to solve 

classification and regression problems. The SVM is often used to classify linear data as 

well as nonlinear data. The basic logic of this algorithm is to determine the best line for 

separating points that consisting of different classes placed on a plane. Multiple lines 
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can be drawn to separate points of different classes. But it tries to find an optimum 

hyperplane to correctly classify each newly arrived data. For this purpose, it tries to find 

the plane that separates the points of each class by maximum distance that has the 

maximum margin [144]. 

 

Figure 6.4 Optimal and Possible Hyperplanes 

As it is seen Figure 4, support vectors are data points that interior are colored. These 

points are close to the hyperplane and can be more than one of course and each newly 

added point can change the location of the hyperplane. This can also happen if points 

are deleted. According to these determined support vectors, we create our SVM 

algorithm. Namely, once the model parameters are determined, the algorithm uses only 

on a subset of these support vectors to estimate the class of the new incoming data 

[145]. Therefore, support vectors define the margins of the hyperplane. As a result, each 

new data that comes in is checked whether it is below or above the hyperplane and then 

classified. 

6.3 Dataset Description 

In this study, the dataset was gathered from Yelp (https://www.yelp.com/dataset/) in 

June 2018 to evaluate the proposed model. It is a real e-commerce dataset that contains 

information about businesses such as business attributes, reviews, users, check-ins, tips, 

and photos in a five-separated file, which is suitable for many kinds of mining tasks. 

But specifically, we focus on two files of the dataset related to our research. The first 

one is the reviews file we get texts from to work on and the second one is a business file 

that we pull out just the restaurant business in order to get more specific results. 
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Table 6.2 Appearance of the review dataset 

Business_id Date Review_id Star Text User_id 

6oRAC… 2012-06-14 IESLB… 4 I have no idea why some people 

give bad review... 

 

0a2Ky… 

 

The Review dataset is a json object in the review.json file, which specifies “User_id” 

who wrote the review, “Busines_Id” which the review text is written for, “Star” is a 

numeric rating out of 5 given by the user, “Date” shows the date of a review written for 

the related business, “Review_id” and the “Text” which we use for sentiment analysis. 

There are 229.907 reviews in which 43873 users have at least one review. Table II 

shows that the user 0a2Ky… has a review with id IESLB… and gives 4 stars for the 

business 6oRAC… on the date 2012-06-14. It is a 206.0 Mb file. 

 

Table 6.3 Appearance of the business dataset 

Business id Categories Address Name 
Review 

count 

Star 

PzOqR… 
[Food, Bagels, Delis, 

Restaurant] 

6520 W Happy Valley 

Rd\nSte...  

Hot Bagels 

& Deli 
14 

 

 

3.5 

 

The Business dataset includes some attributes such as categories which are just the 

business that included restaurants, full business address, Business name, Review count 

which shows how many users wrote a review to the related restaurant and its average 

star. There are 11.537 businesses which have at last one review. Table III shows the 

business PzOqR, which reviewed by 14 people and gets 3.5 stars on average and it is in 

the Food, Bagels, Delis, Restaurant category. It is a .json file and 4.08 Mb. 

Our algorithms are executed on the Jupyter Notebook with Python version 2.7.11. 

6.4 Empirical Observation 

In this section, we carry out several experiments on our preprocessed data in order to 

verify the effects of learning algorithms on the performance of the classifier. According 
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to the results, we evaluate the sentiment analysis methods via comparing star ratings 

obtained from reviews text with real star ratings of the related restaurants.    

As we mentioned above, we aim to compare review-based (RB), sentence-based (SB), 

and dictionary-based (DB) sentiment analysis with hybrid-based (HB) sentiment 

analysis which we created by the combination of these three methods and try to find the 

best performing method. For this purpose, we use Decision Tree, k-Nearest Neighbors, 

Random Forest, Multinomial Naïve Bayes, Logistic Regression and Support Vector 

Machines classifiers to get accuracy results for all types of sentiment analysis methods.  

In order to implement our methods and to create our feature set, we extract 10000 

reviews from the database that contain only restaurant reviews. As shown in Figure 6.2, 

these 10000 reviews from the database are arranged in a specific form in order to avoid 

unnecessary dimensions, such as Tokenization, Lowercasing, Removing Punctuations 

and Digits, Removing Stopwords, Lemmatization, and to apply our methods more 

efficiently. Then, in order to identify discriminative and useful features from the text of 

the reviews, we apply N-grams feature extraction combining with unigrams, bigrams, 

and trigrams. As mentioned before, the biggest challenge is to find the star rating of 

close categories because of using the same words. For this purpose, we reduce the 

dimensions by removing some features (the same N-grams) that occurred in some 

review categories at the same time to increase the performance of the classifiers. 

In order to see the performance of each classifier over the created feature set, we 

selected 200 reviews from each category. In this way, we have a chance to analyze the 

classifier performance over each category.  

 

Table 6.4 Classifier performance 

Classifiers Accuracy Result 

Decision Tree 0.320 

K-Nearest Neighbors 0.492 

Random Forest 0.502 

Multinomial Naïve Bayes 0.515 

Logistic Regression 0.552 

Support Vector Machine 0.556 

 

According to the results, SVM seems to be the best classifier. It is slightly higher than 

LR and MNB classifiers. We also evaluated our problem with regression method in 
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order to find better results. The accuracy results of the best regression methods we 

obtained, respectively, is kNN(0.352), RF (0.488), Linear Regression (0.587). When we 

compare the results of regression methods with the classification methods, kNN and RF 

give worse results even we execute on different test sets. Although Linear Regression 

gave the best results among all classifiers, we could not go on because we could not find 

the probability of a class using regression methods we will use in calculations of 

sentiment analysis below and we could not develop a hybrid method from the results to 

be obtained. 

Now let‟s look at the performance of each classifier according to four different 

sentiment analyzes. As we mentioned above, the review-based sentiment analysis 

method evaluates the entire review to find the category of that review. Because it wants 

to make sense of the whole review. But sometimes the negative or positive polarization 

of some words in the reviews is so high that it can affect the whole sentence. In such 

cases, review-based sentiment analysis categories reviews incorrectly. For this reason, 

we execute sentence-based sentiment analysis, namely, when classifying a review, we 

first divide it into sentences, find the probability of each class coming in each sentence, 

and then take the average of the results. The training set used for review-based is also 

used for sentence-based. Since the reviews that make up each class are passed through 

various preprocesses (ngrams, deleting common words, tf/idf), they have specific 

features. In the sentence based method, each sentence obtained from a review is 

perceived as a new review. The third one is TextBlob which is a lexicon-based method 

and it is a Python library for sentiment analysis. It polarizes sentences in the range of [-

1, 1]. Namely, -1 means that it is a negative statement and 1 is vice versa. In our study 

we use TextBlob to predict star ratings of  restaurants‟ reviews in a Likert scale.  

The last sentiment analysis method is a hybrid that combines three other methods. For 

the hybrid sentiment analysis, we apply two different approaches. In the first approach, 

each sentiment analysis method makes a classification for a review. However, we 

compare the probability values they calculate when classifying. For instance, suppose 

we are trying to find out the relevant review belongs to which class. Review-based 

states that %90 probability is a “5” stars review, sentence-based states that %60 

probability is a “4” stars review, and dictionary-based states %40 probability is a “2” 
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stars review. In this case, we take the highest probability of prediction. We assume that 

the related sentiment analysis method is more confident in its calculations.  

To compare the relevant sentiment analysis methods with each other we select 1000 

reviews written about restaurants in total. In order to see how well each method works 

in each category, we receive 200 reviews from each category. 

 

Table 6.5 The average distance between real ratings and review ratings based on first approach 

Classifiers / Sent. A. Methods RB SB DB HB 

Decision Tree 1.097 1.144 1.060 1.109 

k-Nearest Neighbors 0.741 0.694 1.060 0.724 

Random Forest 0.698 0.974 1.060 0.741 

Multinomial Naïve Bayes 0.609 0.610 1.060 0.586 

Logistic Regression 0.597 0.763 1.060 0.601 

Support Vector Machine 0.551 0.727 1.060 0.531 

Average Error 0.716 0.868 1.060 0,714 

 

As we mentioned before, the dictionary-based method is a ready application for 

sentiment analysis. Namely, it is not executed by each classifier. It is placed for display 

only on the same table. Table 6.5. shows the average distance between the real values of 

the ratings and the values calculated by the methods based on review texts. That is to 

say, how close the real rating values are to results based on review texts.   According to 

the results: 

-The DB method gives worse results than other methods compared to all other 

classifiers, except that it gives the best result in the DT classifier. 

- The SB method give worse results than RB and HB methods according to all other 

classifiers, except that it gives the best result in the kNN classifier compared to all other 

methods.  

-When we come to the comparison of RB and HB, we see that the situation changes 

according to the classifier used. However, we see the best result in Table V. is given by 

the HB method using the SVM classifier. 

- When we look at the average error rate according to the results of all classifiers, we 

see that the best result is HB, RB, SB and then DB, respectively. 

In order to see that the results do not change according to the selected test set, we 

applied it on different test sets. You can see the results on another test set below. 
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Table 6.6 Another example for the distance between  

real ratings and review ratings based on first approach 

Classifiers / Sent. A. Methods RB SB DB HB 

Decision Tree 1.130 1.150 1.105 1.134 

k-Nearest Neighbors 0.708 0.644 1.105 0.689 

Random Forest 0.709 0.936 1.105 0.751 

Multinomial Naïve Bayes  0.608 0.607 1.105 0.582 

Logistic Regression 0.574 0.752 1.105 0.589 

Support Vector Machine 0.538 0.705 1.105 0.518 

Average Error 0.711 0.799 1.105 0,709 

 

As can be seen from Table 6.6, when we applied our methods on a second test set, and 

we got similar results. 

For the second approach that we use to calculate the star rating of a review by the 

hybrid sentiment analysis, firstly, as in the first approach, the three other models 

calculate the class of the review, and then the class of the review is determined by the 

majority of three models, regardless of the probability ratio of the results. That is, at 

least two methods need to indicate that the review is in the same class. If each method 

finds a different class for the text, then the first approach is used to determine the class 

of the review based on the probability ratio. To make comparison, we used the same 

data set in Table 6.6. where we got the results using the first approach. 

 

Table 6.7 The distance between real ratings and review ratings based on second approach 

Classifiers / Sent. A. Methods RB SB DB HB 

Decision Tree 1.130 1.150 1.105 1.040 

k-Nearest Neighbors 0.708 0.644 1.105 0.663 

Random Forest 0.709 0.936 1.105 0.714 

Multinomial Naïve Bayes 0.608 0.607 1.105 0.600 

Logistic Regression 0.574 0.752 1.105 0.629 

Support Vector Machine 0.538 0.705 1.105 0.530 

Average Error 0.711 0.799 1.105 0,696 

 

As can be seen from Table 6.7. when we compare with the first approach, HB sentiment 

analysis method gives better results with DT, kNN and RF classifiers, while it gives 

worse results with MNB, LR and SVM classifiers. In order to see that the results do not 



143 

change according to the selected test set, we applied it on different test sets multiple 

times, but we obtained similar results. 

As we mention, our goal is to find out how close the real values of the ratings between 

the values calculated by the methods based on review texts. But what about capturing 

the real values according to the calculations that each method draws from the review 

texts? In other words, what is the precision values of each method? Because for some 

platforms, it may be important how many reviews are correctly classified, rather than 

how close they are to real values. Let‟s criticize this situation checking by the SVM 

classifier which is the best classifier that gives the closest results. 

As can be seen from Table 6.8,  

-The DB method seems to be much worse than other methods at determining the stars of

the reviews. In particular, almost three quarters of 2-, 3- and 4-star reviews are 

misclassified.  

-While the SB method seems to be quite successful in determining 1- and 5-star reviews

compared to other methods, this success decreases in 2-, 3- and 4-star reviews. 

Table 6.8 Precision values of each method based on Support Vector Machines 

Sentiment Analysis Methods Class 1 Class 2 Class 3 Class 4 Class 5 Total 

Review-based 
128 

200 

105 

200 

100 

200 

105 

200 

122 

200 

560 

1000 

Sentence-based 
177 

200 

41 

200 

62 

200 

71 

200 

155 

200 

506 

1000 

Dictionay-based 
96 

200 

54 

200 

42 

200 

55 

200 

142 

200 

389 

1000 

Hybrid-based 
138 

200 

108 

200 

99 

200 

109 

200 

130 

200 

584 

1000 

-When we look at the RB method, the number of correct predictions and the almost

equal division of this number into each class shows that this method is successful than 

the DB and SB methods. 

-When we look at the HB method, it gives slightly better results than the RB method. It

is also another success that the number of correct predictions is distributed almost 

equally to each class. We get these results using the first hybrid approach. Let‟s check 

the second approach of hybrid method that there is any big difference.
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Table 6.9 Precision values of hybrid-based method  

based on second approach using Support Vector Machines 

Sentiment Analysis Methods Class 1 Class 2 Class 3 Class 4 Class 5 Total 

Hybrid-based 
133 

200 

107 

200 

100 

200 

105 

200 

127 

200 

572 

1000 

 

As can be seen from Table 6.9, as the previous evaluation, the results of the second 

method and the equal distribution of the number of correct predictions were similar, but 

slightly worse than the first method. 

6.5 Conclusion 

This chapter discussed the effects of both the classifiers and sentiment analysis 

approaches to predict fine-grained restaurants‟ review rating stars. For this purpose, we 

wanted to show which one is the best for the related fields on the five class-based 

review rating stars and whether there is a better sentiment analysis approach as we 

called hybrid-based.  

The results we have obtained from the researches to date show that the success of each 

classifier can change in every chosen field. In this study, we observed that the SVM 

classifier gives better results compared to other classifiers in determining the star ratings 

of the restaurants based on the text of the reviews. In fact, the point to be considered 

here is which classifier will perform better according to the sentiment analysis approach 

chosen. Otherwise, as seen in Table 6.4., we observe that the MNB and LR also 

performed closely, without selecting the sentiment analysis approach.  

When we come to sentiment analysis approaches, we see that the DB method gives 

worse results compared to other methods, except that it gives the best result in the DT 

classifier. This shows that TextBlob, a simple API by Python, is not very good at 

classifying short text in a fine-grained star ratings compared to other methods. The SB 

method seems good in terms of the number of reviews correctly it classifies, but it is not 

successful in distributing this number equally to each class. The RB method gives the 

best results in classifiers such as RF and LR compared to other methods. In addition, the 

number of correct predictions and the almost equal division of this number into each 

class shows that this method is successful than the DB and SB methods. Similarly, HB 
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method gives the best results in MNB and SVM classifiers compared to other methods. 

With its result in the SVM classifier, it gives the best result among all other classifiers. 

It also gives the best result in the average error rate of all classifiers. Apart from this, as 

we can see in Table VIII., it gives the best result in the number of correct predictions 

and the success of distributing this number almost equally to each class. 

We hope that our proposed hybrid-based sentiment analysis approach and the 

experimental study results will help future researches according to the chosen field.  

 

 

 

7. CONCLUSIONS 

 

It is obvious that e-commerce, whose importance has increased more with the Covid-19 

pandemic, will push companies to new fields of work in analyzing ever-changing 

consumer needs and behaviors. In this sense, in order to analyze the users, besides the 

behaviors of the users in e-commerce environments, many factors such as the society, 

living conditions, spending habits, ways of spending time, communication forms and 

channels, and opportunities to access reliable and effective information should be 

examined. However, since studying human behavior as a whole requires a great deal of 

effort and time or is impossible in the Internet environment, the problem has been 

broken down into smaller parts to reach the whole. In other words, the necessary and 

sufficient information is collected by examining the user's small behaviors such as 

clicking, watching, listening, buying, sharing with other users. As a result, this 

information is used to predict the next behavior of the user concerned. We can say that 

one of the tools that will analyze this information best is the recommendation systems. 

It has met and will continue to meet the needs of many e-commerce platforms to a large 

extent with many practical and simple methods. However, due to the diverse e-

commerce environments, existing traditional recommendation systems have become 

unable to meet the needs in this field. In this context, our research aimed to eliminate 



146 

the problems in this area to some extent by offering different methods such as trust 

based, time decay based, review based recommendations. 

In Chapter 3, we propose a method based on trustful users to troubleshoot fake accounts 

especially for e-commerce platforms that offer services such as restaurant, café, hotel, 

etc. Accordingly, we calculate the trust value of each user by evaluating the 

relationships between users in the database. Then, while calculating the rating score of 

each product, we enable the users who rated the product to affect the result according to 

the trust value. Another suggestion is to calculate based on the experience of the most 

trusted users in the system, especially for the rating score of the products that are not 

rated or rated by a few numbers of users. The results we obtained show that the 

products that are rated by many users and reached their real values are close to our 

score, and that our method is efficient and can be used in related e-commerce platforms. 

In addition, it has been observed that challenges such as sparsity and robustness 

experienced in the recommendation systems can be solved to some extent. 

In Chapter 4, a time-based recommendation system has been proposed to prevent the 

unfair scoring system experienced in many e-commerce platforms, especially providing 

services such as restaurants, cafes, hotels. It is determined that many companies can not 

reach the value they deserve due to the ratings given to their workplaces years ago, or 

they get the value they don‟t deserve. But we know that the hotter ratting we get for 

such businesses, the healthier information we get. In order to overcome this situation, a 

method considering the times of the ratings given by users has been proposed. 

Accordingly, when calculating the rating score of a product, the result is reached by 

evaluating the date of the ratings given by each user who rated the product. Thus, the 

closer the rating given by a user to the present day, the more effective it is to calculate 

the rating score of the product.   

In Chapter 5, to predict fine-grained review rating stars, we focus on the impact of 

simple text preprocessing decisions especially on restaurant reviews. According to the 

experimental results, a simple stopwords elimination, lowercasing, removing common 

words, and lastly the combination of 1-to-3 N-grams perform better than other 

preprocessing methods for improving the classification accuracy of the five class-based 

review rating stars. Besides this, results show that the effects of the preprocessing 

methods can change in any domain. For this reason, all the possible preprocessing 
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methods should be considered to apply before used in any application. And applying the 

order of the preprocessing methods can also be important.  

In Chapter 6, another method is proposed in which we can ensure that the products get 

the value they deserve. This method is the sentiment analysis that includes the 

calculations we made based on the reviews made about the product while calculating 

the rating score of the product. The proposed hybrid method is aimed to find a better 

result by using the strengths of existing review-based, sentence-based, and dictionary-

based sentiment analysis. Besides, the results of our experimental studies also led to the 

comparison of the sentiment analysis methods for the quality of the multi-class star 

rating challenge, specifically on restaurant reviews. According to the results, the 

average distance between real ratings and review ratings based on the proposed hybrid 

sentiment analysis method gives the best results using the SVM classifier compared to 

other methods. it also gives the best result in the average error rate of all classifiers. 

Apart from this, it gives the best result in the number of correct predictions and the 

success of distributing this number almost equally to each class. 

As a result, we think that all the methods we recommend can play an important role in 

improving the quality of the recommendation systems. In particular, in order to provide 

more reliable and effective information to users, it can be presented to the users by 

calculating multiple product rating scores on the same platform. Thus, the users can 

make the final decision and prevent the possible frustration of the users. In other words, 

while giving the general average score of a product, it can also be shown according to 

the trusted users, time decay of the ratings, and review based. Therefore, users can get 

healthier information by checking the rating scores of the products based on different 

methods.   
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