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DEMAND CLASSIFICATION FOR SPARE PARTS SUPPLY CHAINS IN THE 

PRESENCE OF THREE-DIMENSIONAL PRINTERS 

 

ABSTRACT 

 

Three-dimensional printers (3DPs) are currently the source of the supply chain and are used 

to ensure spare parts supply in case of shortages. However, the reliability of the part produced 

in 3DP is lower than the original part supplied by the original equipment manufacturer 

(OEM). Failure of parts creates demand and the failure probability of original and printed 

part is different than each other. Thus, knowing the total demand distribution have great 

importance in optimizing the order quantity given to the OEM in the presence of 3DPs. In 

this study, the demand distribution of system failures has been determined by using the 

distribution classification methods put forward by Ord (1967) and Adan et al. (1995). In line 

with the results, according to study of Ord(1967), demand distribution is found as 

Hypergeometric and Binomial distribution. Discrete distribution family of Adan et al. (1995) 

gives Binomial distribution for the system demand. All results are tested with chi-square test 

and likelihood ratio test.  

 

Keywords: 3D printers, supply chain, demand classification, distribution selection, Ord 

hypergeometric distribution family, Adan discrete distribution family 
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ÜÇ BOYUTLU YAZICILARIN VARLIĞINDA YEDEK PARÇA TEDARİK 

ZİNCİRLERİNDE TALEP SINIFLANDIRMASI  
 

ÖZET 

 

Üç boyutlu yazıcılar (ÜBY) tedarik zincirinin kaynağıdır ve eksiklik durumunda yedek parça 

teminini sağlamak için kullanılmaktadır. Ancak, ÜBY’de üretilen parçanın güvenilirliği, 

orijinal ekipman üreticisi tarafından sağlanan orijinal parçadan daha düşüktür. Sistemde 

bulunan parçaların bozulması talep yaratmaktadır ve orijinal ve yazılı parçaların bozulma 

olasılığı birbirinden farklıdır. Bu nedenle, ÜBY'nin varlığında original ekipman üreticisine 

verilen sipariş miktarının optimize edilmesinde toplam talep dağılımının bilinmesi büyük 

önem taşımaktadır. Bu çalışmada, Ord (1967) ve Adan vd. (1995) tarafından ortaya konulan 

dağılım sınıflandırma yöntemleri kullanılarak sistem bozulmalarının talep dağılımı 

belirlenmiştir. Sonuçlar doğrultusunda, Ord’un (1967) sınıflandırma yöntemine göre talep 

dağılımı Hipergeometrik ve Binom dağılımı olarak bulunmuştur. Adan vd. (1995) tarafından 

verilen ayrık dağıtım ailesine göre ise, sistemin talebi Binom dağılımını takipe etmektedir. 

Tüm sonuçlar ki-kare testi ve olabilirlik oranı testi ile test edilmiştir. 

 

Anahtar Sözcükler: Üç boyutlu yazıcı, tedarik zinciri, talep sınıflandırması, dağılım 

seçimi, Ord hipergeometrik dağılım ailesi, Adan ayrık dağılım ailesi 
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1. INTRODUCTION 

Manufacturing equipment, millions of dollars in capital assets, are often critical in 

sustaining business core processes, so asset owners invest heavily in managing system 

availability. Many organizations operate complex supply chains service with local spare 

parts inventory to protect themselves against their prolonged system shortages. However, 

spare parts inventory often means a considerable investment due to the number of parts 

involved, prices, and long production times. For example, the US coast guard holds more 

than 60,000 spare parts in stock, having a total inventory value of more than $700 million 

(Deshpande et al., 2006). Cost and the value of keeping inventory are more significant 

for remote locations, such as military equipment, oceangoing transport vessels, and 

mining equipment (Westerweel et al., 2021). The original equipment manufacturer 

(OEM) conducts the replacement of spare parts, which creates excellent dependence on 

OEM.  However, three-dimensional printers enable companies with capital assets to 

produce their spare parts using additive manufacturing; instead of supplying from OEM.  

Additive manufacturing (AM) is a digital technology which is used to produce physical 

objects layer by layer from a three-dimensional computer-aided file (Thomas, 2016). The 

technology was introduced as rapid prototyping and three-dimensional printer (3DP) for 

producing rough physical prototypes of the final products (Khajavi et al. 2014). Additive 

manufacturing is currently used in prototyping, but it is also used in producing functional 

parts. AM can be used in manufacturing operations and supply chains to exploit AM's 

benefits, which are speed, quality, materials range, and affordability (Thomas, 2016; 

Strong et al., 2018). AM brings the advantage of producing spare parts in remote 

geographic areas where spare part stock replenishment time is long (Westerweel et al., 

2021), enabling companies to produce spare parts when the need arises. Thus, inventory 

cost decreases, and asset availability increases. However, one of the disadvantages of 

using AM is the reliability of a produced part (Kruth et al. 1998). Part produced with 3DP 

has lower reliability than those provided by OEM (Westerweel et al. 2021), leading to the 

quality difference between printed part and original part.  



2 

 

The spare parts produced with 3DP become a temporary solution for the system. OEM 

may not supply the spare parts immediately due to lead time. In this case, 3DP becomes 

the second supplier on hand and supplies the spare parts if there is no spare part inventory. 

Inventory management systems in which two supply sources are used simultaneously are 

called dual sourcing systems. In this study, from the perspective of the inventory planner, 

the failures of spare parts are defined as the demand for spare parts. For a capital product, 

the demand for spare parts will be fulfilled either with 3DP or inventory on hand which 

is supplied from OEM. The total demand of the system develops from failures of printed 

and original parts. In this case, the presence of original and printed parts in the system 

changes demand distribution. How much to order and when to order decisions are 

essential for an inventory control system; thus, knowing the demand distribution becomes 

crucial for the forecasts and ordering decisions to OEM.  

In order to determine the demand distribution of the system, convolution of several parts 

distributions might be required. The characterization of failures in a finite machine 

environment when there are two different qualities in the system is defined as the 

Bernoulli process by Westerweel et al. (2021). In this study, the demand comes from 

Bernoulli failures. The demand distribution of the printed part is assumed to be Binomial 

distribution, and the demand distribution of the original part is assumed as Binomial 

distribution. Although it is possible to obtain the convolution of two discrete random 

variables with non-identical distributions by numerical methods, it is not known exactly 

which of the existing theoretical distributions can meet this sum. Approximate solutions 

for finding the exact distribution of convolution have been proposed in the literature 

(Norman et al., 2005; Jolayemi, 1992).  

Besides, for many parts, the probability of failures increases with the age of the part. 

Therefore, the failure distribution of these parts has a memory, and failures occur in more 

than one stage (Hekimoğlu, 2015). In this case, the failure probability of a newly installed 

part will increase during the time. In other words, the probability of failure in the period 

in which the part is located is higher than the probability of failure in the previous period. 

At that time, the original part demand in the system in any period will only depend on the 

number of original parts in the previous period. If there is no inventory on hand, the 

printed part produced by a 3DP will be used instead of the original piece to keep the 

system running. 
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In this study, we answer the following research questions: 1) How does the demand 

distribution in the system change in the presence of 3DP? 2) How does the demand 

distribution change if the parts are written with an adjustable quality level on a 

3DP? 3) How does the ageing of original parts affect the system? 4) How does the 

optimum order quantity for the original and the printed part change in the presence 

of a 3DP? 

To answer the first two research questions, Studies of Ord (1967) and Adan et al. (1995) 

will be used. Ord (1967) uses Pearson's differential equation and develops a system of 

discrete distributions. The choice of distribution depends on only the first three central 

moments. Ord (1967) gives a two-dimensional plane for the distribution selection for a 

given first-three central moments. In addition to this, Adan et al. (1995) provide 

distribution selection based on the first two central moments. The distribution selection 

of Adan et al. (1995) is based on Erlang distributions. Accordingly, random variables for 

demand belonging to a countable set will be handled in this study. Since both studies use 

moments, the first-three moments of convolution are calculated. Then, a parameter set is 

generated, and distribution selection is conducted for a given parameter set. The chi-

square test and likelihood ratio test are handled to validate the results.  

The number of suppliers can be reduced drastically due to the flexibility which 3DP can 

deliver. The only supplier for the 3DP process in the production phase will be the material 

supplier (Chan et al., 2018). Since 3DP enables companies to keep less inventory of spare 

parts, optimal order quantity from OEM might change. Therefore, a mathematical model 

is created for a dual-sourcing system with both printed part and original part supply. 

Change in an optimal order quantity of original part and printed part is calculated with 

numerical experiments, answering the third research question. The findings of this study 

indicate that the convolution of two random variables has Binomial distribution or 

Hypergeometric distribution.   

In this study, distribution selection of spare parts demand and change in optimal order 

quantity are provided in the existence of 3DP. The literature review for the study is 

described in Section 2. The mathematical model, moments of convolution, and parameter 

estimation is given in Section 3. After the results are presented alongside with discussions 

in Section 3, concluding remarks follow in Section 4. 
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2. LITERATURE REVIEW 

3DP is commonly used in many areas such as e-commerce, online platforms, supply 

chain, manufacturing (Khajavi et al. 2014, Rayna et al. 2015). Despite of this, the current 

form of 3DP cannot replace entirely traditional manufacturing methods (Holweg, 2015). 

3DP technology may offer quick customization and a make-to-order opportunity for 

businesses (Gao et al., 2015). The use of 3DP might be expensive for the industries; 

however, it lessens the cost of holding and lack of inventory (Chan et al. 2018, Liu et al., 

2014). In the literature, some studies examine the inventory control strategy in the 

presence of 3DP (Westerweel et al. 2021, Song and Zhang, 2020). Westerweel et al. 

(2021) show that using 3DP on remote locations leads to significant operational cost 

savings due to less inventory in stock and increased asset availability.  

One of the points in the use of 3DP in spare part production is the quality difference. 

Printed spare parts fail earlier than original spare parts (Hekimoğlu and Ulutan, 2020). 

Laser polishing increases the reliability of the part (Ma et al., 2017), which reduces the 

quality difference. Laser polishing density increases the durability of the part, and failure 

probabilities decrease (Hekimoğlu and Ulutan, 2020). Westerweel et al. (2021) assume 

printed part failure probability is equal to the original part. Knofius et al. (2019) discuss 

a system where a single part quality is written by multiple machines. This study considers 

the quality difference of printed parts for a single printer. Also, it is considered that the 

3DPs write parts at different quality levels.  

Distribution selection of convolutions and its application are used in many research. 

Guerrero-Salazar and Yevjevich (1975) examine droughts as a stationary and periodic-

stochastic process; in order to determine droughts distribution, they use Ord (1967) 

classification. Vitanov et al. (2020) consider the motion of substance in a finite channel. 

They prove the obtained class of distributions contains all truncated discrete probability 

distributions of discrete random variables using Ord (1967). Also, Ord (1967) study leads 

many other distribution classification studies (Robertson et al. 2013, Adan et al. 1995, 

Korwar 1989).  

Adan et al. (1995) use the first two moments to fit discrete distributions. Janssen et al. 

(1998) study on inventory model, and they model the demand using the study by Adan et 
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al. (1995). De Smidt-Destombes et al. (2006) examines maintenance policy under the 

decision between spare part inventory and repair capacity, and they compare 

computational analysis and simple approximation of Adan et al. (1995). Sleptchenko et 

al. (2002) approximates pipeline inventory distribution using Adan et al. (1995) and finds 

the first two moments of the backorders. Van Donselaar and Broekmeulen (2012) use 

fitting discrete distribution of Adan et al. (1995) to find demand distribution and conduct 

simulation test. Syntetos et al. (2011) study parametric assumptions towards stock 

control, relying on demand distribution assumptions and conducting goodness of fit tests. 

In this study, distribution families from Ord (1967) and Adan et al. (1995) are compared, 

and their validation is tested for spare parts inventory control system for printed and 

original part demand.  

In all inventory control literature, including those related to 3DP, no studies found in 

which quality and inventory are dynamically controlled and optimized together. Song and 

Zhang (2020) assume that more than one part was produced on the same printer, but only 

one of the printed or original part inventory strategies was valid and does not consider 

dual sourcing. Westerweel et al. (2021) do not consider the quality difference in their 

study, but they use dynamic system control. This study contributes to the literature in 

terms of finding the distribution of spare parts demands in the use of 3DP and expressing 

the numerical results of dynamic programming, which considers quality difference and 

dual sourcing.  
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3. MATHEMATICAL MODEL 

In a high-cost capital environment or a production line, spare part management of 

working machines are critical to sustaining business processes. In case of failures in a 

part of capital machines, OEM may not supply the part immediately, and 3DP enables 

companies to make on-demand production. In addition, printed parts fail faster than the 

original parts, but 3D printers allow production at different quality levels. The use of 

different quality levels changes the distribution of spare parts demand. In order to figure 

out the distribution, Ord (1967) and Adan et al. (1995) discrete distribution families are 

handled using the central moments.  In this study, three cases are considered. First, there 

is one printer quality and OEM supplies. Second, OEM supply continues, and there are 

different quality levels (𝑘) for the printed part. Third, there is one printer quality and 

original part ages in different levels (𝑠) and failures observed at 𝑠𝑡ℎ level. Conditional 

distributions are considered based on Bernoulli failures.  

Considering the convolution of printed and original part demands, the first three moments 

will be calculated in the following parts. Then, parameter estimation of Ord (1967) will 

be made, and the distribution selection algorithm of Adan et al. (1995) will be given. 

Further, limiting probabilities and moments of ageing system will be given. In the end, 

simulations will be conducted for generated parameter sets. In section 4, these simulation 

results will be discussed.  

3.1. Moments of Spare Parts Demand 

I consider a system with 𝑁 identical machines in a discrete-time setting. In these 

machines, a spare part fails with probability 𝑝  at every period. When an original spare 

part is broken, it is replaced with an original part if there is enough inventory. Otherwise, 

a part is printed and installed. It is assumed that each printed part fails with probability 𝑝 

and 𝑝 < 𝑝.  The number of original parts is 𝑚0 out of  𝑁 machines and the number of 

printed parts is 𝑚1 out of 𝑁, 𝑚0 + 𝑚1 = 𝑁.  It is assumed that the demand of the original 

parts (𝐷𝑜) follow the 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚0, 𝑝) distribution. Similarly, the failures of the printed 

part (𝐷𝑝) follow 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚1, 𝑝) distribution. The total demand for spare parts in a 

period consists of the convolution of two Binomial distributions.  
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Although, it is possible to obtain the convolution of two non-identical Binomial 

distributions by numerical experiments. It is also essential to know the theoretical 

distribution that approximates the convolution. Approximate solutions have been 

proposed in the literature for calculating central moments (Norman et al., 2005; Jolayemi, 

1992). The two most relevant approaches are Kolmogorov’s method and an adaptation of 

a distribution from the Pearson family (Liu and Quertermous, 2017). This study focuses 

on the Pearson approach. The most relevant reference on Pearson approximation 

addresses a characterization and more precisely selection criteria with the first three 

moments of some laws of random variables, whose density 𝑓 follows the following 

Pearson differential equation 
𝑑𝑓

𝑑𝑥
=

(𝑎−𝑥)𝑓

𝑏0+𝑏1𝑥+𝑏2𝑥2.  

The application of the Pearson differential equation given above with discrete distribution 

has been discussed by Ord (1967). To provide an example for Pearson's law fit of discrete 

distributions, let X be a random variable defined in the probability space (Ω, 𝐹, 𝑃) and 

the parameter 𝐵(𝑛, 𝑝) follows Binomial distribution. In this case, ∀𝑘 ∈ [0, 𝑛], 𝑃(𝑋 =

𝑘) = (𝑛
𝑘
)𝑝𝑘(1 − 𝑝)(𝑛−𝑘). Calculations show that the density follows the equation below, 

which is close to the Pearson equation (Katz, 1948). 

𝑃(𝑋 = 𝑘 + 1) − 𝑃(𝑋 = 𝑘) = (
(𝑛−𝑘)𝑝

(𝑘+1)(1−𝑝)
− 1)𝑃(𝑋 = 𝑘)                      (3.1) 

Let (Ω, 𝐹, 𝑃) be probability space, and X be a random variable following Binomial 

distribution, denoted by 𝐵𝑖𝑛𝑜𝑚(𝑛, 𝑝). 

Proposition 1. For all 𝑟 ∈ ℕ, 𝑋 ∈ (Ω, 𝐹, 𝑃), and 𝐸[𝑋𝑟] = ∑
𝑛!

(𝑛−𝑘)!
𝑆(𝑟, 𝑘)𝑝𝑘𝑟

𝑘=0 , with 

𝑆(𝑟, 𝑘) =
1

𝑘!
∑ (−1)𝑘−𝑗𝑘

𝑗=0 (𝑘
𝑗
) 𝑗𝑟 

Proof. The fact that, for all 𝑟 ∈ ℕ, 𝑋 ∈ (Ω, 𝐹, 𝑃) is trivial. Later, the proof of the equations 

given in the proposition is issued by Gupta and Singh (1981) and can be found using 

factorial moments.  

Using Proposition 1, the first three central moments of X are given by: 

𝐸[𝑋] = 𝑛𝑝 (3.2) 

𝐸[(𝑋 − 𝐸[𝑋])2] = 𝑛𝑝(1 − 𝑝) (3.3) 
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𝐸[(𝑋 − 𝐸[𝑋])3] = 𝑛𝑝(1 − 𝑝)(1 − 2𝑝) (3.4) 

 

If X and Y are two independent random variables defined on the same probability space 

(Ω, 𝐹, 𝑃) with discrete finite support [0, 𝑛] and [0,𝑚] respectively. Then, the random 

variable 𝑍 =  𝑋 +  𝑌 , has the following distribution, called convolution:  

∀𝑘 ∈ [0,𝑚 + 𝑛], 𝑃(𝑋 + 𝑌 = 𝑘) = ∑ 𝑃(𝑋 + 𝑌 = 𝑘, 𝑌 = 𝑗)

0≤𝑗<𝑘

 
(3.5) 

= ∑ 𝑃(𝑋 = 𝑘 − 𝑗)𝑃(𝑌 = 𝑗)

0≤𝑗<𝑘

 
(3.6) 

 

Proposition 2. Let X and Y be two independent random variables defined on a probability 

space (Ω, 𝐹, 𝑃) and assume that X and Y are independent, with support in ℕ. Let ∀𝑟 ∈

ℕ, 𝑋 ∈ (Ω, 𝐹, 𝑃) and 𝑌 ∈ (Ω, 𝐹, 𝑃). For, ∀(𝑘, 𝑝) ∈ ℕ, then 𝐸[𝑋𝑘𝑌𝑝] = 𝐸[𝑋𝑘]𝐸[𝑌𝑝].  

Proposition 3. Let (𝑋1, … , 𝑋𝑛) be n random variables defined on a probability space 

(Ω, 𝐹, 𝑃). Assume that (𝑋1, … , 𝑋𝑛) are independent and ∀𝑘 ∈ [1,… , 𝑛], 𝑋𝑘 ∈ (Ω, 𝐹, 𝑃).  

Then we have: 

𝐸 [(∑  

𝑛

𝑖=1

 𝑋𝑖 − 𝐸 [∑  

𝑛

𝑖=1

 𝑋𝑖])

2

] = ∑  

𝑛

𝑖=1

𝐸 [(𝑋𝑖 − 𝐸(𝑋𝑖))
2
] 

(3.7) 

 𝐸 [(∑  

𝑛

𝑖=1

 𝑋𝑖 − 𝐸 [∑  

𝑛

𝑖=1

 𝑋𝑖])

3

] = ∑  

𝑛

𝑖=1

𝐸 [(𝑋𝑖 − 𝐸(𝑋𝑖))
3
] 

(3.8) 

 

Proof. We have used the multinomial theorem: 

𝐸 [(∑  

𝑛

𝑖=1

 𝑋𝑖 − 𝐸 [∑  

𝑛

𝑖=1

 𝑋𝑖])

3

] = 𝐸 [(∑  

𝑛

𝑖=1

  (𝑋𝑖 − 𝐸[𝑋𝑖]))

3

] 

(3.9) 

= 𝐸 [∑3!∏
1

𝑘𝑖!
(𝑋𝑖 − 𝐸[𝑋𝑖])

𝑘𝑖

𝑘

𝑖=1

𝑛

𝑖=1

] 
(3.10) 
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= ∑𝐸 [(𝑋𝑖 − 𝐸(𝑋𝑖))
3
]

𝑛

𝑖=1

+ 𝐸 [∑3!∏
1

𝑘𝑖!
(𝑋𝑖 − 𝐸[𝑋𝑖])

𝑘𝑖

𝑘

𝑖=1

𝑛

𝑖=1

] 

(3.11) 

 

Therefore, the independence assumption is used and 𝐸[𝑋𝑖 − 𝐸[𝑋𝑖]] = 0, ∀𝑖 ∈ [1,… , 𝑛] 

𝐸 [∑3!∏
1

𝑘𝑖!
(𝑋𝑖 − 𝐸[𝑋𝑖])

𝑘𝑖

𝑘

𝑖=1

𝑛

𝑖=1

] = 0 

(3.12) 

∎ 

Proposition 4.   (𝑋1, … , 𝑋𝑛) n independent random variables defined on a probability 

space (Ω, 𝐹, 𝑃). Assume that, ∀𝑖 ∈ {1, . . . , 𝑛}, 𝑋𝑖~𝐵𝑖𝑛𝑜𝑚(𝑛𝑖, 𝑝𝑖) and 𝑝𝑖 ∈ (0,1). Then the 

three first central moments are given by: 

𝐸 [∑𝑋𝑖

𝑛

𝑖=1

] = ∑𝑛𝑖

𝑛

𝑖=1

𝑝𝑖 
(3.13) 

𝐸 [(∑𝑋𝑖 − 𝐸[∑𝑋𝑖

𝑛

𝑖=1

])2

𝑛

𝑖=1

] = ∑𝑛𝑖

𝑛

𝑖=1

𝑝𝑖(1 − 𝑝𝑖) 
(3.14) 

𝐸 [(∑𝑋𝑖 − 𝐸[∑𝑋𝑖

𝑛

𝑖=1

])3

𝑛

𝑖=1

] = ∑𝑛𝑖

𝑛

𝑖=1

𝑝𝑖(1 − 𝑝𝑖)(1 − 2𝑝𝑖) 
(3.15) 

 

Proof. It is a straight consequence of Proposition 1 and 3.  

In the next step, using the moments discussed above, I will find out which distribution 

the Binomial convolutions evolve for the Ord (1967) and Adan et al. (1995) distribution 

families and explain them. Also, I will make parameter estimations for the distributions 

obtained. 

Using the first three central moments of the Binomial convolutions given above, the 

distribution that provides the best approximation to the total demand for spare parts in a 

machine park consisting of parts of different quality will be selected.  
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3.2. Parameter Estimation of Distribution 

The distribution of the printed and original parts in the system will be found using the 

first three central moments. But in this case, the parameters of the obtained distribution 

are unknown. For this reason, parameter estimation will be made at this stage of the study 

by using the moment approach. 

3.2.1. Ord’s hypergeometric distribution family 

Ord (1967) showed that the discrete distributions hypergeometric distribution family fit 

the Pearson equation. The family of hypergeometric distributions includes commonly 

known distributions such as Binomial, Negative Binomial, Poisson, Geometric 

distributions; besides, compound distributions such as Beta-Binomial and Beta-Pascal. 

The Beta–Binomial distribution is a mixture of binomial distributions, with the binomial 

probability parameter (𝑝) having a beta distribution. Beta-Pascal distribution arises as a 

beta mixture of negative binomial distributions, also called beta-negative binomial 

distribution (Johnson et al., 2005). Theoretical distributions in this large family are 

classified based on their first three central moments (Ord, 1967). Define μ𝑟 as the 𝑟𝑡ℎ 

central moment of a distribution. Moment generating function for binomial coefficients 

is given as 𝜇𝑟 = 𝐸[(𝑋 − 𝐸[𝑋])𝑟] ∣= ∑𝑗=0
𝑟  (−1)𝑗 (

𝑟
𝑗 ) 𝜇𝑟−𝑗

′ 𝜇𝑗 (Johnson et al. 2005).  

 

 

Figure 1. Ord (1967) Discrete Distribution Family 
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Figure 1 shows Ord (1967) discrete distribution family. Horizontal line indicates 𝐼 which 

is equal to 
μ2

μ1
 and vertical line denotes 𝑆 which is equal to 

μ3

μ2
. All the points in the GP line 

in Figure 1 give Binomial distribution. For a given parameter set, points of the AGP area 

belong to Hypergeometric distribution. The equation of the GB line is 𝑆 = 2𝐼 − 1. 

The characterization of the demand distribution is made using the discrete distribution 

family created by Ord (1967) for the number of original and printed parts in the system. 

It is assumed that the failures in the system follow Binomial distribution. In this case, the 

system's total demand for spare parts (𝐷) consists of the convolution of the Binomial 

distribution equal to the sum of the original parts (𝐷𝑜) and printed parts (𝐷𝑝), 𝐷 = 𝐷𝑜 +

𝐷𝑝. The simulation results show that for a given parameter set, the convolution of the two 

Binomial distributions belongs to the hypergeometric distribution or the Binomial 

distribution. For this reason, we need parameter estimation only for Hypergeometric and 

Binomial distribution.  

The hypergeometric distribution has its types, and the general hypergeometric 

distribution provides these types with certain conditions (Johnson et al., 2005). Therefore, 

parameter estimation for the hypergeometric distribution is more challenging than the 

Binomial distribution. The probability mass function of general hypergeometric 

distribution is 𝑃𝑟[𝑋 = 𝑥] = (𝑎
𝑥
)( 𝑏

𝑛−𝑥
)/(𝑎+𝑏

𝑛
). 𝑎 is the number of success states in the 

population, 𝑛 is the number of draws, 𝑥 is the number of observed successes, and 𝑏 is the 

number of failed states in the population.  Ord (1967) uses the classical hypergeometric 

distribution in his study. The probability mass function of classical hypergeometric 

distribution is 𝑃𝑟[𝑋 = 𝑥] = (𝑁𝑝
𝑥

)(𝑁−𝑁𝑝
𝑛−𝑥

)/(𝑁
𝑛
). N represents the population, and p is the 

probability of success. For this reason, parameter estimates of the classical 

hypergeometric distribution were made using the first three central moment formulas 

given by Ord (1967). Equation 3.16 – 3.18 shows the first three central moments Ord 

(1967) provided.  

𝜇1 =
𝑎𝑏

𝑒
 

(3.16) 

𝜇2 =
𝑎𝑏(𝑎 + 𝑒)(𝑏 + 𝑒)

𝑒2(𝑒 − 1)
 

(3.17) 
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𝜇3 =
𝑎𝑏(𝑎 + 𝑒)(𝑏 + 𝑒)(2𝑎 + 𝑒)(2𝑏 + 𝑒)

𝑒3(𝑒 − 1)(𝑒 − 2)
 

(3.18) 

 

Ord (1967) states in his study that 𝑎 = −𝑚, 𝑏 = −𝑁𝑘, 𝑒 = 𝑁 should be written for the 

hypergeometric distribution. When we substitute the given expressions, the first three 

moments for the classical hypergeometric distribution are obtained in Equation 3.19 – 

3.21. 

𝜇1 = 𝑚𝑘 (3.19) 

𝜇2 = 𝜇1

(𝑁 − 𝑚)(1 − 𝑘)

𝑁 − 1
 

(3.20) 

𝜇3 = μ2

(𝑁 − 2𝑚)(1 − 2𝑘)

𝑁 − 2
 

(3.21) 

 

Parameter estimation is made using the moment approach. For this reason, the moments 

of the classical hypergeometric distribution given above are used. Taking ρ1 =
μ2

μ1
  

and ρ2 =
μ3

μ2
 gives ρ1 =

(𝑁−𝑚)(1−𝑘)

𝑁−1
 and ρ2 =

(𝑁−2𝑚)(1−2𝑘)

𝑁−2
. Parameter estimation 

formulas for the hypergeometric distribution are given in Equation 3.22 – 3.24.  

𝑁 =
2ρ2 − 2ρ1 + 2μ1

ρ2 − 2ρ1 + 1
 

(3.22) 

0 = 𝑚2 − 𝑚(𝑁 + μ1 − 𝑁ρ1 + ρ1) + 𝑁μ1 (3.23) 

𝑘 =
μ1

𝑛
 (3.24) 

 

In the following parts of the study, the parameter space will be created for simulations, 

and the moments at each point of the parameter space will be calculated. R program will 

be used for the simulations. Johnson et al. (2005) give the general hypergeometric 

distribution conditions that satisfy the different hypergeometric distribution types. 

Therefore, the classical hypergeometric distribution is transformed into the general 

hypergeometric distribution according to the condition given by Johnson et al. (2005). 

Equation 3.25 – 3.27 gives the first three moments for the general hypergeometric 

distribution.  
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μ1 = 𝐸[𝑋] =
𝑛𝑎

𝑎 + 𝑏
 (3.25) 

μ2 = 𝑉𝑎𝑟[𝑋] =
𝑛𝑎𝑏(𝑎 + 𝑏 − 𝑛)

(𝑎 + 𝑏)2(𝑎 + 𝑏 − 1)
 (3.26) 

μ3 =
μ2(𝑏 − 𝑎)(𝑎 + 𝑏 − 2𝑛)

(𝑎 + 𝑏)(𝑎 + 𝑏 − 2)
 (3.27) 

 

The general hypergeometric distribution is equal to the classical hypergeometric 

distribution for the following conditions: 

𝑛 − 𝑏 − 1 < 0, 𝑛 integer, and   0 < 𝑛 − 1 < 𝑎 

𝑛 − 𝑏 − 1 < 0, 𝑎 integer, and  0 < 𝑎 − 1 < 𝑛 

 

If we write 𝑏 = 𝑁 − 𝑁𝑝 and  𝑎 = 𝑁𝑝, the first three moments of the general 

hypergeometric distribution will equal the first three moments of the classical 

hypergeometric distribution. Equation 3.28-3.30 reveals the connection between the 

classical hypergeometric distribution and the general hypergeometric distribution 

(Johnson et al., 2005). 

𝜇1 =
𝑛.𝑁𝑝

𝑁
= 𝑛𝑝 

(3.28) 

𝜇2 =
𝑛.𝑁𝑝. (𝑁 − 𝑁𝑝)(𝑁 − 𝑛)

𝑁2(𝑁 − 1)
=

𝑛.𝑁𝑝.𝑁(1 − 𝑝). (𝑁 − 𝑛)

𝑁2(𝑁 − 1)

=
𝑛𝑝(1 − 𝑝)(𝑁 − 𝑛)

𝑁 − 1
 

(3.29) 

𝜇3 = μ2

(𝑁 − 𝑁𝑝 − 𝑁𝑝)(𝑁𝑝 + 𝑁 − 𝑁𝑝 − 2𝑛)

(𝑁𝑝 + 𝑁 − 𝑁𝑝 − 2)
= μ2

(𝑁 − 2𝑛)(1 − 2𝑝)

𝑁 − 2
 

(3.30) 

3.2.2. Adan’s discrete distribution family 

In addition to the hypergeometric distribution family, a distribution selection based on 

the mixture of Erlang distributions was also proposed by Adan et al. (1995). This method 

is based on selecting one of the Binomial mixtures, Geometric mixtures, Poisson, and 

Negative Binomial mixtures distributions using the first two moments of a random 

variable. The Adan et al. (1995) method is commonly used in inventory control literature 
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to select spare parts demand distribution (Axsater, 2006).  Below is the demand and 

parameter estimation are given by Adan et al. (1995). 

𝑎 =
𝑐𝑥

2 − 1

μ1
, 𝑎𝑛𝑑   𝑐𝑥 =

√μ2

μ1
 

(3.31) 

 

Distribution selection is based on the following conditions: Y is a random variable that 

comes from convolution, and k is the number of trials. Also, parameter estimations are 

given below by Adan et al. (1995).  

1. If   
−1

𝑘
≤ 𝑎 ≤

−1

𝑘+1
 for certain 𝑘 = 1,2,3, … then, 

𝑌 = {
𝐵𝑖𝑛𝑜𝑚(𝑘, 𝑝) 𝑤. 𝑝.   𝑞,               
𝐵𝑖𝑛𝑜𝑚(𝑘 + 1, 𝑝) 𝑤. 𝑝.   1 − 𝑞.

 
(3.32) 

where, 

𝑞 =
1 + 𝑎(1 + 𝑘) + √−𝑎𝑘(1 + 𝑘) − 𝑘

𝑎 + 1
 

(3.33) 

𝑝 =
μ1

𝑘 + 1 − 𝑞
 (3.34) 

 

2. If 𝑎 = 0, then 𝑌 = 𝑃𝑜𝑖𝑠(λ) with λ = μ1 

3. If 
1

𝑘+1
≤ 𝑎 ≤

1

𝑘
    for certain 𝑘 = 1,2,3, …  then, 

𝑌 = {
𝑁𝐵𝑖𝑛𝑜𝑚(𝑘, 𝑝)   𝑤. 𝑝.    𝑞,                

𝑁𝐵𝑖𝑛𝑜𝑚(𝑘 + 1, 𝑝)     𝑤. 𝑝.    1 − 𝑞
 

(3.35) 

where, 

𝑞 =
𝑎(1 + 𝑘) − √−𝑎𝑘(1 + 𝑘) − 𝑘

1 + 𝑎
 

(3.36) 

𝑝 =
μ1

𝑘 + 1 − 𝑞 + 𝜇1
 (3.37) 

4. If 𝑎 ≥ 1, then 

𝑌 = {
𝐺𝑒𝑜(𝑝1)    𝑤. 𝑝. 𝑞1,

𝐺𝑒𝑜(𝑝2)     𝑤. 𝑝. 𝑞2
 

(3.38) 

where, 
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𝑝1 =
μ1[1 + 𝑎 + √𝑎2 − 1]

2 + μ1[1 + 𝑎 + √𝑎2 − 1]
, 𝑝2 =

μ1[1 + 𝑎 − √𝑎2 − 1]

2 + μ1[1 + 𝑎 − √𝑎2 − 1]
 

(3.39) 

𝑞1 =
1

1 + 𝑎 + √𝑎2 − 1
. 𝑞2 =

1

1 + 𝑎 − √𝑎2 − 1
 

(3.40) 

 

3.3. Ageing of Parts 

For many parts, the probability of failure increases with the age of the part. This can be 

interpreted as failure distribution of these parts has a memory, and the failure occurs in 

more than one stage. To model multi-stage components as opposed to Bernoulli failures 

in a production facility with 𝑁 identical machines, we define a Markov chain. To make 

the model simple, there are one original part and one printed part in the Markov chain and 

the original part ages at two levels. Figure 2 shows the transition diagram of Markov 

chain. O1 and O2 indicate the original part at ageing level 1 and 2, respectively. P 

indicates the printed part. The demand of the original part will occur at ageing level 2 

where O2 fails. When O2 fails, the original part will be replaced with a printed part. When 

P fails, the printed part will be replaced with an original part. As a rule of the Markov 

chain, conditional expectation consists of the probability of aging of the part in the next 

period and the part remaining in the same condition in the next period.   

Figure 2. Transition Diagram 

1

O2O1 P
p p

 

The matrix below represents the transition probability matrix for the given transition 

diagram. States are respectively ordered as (2,0,0), (1,1,0), (0,2,0), (1,0,1), (0,1,1), and 

(0,0,2).  

𝑃 =

[
 
 
 
 
 
(1 − 𝑝)2 2𝑝(1 − 𝑝) 𝑝2 0 0 0

0 (1 − 𝑝)2 𝑝(1 − 𝑝) 𝑝(1 − 𝑝) 𝑝2 0

0 0 (1 − 𝑝)2 0 2𝑝(1 − 𝑝) 𝑝2

1 − 𝑝 𝑝 0 0 0 0
0 1 − 𝑝 0 𝑝 0 0
1 0 0 0 0 0 ]
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In order to compute the first three moments of the Markov chain, limiting probabilities 

are calculated.  

Lemma 1. Limiting probability of given states are 𝜋0 =
1

(𝑝+2)2
, π0 = π2, π1 = 2π2, π3 =

π4 = 2𝑝π2, π5 = 𝑝2π2.  

Proof. Limiting probability equations are given below: 

π0 = 𝑃00π0 + 𝑃30π3 + 𝑃50π5 (3.41) 

π1 = 𝑃01π0 + 𝑃11π1 + 𝑃13π3 + 𝑃14π4 (3.42) 

π2 = 𝑃02π0 + 𝑃12π1 + 𝑃22π2 (3.43) 

π3 = 𝑃13π1 + 𝑃43π4 (3.44) 

π4 = 𝑃14π1 + 𝑃24π2 (3.45) 

π5 = 𝑃25π2 (3.46) 

 

Write the probabilities in place, we get the following equations: 

𝑝(2 − 𝑝)𝜋0 = 𝜋3 − 𝑝𝜋3 + 𝑝2𝜋2  (3.47) 

𝑝(2 − 𝑝)𝜋1 = 2𝑝𝜋0 − 2𝑝2𝜋0 + 𝑝𝜋3 + 𝜋4 − 𝑝𝜋4 (3.48) 

𝑝(2 − 𝑝)𝜋1 = 𝑝2𝜋0 + 𝑝𝜋1 − 𝑝2𝜋4   (3.49) 

π3 = 𝑝𝜋1 − 𝑝2𝜋1 + 𝑝𝜋4 (3.50) 

π4 = 𝑝2𝜋1 + 2𝑝𝜋2 − 2𝑝2𝜋2 (3.51) 

π5 = 𝑝2𝜋2 (3.52) 

 

In order to solve the equations, write equation 3.51 in equation 3.50 in place: 

π3 = 𝑝π1 − 𝑝2π1 + 𝑝3π1 + 2𝑝2π2 − 2𝑝3π2 (3.53) 

 

Write the equation above in equation 3.47 in place: 

𝑝(2 − 𝑝)𝜋0 = 𝑝𝜋1 − 𝑝2𝜋1 + 𝑝3𝜋1 + 2𝑝2𝜋2 − 2𝑝3𝜋2 + 𝑝3𝜋1 − 𝑝4𝜋1

− 2𝑝3𝜋2 + 2𝑝4𝜋2 + 𝑝2𝜋2 

(3.54) 

𝜋0 =
(1 − 2𝑝 + 2𝑝2 − 𝑝3)𝜋1 + (3𝑝 − 4𝑝2 + 2𝑝3)𝜋2

2 − 𝑝
 

(3.55) 
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Write π0 above in equation 3.49 in place: 

𝑝(2 − 𝑝)𝜋2 = 𝑝2 [
(1 − 2𝑝 + 2𝑝2 − 𝑝3)𝜋1 + (3𝑝 − 4𝑝2 + 2𝑝3)𝜋2

2 − 𝑝
]

+ 𝑝(1 − 𝑝)𝜋1 

(3.56) 

(2𝑝)2𝜋2 = 𝑝((1 − 2𝑝 + 2𝑝2 − 𝑝3)𝜋1 + (3𝑝 − 4𝑝2 + 2𝑝3)𝜋2) + (1

− 𝑝)(2 − 𝑝)𝜋1 

(3.57) 

(4 − 4𝑝 + 𝑝2 − 3𝑝2 + 4𝑝3 − 2𝑝4)𝜋2

= (2 − 3𝑝 + 𝑝2 + 𝑝 − 2𝑝2 + 2𝑝3 − 𝑝4)𝜋1 

(3.58) 

𝜋1 =
(4 − 4𝑝 − 2𝑝2 + 4𝑝3 − 2𝑝4)𝜋2

2 − 2𝑝 − 𝑝2 + 2𝑝3 − 𝑝4
→ 𝜋1 = 2𝜋2 

(3.59) 

Write π1 in equation 3.51 in place: 

𝜋4 = 2𝑝2𝜋2 + 2𝑝𝜋2 − 2𝑝2𝜋2 (3.60) 

𝜋4 = 2𝑝𝜋2 (3.61) 

Write π4 in equation 3.50 in place: 

𝜋3 = 2𝑝𝜋2 − 2𝑝2𝜋2 + 2𝑝2𝜋2 (3.62) 

𝜋3 = 2𝑝𝜋2 (3.63) 

Write π3 in equation 3.47 in place: 

𝑝(2 − 𝑝)π0 = 2𝑝𝜋2 − 2𝑝2𝜋2 + 𝑝2𝜋2 (3.64) 

𝑝(2 − 𝑝)π0 = 2𝑝𝜋2 − 𝑝2𝜋2 (3.65) 

𝑝(2 − 𝑝)π0 = 𝑝(2 − 𝑝)𝜋2 (3.66) 

π0 = 𝜋2 (3.67) 

Boundary condition; ∑ π𝑖𝑖 = 1 implies. 

π2 + 2π2 + π2 + 2𝑝π2 + 2𝑝π2 + 𝑝2π2 = 1 (3.68) 

π2(4 + 4𝑝 + 𝑝2) = 1 (3.69) 

π2 =
1

(𝑝 + 2)2
 

(3.70) 

π0 =
1

(𝑝 + 2)2
, π1 =

2

(𝑝 + 2)2
, π3 =

2𝑝

(𝑝 + 2)2
, π4 =

2𝑝

(𝑝 + 2)2
, 

π1 =
2𝑝2

(𝑝 + 2)2
 

(3.71) 
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Lemma 2. The first moment μ1 = ∑ π𝑖𝑖 𝐸[𝐷𝑖|𝑊𝑖] = 𝐸[𝐷] equals to 
2𝑝

(𝑝+2)2
(4 + 7𝑝). 

Proof: 

𝐸[𝐷 ∣ 𝑤𝑖 = (2,0,0)] = ∑𝑘=0
𝑁  Pr {𝐷 = 𝑘 ∣ 𝑤𝑖 = (2,0,0)} ⋅ 𝑘 (3.72) 

= 1 ⋅ (
2
1
)𝑝′(1 − 𝑝)′ + 2 ⋅ (

2
2
) 𝑝2 = 2𝑝2 + 2𝑝(1 − 𝑝) = 2𝑝(1 − 𝑝 + 𝑝)

= 2𝑝 

(3.73) 

𝐸[𝐷 ∣ 𝑤𝑖 = (1,1,0)] = ∑𝑘=0
𝑁  Pr {𝐷 = 𝑘 ∣ 𝑤𝑖 = (1,1,0)} ⋅ 𝑘 (3.74) 

= 1 ⋅ (
1
1
) ⋅ 𝑝 ⋅ (

1
0
) (1 − 𝑝) + (

1
0
) (1, 𝑝) ⋅ (

1
1
) 𝑝 + 2 ⋅ 𝑝2 = 2𝑝2 + 2𝑝(1 − 𝑝)

= 2𝑝 

(3.75) 

𝐸[𝐷 ∣ 𝑤𝑖 = (0,2,0)] = ∑𝑘=0
𝑁  Pr {𝐷 = 𝑘 ∣ 𝑤𝑖 = (0,2,0)} ⋅ 𝑘 (3.76) 

= 1 ⋅ (
2
1
) ⋅ 𝑝(1 − 𝑝) + 2 ⋅ (

2
2
) 𝑝2 = 2𝑝 (3.77) 

𝐸[𝐷 ∣ 𝑤𝑖 = (1,0,1)] = ∑𝑘=0
𝑁  Pr {𝐷 = 𝑘 ∣ 𝑤𝑖 = (1,0,1)} ⋅ 𝑘  (3.78) 

= 1 ⋅ (1) + 2 ⋅ (1 ⋅ (1) ⋅ 𝑝) = 1 +  2p (3.79) 

𝐸[𝐷 ∣ 𝑤𝑖 = (0,1,1)] = ∑𝑘=0
𝑁  Pr {𝐷 = 𝑘 ∣ 𝑤𝑖 = (0,1,1)} ⋅ 𝑘 (3.80) 

= 1 ⋅ (1) + 2 ⋅ (1 ⋅ (
1
1
) ⋅ 𝑝) = 1 + 2𝑝 (3.81) 

𝐸[𝐷 ∣ 𝑤𝑖 = (0,0,2)] = ∑𝑘=0
𝑁  Pr {𝐷 = 𝑘 ∣ 𝑤𝑖 = (0,0,2)} ⋅ 𝑘 =  2 (3.82) 

𝐸[D] = ∑𝑖  π𝑖𝐸[D ∣ 𝑤𝑖]

= π0𝐸[𝐷 ∣ 𝑤0] + π1𝐸[𝐷 ∣ 𝑤1] + 𝜋2𝐸[𝐷 ∣ 𝑤2] + 𝜋3𝐸[𝐷 ∣ 𝑤3]

+ 𝜋4𝐸[𝐷 ∣ 𝑤4] + π5𝐸[𝐷 ∣ 𝑤5] 

(3.83) 

=
1

(𝑝 + 2)2
⋅ 2𝑝 +

2

(𝑝 + 2)2
⋅ 2𝑝 + 2𝑝 ⋅

1

(𝑝 + 2)2
+

2𝑝

(𝑝 + 2)2
⋅ (1 + 2𝑝)

⋅ +
2𝑝

(𝑝 + 2)2
⋅ (1 + 2𝑝) +

𝑝2

(𝑝 + 2)2
⋅ 2 

(3.84) 

=
2𝑝

(𝑝 + 2)2
⋅ (4 + 7𝑝) = 𝐸[𝐷] 

(3.85) 

 

∎ 
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Lemma 3. The second moment of the given Markov chain is  

μ2 = 𝐸[𝐷2] − (𝐸[𝐷])2 which equals to 
2𝑝

(𝑝+2)2
(6 + 14𝑝).  

Proof: 

𝐸[𝐷𝑖
2 ∣ 𝑤𝑖 = (2,0,0)] = ∑ 𝑃𝑟{𝐷𝑖 = 𝑘 ∣ 𝑤𝑖 = (2,0,0)} 𝑘2

𝑁

𝑘=1

 

(3.86) 

= 12 (
2
1
) ⋅ 𝑝 ⋅ (1 − 𝑝) + 22 (

2
2
) ⋅ 𝑝2 = 2𝑝(1 − 𝑝) + 4𝑝2 = 2𝑝(2𝑝 + 1 − 𝑝)

= 2𝑝(1 + 𝑝) 

(3.87) 

E[𝐷𝑖
2|𝑤𝑖 = (1,1,0)] = ∑ 𝑃𝑟{𝐷𝑖 = 𝑘 | 𝑤𝑖 = (1,1,0)}𝑘2

𝑁

𝑘=1

 

(3.88) 

= 12 [(
1

1
) 𝑝 (

1

0
) (1 − 𝑝) + (

1

0
) (1 − 𝑝) (

1

1
) 𝑝] + 22 (

1

1
) p (

1

1
) p

= 2p(1 − 𝑝) + 4𝑝2 =  2𝑝(1 + 𝑝) 

(3.89) 

𝐸[𝐷𝑖
2|𝑤𝑖 = (0,2,0)] = ∑ 𝑃𝑟{𝐷𝑖 = 𝑘 | 𝑤𝑖 = (0,2,0)}𝑘2

𝑁

𝑘=1

 

(3.90) 

= 12 (
2

1
) 𝑝(1 − 𝑝) + 22 (

2

2
) 𝑝2 

(3.91) 

𝐸[𝐷𝑖
2|𝑤𝑖 = (1,0,1)] = ∑ 𝑃𝑟{𝐷𝑖 = 𝑘 | 𝑤𝑖 = (1,0,1)}𝑘2

𝑁

𝑘=1

 

(3.92) 

= 1 + 22(𝑝) = 1 + 4𝑝 (3.93) 

𝐸[𝐷𝑖
2|𝑤𝑖 = (0,1,1)] = ∑ 𝑃𝑟{𝐷𝑖 = 𝑘 | 𝑤𝑖 = (0,1,1)}𝑘2

𝑁

𝑘=1

 

(3.94) 

= 1 + 22(𝑝) = 1 + 4𝑝 (3.95) 
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𝐸[𝐷𝑖
2|𝑤𝑖 = (0,0,2)] = ∑ 𝑃𝑟{𝐷𝑖 = 𝑘 | 𝑤𝑖 = (0,0,2)}𝑘2

𝑁

𝑘=1

= 22. 1 = 4 

(3.96) 

𝐸[𝐷2] = π0(2𝑝(1 + 𝑝)) + 𝜋1(2𝑝(1 + 𝑝)) + 𝜋2(2𝑝(1 + 𝑝)) + π3(1 + 4𝑝)

+ π4(1 + 4𝑝) + π54 

(3.97) 

=
1

(𝑝 + 2)2
(2𝑝(1 + 𝑝) + 2(2𝑝(1 + 𝑝)) + 2𝑝(1 + 𝑝) + 2𝑝(1 + 4𝑝)2𝑝(1

+ 4𝑝) + 4𝑝2) 

(3.98) 

=
2𝑝

(𝑝 + 2)2
(6 + 14𝑝) 

(3.99) 

∎ 

Lemma 4. The third moment of the given Markov chain is μ3 = 𝐸[(𝐷 − 𝐸[𝐷])3] which 

is equal to 
2𝑝

(𝑝+2)2
(6 + 32𝑝).  

Proof: 

𝐸[𝐷𝑖
3 ∣ 𝑤𝑖 = (2,0,0)] = ∑ 𝑃𝑟{𝐷𝑖 = 𝑘 ∣ 𝑤𝑖 = (2,0,0)} 𝑘3

𝑁

𝑘=1

 

(3.100) 

= 13 (
2
1
) ⋅ 𝑝 ⋅ (1 − 𝑝) + 23 (

2
2
) ⋅ 𝑝2 = 2𝑝(1 − 𝑝) + 8𝑝2 = 2𝑝(1 + 3𝑝) (3.101) 

𝐸[𝐷𝑖
3|𝑤𝑖 = (1,1,0)] = ∑ 𝑃𝑟{𝐷𝑖 = 𝑘 | 𝑤𝑖 = (1,1,0)}𝑘3

𝑁

𝑘=1

 

(3.102) 

= 13 [(
1

1
) 𝑝 (

1

0
) (1 − 𝑝) + (

1

0
) (1 − 𝑝) (

1

1
) 𝑝] + 23 (

1

1
) 𝑝 (

1

1
) 𝑝

= 2𝑝(1 − 𝑝) + 8𝑝2 = 2𝑝(1 + 3𝑝) 

(3.103) 

𝐸[𝐷𝑖
3|𝑤𝑖 = (0,2,0)] = ∑ 𝑃𝑟{𝐷𝑖 = 𝑘 | 𝑤𝑖 = (0,2,0)}𝑘3

𝑁

𝑘=1

 

(3.104) 
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= 13 (
2

1
) 𝑝(1 − 𝑝) + 23 (

2

2
) 𝑝2 = 2𝑝(1 + 3𝑝) 

(3.105) 

𝐸[𝐷𝑖
3|𝑤𝑖 = (1,0,1)] = ∑ 𝑃𝑟{𝐷𝑖 = 𝑘 | 𝑤𝑖 = (1,0,1)}𝑘3

𝑁

𝑘=1

 

(3.106) 

= 1 + 23(𝑝) = 1 + 8𝑝 (3.107) 

𝐸[𝐷𝑖
3|𝑤𝑖 = (0,1,1)] = ∑ 𝑃𝑟{𝐷𝑖 = 𝑘 | 𝑤𝑖 = (0,1,1)}𝑘3

𝑁

𝑘=1

 

(3.108) 

= 1 + 23(𝑝) = 1 + 8𝑝 (3.109) 

𝐸[𝐷𝑖
3|𝑤𝑖 = (0,0,2)] = ∑ 𝑃𝑟{𝐷𝑖 = 𝑘 | 𝑤𝑖 = (0,0,2)}𝑘3

𝑁

𝑘=1

= 23. 1 = 8 

(3.110) 

𝐸[𝐷3] = 𝜋0(2𝑝(1 + 3𝑝)) + 𝜋1(2𝑝(1 + 3𝑝)) + 𝜋2(2𝑝(1 + 3𝑝))

+ 𝜋3(1 + 8𝑝) + 𝜋4(1 + 8𝑝) + 𝜋58 

(3.111) 

𝐸[𝐷3] =
1

(𝑝 + 2)2
(2𝑝(1 + 𝑝) + 2(2𝑝(1 + 𝑝)) + 2𝑝(1 + 𝑝) + 2𝑝(1

+ 4𝑝)2𝑝(1 + 4𝑝) + 4𝑝2)  =
2𝑝

(𝑝 + 2)2
(6 + 32𝑝) 

(3.112) 

∎ 

Lemma 1 supports Lemma 2, Lemma 3 and Lemma 4. Moments obtained from Lemma 

2, Lemma 3 and Lemma 4 will be used to classify demand distribution of Markov chain 

given in Figure 2 using Ord (1967) and Adan et al. (1995) studies.  
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4. SIMULATION TESTS 

In this part of the study, simulations are made using the obtained moments and parameter 

estimates above. First of all, the parameter space required for the simulations is created. 

First, Ord (1967) classification is conducted for this parameter space, and 

Hypergeometric and Binomial distribution are found. The elements of the parameter 

space giving the Binomial and Hypergeometric distribution are separated and named as 

Binomial parameter space and Hypergeometric parameter space in the next step of the 

study. The elements of these parameter spaces are also classified using the distribution 

family given by Adan et al. (1995). The Binomial distribution is obtained for all the 

elements of the parameter spaces. The distributions selected from the distribution classes 

by Adan et al. (1995) and Ord (1967) are then tested using the chi-square test and the 

likelihood-ratio test. R programming code is given in Appendix A. In addition, the C++ 

code that gives the numerically optimum order quantity is given in Appendix B. 

4.1. Single Stage Failures with Single Quality Level 

The characterization of the demand distribution is made using the discrete distribution 

family created by Ord (1967) for the number of original and printed parts in the system. 

Ord (1967) characterizes the discrete distributions using the first three central moments. 

In the mathematical models in Section 3, we characterize spare parts demand for a given 

set of system parameters using their moments. The parameter space is created for the 

characterization of the demand distribution. Parameter space includes the number of 

machines in the system (𝑁), the number of original parts in the system (𝑚0), the failure 

probability of the original part (𝑝) and the failure probability of printed part 𝑝. The 

number of machines in the system (𝑁) is taken as 5ℓ, and the number of original parts in 

the system is taken as 𝑚0 ∈ {1ℓ, 2ℓ, 3ℓ, 4ℓ},  ℓ ∈  {1,2,10,20}, 𝑁 ∈ {5,10,50,100}. 

Failure probabilities are determined as 𝑝 for the original part and 𝑝 for the printed part, 

and the parameter space satisfies the assumption of 𝑝 ≤  𝑝. In addition, the parameter 

space has been rearranged, so that number of original and printed spare parts in the system 

does not exceed the number of machines in the system. That is, the parameter space 

satisfies the 𝑚0 + 𝑚1 ≤ 𝑁 condition. Ord (1967) uses the Discrete Distribution Family 

in Figure 1 in his study, and the GB line gives the Binomial distribution. While 
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performing the calculations and distribution characterization, an interval (ϵ) is used 

around the GB line, and the studies are repeated for different interval lengths. Table 1 

shows the components of parameter space and the values taken for the parameter spaces.  

Table 1. Parameter Set of Simulation Tests for Single Stage Failures 

∈ N 𝑚0, 𝑚1 𝑝, 𝑝 

0.001 5 𝑚0, 𝑚1 = (1,2,3,4) 𝑝, 𝑝 = (0.01: 0.99) 

0.01 10 𝑚0, 𝑚1 = (2,4,6,8)  

0.1 50 𝑚0, 𝑚1 = (10,20,30,40)  

 100 𝑚0, 𝑚1 = (20,40,60,80)  

 

Figure 3. S-I Plot for Single Stage Failures 

 

Using the moments in Section 3.1, S and I are calculated (𝑆 =
μ3

μ2
𝑎𝑛𝑑𝐼 =

μ2

μ1
) and Ord 

(1967) classification is conducted. Figure 3 shows the S-I graph when 𝑁 = 5 and ϵ =

0.001. According to Ord's classification, the elements of the parameter space follow the 

Hypergeometric distribution and the Binomial distribution. Table 2 shows the dimensions 
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of the parameter spaces and the dimensions of the incoming demand distributions. For all 

𝑁 ∈ {5,10,50,100} values, the dimensions of the parameter spaces and the number of 

elements of the incoming distributions are the same. This situation is already expected 

because the parameter space is systematically divided into equal parts, and as N increases, 

the number of parts in the system 𝑚0, 𝑚1 also increases equally. 

Table 2. Selected Distributions from Hypergeometric Distribution Family for Single Stage Failures 

ϵ Parameter Space Hypergeometric Distribution Binomial Distribution 

0.001 19800 18250 1550 

0.01 19800 15292 4508 

0.1 19800 7893 11907 

 

Ord's (1967) discrete distribution family gives hypergeometric and binomial distribution 

for the prepared parameter space. After that, parameter space is also classified according 

to Adan et al.'s (1995) study, and results indicate only the Binomial Distribution. The chi-

square test is performed after parameter estimations are made for Hypergeometric and 

Binomial distributions. The Chi-square test is used to compare observed demand in the 

simulation with the expected demand taken from the parameter estimation. Since the 

studied distributions are discrete, the Kolmogorov Smirnov test is not applied in the study. 

In order to compare Ord (1967) and Adan et al. (1995) distribution selection models, the 

likelihood ratio test is applied. Likelihood ratio test statistics approximately follows a chi-

square distribution. The likelihood ratio test requires both estimations under the null and 

alternative hypotheses, which is the main reason use of the likelihood ratio test in the 

study. 
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Table 3. Chi-Square and Likelihood Ratio Test Results for Single Stage Failures 

 
Chi-Square Test Likelihood Ratio 

 
Binomial Hypergeometric 

  
𝜖 = 0.001 Ord Adan Ord Adan Binomial Hypergeometric 

N=5 0.69 0.87 0.27 0.53 0.95 0.41 

N=10 0.40 0.63 0.18 0.31 0.94 0.45 

N=50 0.04 0.09 0.01 0.02 0.96 0.51 

N=100 0.02 0.04 0.003 0.003 0.98 0.56 

 
Binomial Hypergeometric 

  
𝜖 = 0.01 Ord Adan Ord Adan Binomial Hypergeometric 

N=5 0.48 0.87 0.19 0.48 0.72 0.33 

N=10 0.25 0.60 0.13 0.26 0.70 0.38 

N=50 0.02 0.06 0.01 0.01 0.73 0.44 

N=100 0.004 0.009 0.01 0.002 0.58 0.49 

 
Binomial Hypergeometric 

  
𝜖 = 0.1 Ord Adan Ord Adan Binomial Hypergeometric 

N=5 0.22 0.79 0.04 0.26 0.43 0.17 

N=10 0.12 0.53 0.04 0.08 0.35 0.26 

N=50 0.01 0.04 0.004 0.004 0.48 0.32 

N=100 0.002 0.01 0.0006 0.0001 0.58 0.35 

 

Looking at the chi-square test results, it is observed that the demand model given by Adan 

et al. (1995) gives better results than the demand distribution given by Ord (1967). While 

ϵ = 0.001, for both Binomial distribution space and Hypergeometric distribution space, 

the acceptance rates by Ord (1967) and Adan et al. (1995) decrease as N increases. As 

interval length (ϵ) increases, the relevant elements of the parameter space move from the 

hypergeometric distribution to the binomial distribution. The area between the GP line in 

Figure 1 increases as interval length increases. To explain implicitly, when ϵ = 0.001, an 

element of parameter space might have Hypergeometric distribution. When we increase 

the interval ϵ = 0.1, the same element might be included in the Binomial distribution. 

This shift between assigned distribution affects the test statistics. In Figure 6, it is possible 

to see the change of binomial and hypergeometric distributions when ϵ = 0.1. Similar 

results come for 𝑁 = 10,𝑁 = 50,𝑁 = 100, so the graphs are not included in the study. 
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We observe that the data in the Hypergeometric distribution has a high acceptance rate 

by Ord (1967) at points close to the Binomial line (GP in Figure 1) and the chi-square 

statistic at intermediate points, which is away from the GP line rejects the Ord 

classification. Figure 4 shows Ord's chi-square test results for 𝑁 = 5, (𝑚0,𝑚1) =

(1,4),   ϵ = 0.001. The red dots represent the parameters that the chi-square test statistic 

rejects, and the blue dots stand for the parameters that the chi-square statistic cannot reject 

the null hypothesis.  

Figure 4. Ord Chi-Square Results for 𝜖 = 0.001 and Single Stage Failures 
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Figure 5. Adan Chi-Square Results for 𝜖 = 0.001 and Single Stage Failures 

 

Figure 6. Ord Chi-Square Results for 𝜖 = 0.1 and Single Stage Failures 
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While the chi-square test statistics obtained for Ord (1967) distribution characterization 

are lower than the chi-square test statistics obtained for Adan et al. (1995) classification, 

the likelihood ratio test results show that the characterization of hypergeometric 

distribution family given by Ord gives better results than Adan et al. (1995). This is due 

to the fact that the distribution characterization is given by Ord (1967) rejects the chi-

square test at some points. Still, the likelihood ratio test gives better results than the 

classification given by Adan et al. (1995). An example of this situation is given in Figure 

7. It shows the difference between the actual demand distribution and the convergence of 

the demand distribution given by the Ord (1967) family of discrete distributions and the 

convergence of the demand distribution given by Adan et al. (1995) classification. The 

red line shows the Ord distribution, while the blue line shows the Adan distribution. When 

we plot the histogram of actual demand and add Ord (1967) and Adan et al. (1995) 

forecast demand to Figure 7, Ord's forecast better reflects the change in demand than 

Adan's demand forecast. 

Figure 7. Histogram of Demand for Single Stage Failures 
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4.2. Multiple Quality Levels of Printed Parts 

Advances in additive manufacturing technologies allow printing parts at different quality 

levels depending on the needs. In this case, while the total number of parts working in the 

system is 𝑁, under the assumption that there are parts printed at 𝑣 different levels in the 

system, the total demand for spare parts will consist of 𝑣 + 1 units of Binomial 

convolutions. So, a new parameter space is created for 𝑣 = 2, and analyzes are made for 

this parameter space. Table 4 shows the parameter space for multiple quality levels. 𝑚0 

is the original part. 𝑚1̅̅ ̅̅  and 𝑚2̅̅ ̅̅  are printed parts with quality level 1 and 2, respectively. 

𝑝 is the failure probability of the original part, 𝑝1̃ is the failure probability of the printed 

part at quality level 1, 𝑝2̃ is the failure probability of the printed part at quality level 2, 

and 𝑝 ≤ 𝑝1̃ ≤ 𝑝2̃. 𝑚0 + 𝑚1̅̅ ̅̅ + 𝑚2̅̅ ̅̅ = 𝑁. 

Table 4. Parameter Space for Multiple Quality Levels 

𝛜 N 𝒎𝟎,𝒎𝟏̅̅ ̅̅ ,𝒎𝟐̅̅ ̅̅  𝒑, 𝒑𝟏,̃ 𝒑𝟐̃ 

0.001 5 𝑚0,𝑚1̅̅ ̅̅ , 𝑚2̅̅ ̅̅ = (1,2,3,4) 𝑝, 𝑝1,̃ 𝑝2̃ = (0.01: 0.99) 

0.01 10 𝑚0,𝑚1̅̅ ̅̅ , 𝑚2̅̅ ̅̅ = (2,4,6,8)  

0.1 50 𝑚0, 𝑚1̅̅ ̅̅ , 𝑚2̅̅ ̅̅ = (10,20,30,40)  

 100 𝑚0, 𝑚1̅̅ ̅̅ , 𝑚2̅̅ ̅̅ = (20,40,60,80)  

 

As handled in Section 4.1, Ord (1967) and Adan et al. (1995) studies are made for 

parameter space in this part of the study. Then, the chi-square test and likelihood ratio 

test are applied. Table 5 shows the size of the parameter space and the dimensions of the 

demand distribution space. The dimensions of the parameter space and distribution spaces 

are the same for all 𝑁 ∈ {5,10,50,100}. For the parameter space, Ord (1967) 

characterization gives Hypergeometric and Binomial distributions. Later, Adan et al. 

(1995) classification is applied, and Binomial distribution is obtained for the entire 

parameter space. 
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Table 5. Selected Distributions from Hypergeometric Distribution Family for Multiple Quality Levels 

ϵ Parameter Space Hypergeometric Distribution Binomial Distribution 

0.001 1666500 1569928 96572 

0.01 1666500 1361204 305296 

0.1 1666500 748641 917859 

 

Figure 8 shows the S-I graph obtained while performing the Ord (1967) classification for 

multiple quality levels, when 𝑁 = 5, ϵ = 0.001. The structure of Figure 8 is similar to the 

S-I graph in Section 4.1. 

Figure 8. S-I Plot for Multiple Quality Levels 

 

Similar to the results in Section 4.1, the chi-square test statistics for the classification by 

Adan et al. (1995) is better than the chi-square tests obtained from Ord (1967) 

characterization. Table 6 shows the results of the chi-square and likelihood-ratio tests for 

multiple quality levels of printed parts. As the number of machines (N) in the system 

increases, the chi-square test statistics for both Ord (1967) and Adan et al. (1995) 

classification decrease. However, the likelihood-ratio test results increase. Figure 9 shows 

the chi-square test results for Adan et al. (1995) classification.  
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Table 6. Chi-Square and Likelihood Ratio Test Results for Multiple Quality Levels 

 
Chi-Square Test Likelihood Ratio 

 
Binomial Hypergeometric 

  
𝜖 = 0.001 Ord Adan Ord Adan Binomial Hypergeometric 

N=5 0.67 0.88 0.21 0.44 0.91 0.35 

N=10 0.39 0.65 0.13 0.26 0.91 0.40 

N=50 0.05 0.10 0.01 0.01 0.94 0.46 

N=100 0.02 0.03 0.0009 0.0012 0.97 0.53 

 
Binomial Hypergeometric 

  
𝜖 = 0.01 Ord Adan Ord Adan Binomial Hypergeometric 

N=5 0.40 0.87 0.14 0.37 0.61 0.29 

N=10 0.21 0.62 0.09 0.20 0.60 0.35 

N=50 0.02 0.07 0.004 0.01 0.70 0.40 

N=100 0.01 0.02 0.0005 0.0006 0.79 0.47 

 
Binomial Hypergeometric 

  
𝜖 = 0.1 Ord Adan Ord Adan Binomial Hypergeometric 

N=5 0.16 0.74 0.03 0.15 0.26 0.19 

N=10 0.09 0.49 0.03 0.05 0.29 0.28 

N=50 0.01 0.03 0.0025 0.0018 0.47 0.31 

N=100 0.003 0.01 0.0002 0.0002 0.60 0.35 

 

Figure 9. Adan Chi-Square Results for 𝜖 = 0.001 and Multiple Quality Levels 
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4.3. Multistage Failures and Multiple Quality Levels of Printed Parts 

The aging conditions of the parts working in the system are considered, and it is assumed 

that the failures occur gradually. In this part of the study, both the original and printed 

parts have the ageing level(𝑠). For original and printed parts, aging will take place in 3 

levels, (𝑠 = 3). The first level is the stage that the part is currently replaced. The second 

level is the intermediate level. The third level is the last stage, where the spare part fails. 

The number of original parts is 𝑚0, 𝑚1,𝑚2 and the number of printed parts is given as 

𝑚1̅̅ ̅̅ , 𝑚2̅̅ ̅̅ , 𝑚3̅̅ ̅̅  . Since failures follow the Binomial distribution, the total demand for spare 

parts will come from 2s Binomial convolutions. Table 7 shows parameter sets, and Table 

8 shows the size of the parameter space. Parameter space constitutes of original parts 

(m1, m2, m3) and printed parts (m1̅̅ ̅̅ , m2̅̅ ̅̅ , m3̅̅ ̅̅ ). Failure probability of original part at level 

1 which is the new condition of the part is p1 = p. Failure probability of original part at 

level 2 is p2 = p/2. Failure probability of original part at level 3 is p3 = p/3. Also, 

failure probability of printed part at level 1 which is the new condition of the part is p1̃ =

p̃. Failure probability of printed part at level 2 which is the new condition of the part is 

p2̃ = p̃/2. Failure probability of printed part at level 3 which is the new condition of the 

part is p3̃ = p̃/3. In this study, the first three moments are calculated according to 

Proposition 4 under the assumption of the conditional distribution.  

Table 7. Parameter Space for Multistage Failures 

𝛜 N 𝒎𝟎, 𝒎𝟏,𝒎𝟐,𝒎𝟏̅̅ ̅̅ ,𝒎𝟐̅̅ ̅̅ ,𝒎𝟑̅̅ ̅̅  𝒑, 𝒑̃ 

0.001 5 𝑚0,1,2,𝑚1,2,3̅̅ ̅̅ ̅̅ ̅ = (1,2,3,4) 𝑝, 𝑝 = (0.01: 0.99) 

0.01 10 𝑚0,1,2,𝑚1,2,3̅̅ ̅̅ ̅̅ ̅ = (2,4,6,8)  

0.1 50 𝑚0,1,2, 𝑚1,2,3̅̅ ̅̅ ̅̅ ̅ = (10,20,30,40)  

 100 𝑚0,1,2, 𝑚1,2,3̅̅ ̅̅ ̅̅ ̅ = (20,40,60,80)  
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Table 8. Magnitudes of Parameter and Distribution Spaces for Multistage Failures 

ϵ Parameter Space Hypergeometric Distribution Binomial Distribution 

0.001 1217700 1149627 68073 

0.01 1217700 921409 296291 

0.1 1217700 435164 782536 

 

Figure 10 shows the S-I graph obtained while performing the Ord (1967) distribution 

characterization, when 𝑁 = 5, 𝜖 = 0.001. The structure of Figure 9 is similar to the S-I graph 

that emerged in Section 4.1. 

Figure 10. S-I Plot for Multistage Failures 

 

In this part of the study, the chi-square test results are close to Ord (1967) and Adan et al. 

(1995). Besides, the acceptance rates are low compared to Section 4.1 and Section 4.2. 

However, the likelihood-ratio test results show that the Ord (1967) discrete distribution 

family performs better. Table 9 shows the test statistics for multistage failures and 

multiple printed parts. For all the number of parts in the system N ∈ {5,10,50,100}, the chi-

square test acceptance rates and likelihood-ratio test results are close to each other. On 

the other hand, while the chi-square test acceptance rate for 𝑁 = 100 and ϵ =
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0.001 decreases, the likelihood-ratio test results show a significant increase for the Ord 

discrete distribution family. 

Table 9.  Chi-Square Test and Likelihood Ratio Test Results for Multistage Failures 

  Chi-Square Test Likelihood Ratio 

 
Binomial Hypergeometric 

  
𝜖=0.001 Ord Adan Ord Adan Binomial Hypergeometric 

N=5 0.05 0.08 0.18 0.40 0.60 0.30 

N=10 0.05 0.07 0.13 0.30 0.63 0.33 

N=50 0.04 0.05 0.01 0.03 0.62 0.46 

N=100 0.11 0.19 0.00 0.00 0.97 0.54 

 
Binomial Hypergeometric 

  
𝜖 =0.01 Ord Adan Ord Adan Binomial Hypergeometric 

N=5 0.05 0.12 0.10 0.29 0.54 0.23 

N=10 0.05 0.11 0.07 0.21 0.58 0.25 

N=50 0.03 0.06 0.00 0.01 0.59 0.38 

N=100 0.01 0.03 0.00 0.00 0.60 0.46 

 
Binomial Hypergeometric 

  
𝜖 =0.1 Ord Adan Ord Adan Binomial Hypergeometric 

N=5 0.06 0.27 0.02 0.06 0.43 0.15 

N=10 0.06 0.24 0.01 0.01 0.48 0.18 

N=50 0.02 0.06 0.00 0.00 0.58 0.22 

N=100 0.01 0.02 0.00 0.00 0.64 0.26 
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5. CONCLUSION 

In the view of an inventory planner, the failure of a machine creates a demand for a spare 

part. Replacement of spare parts is made with the inventory supplied from OEM. 3DP 

becomes a supporter of inventory control management if OEM does not deliver spare 

parts immediately. 3DP enables companies to fulfill their needs by on-demand 

production. Knowing demand distribution is vital for demand forecasts and inventory 

planning, and joint use of original and printed parts in a system changes the demand 

distribution. For this reason, this study aims to figure out the demand distribution in the 

existence of three-dimensional printers and establishes parameter estimation using the 

moment approach. In order to find the demand distribution, the hypergeometric 

distribution family characterized by Ord (1967) and the discrete distribution fitting 

method of Adan et al. (1995) are used. Both studies give the classification based on the 

central moments.  

Under the three scenarios considered during the study, the demand distributions obtained 

are Hypergeometric and Binomial distributions. The first of these scenarios is a system 

with original and written parts operating at a single quality level. The created parameter 

space was run for different interval lengths and the percentages of hypergeometric 

distribution for epsilon=0.001, epsilon=0.01 and epsilon=0.1 are 92.2%, 77.2% and 

40.6%, respectively.  Laser polishing technology increases the durability of a product, 

and in the second case this technology is considered. There is only one quality level for 

the original part. There are two different quality levels for the printed part. In the last 

scenario, the aging of the original and written parts over time is considered. The chi-

square test and likelihood ratio tests show that the demand classification is given by Ord 

(1967) and Adan et al. (1995) becomes insufficient as the system complexity increases. 

In the multistage failures part of this study, simulations are made using the moments of 

the conditional distribution. For future research, simulations of multistage failures can be 

conducted using the moments of the Markov chain. Also, the Markovian diagram in this 

study assumes that failures of the original part occur at two-level and replacement of the 

original part is done with the printed part. Replacement of printed part is made with the 

original part. However, the Markovian diagram can be revised with the change of 
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replacement policy. In a real-life scenario, the replacements of the original and printed 

part can be done with both the original and the printed parts.  
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APPENDIX A 

Appendix A.1. R Code for Distribution Selection 

source("D:/MH/1001 Project/AllFunctions.R")  ##### CREATE VALUE SPACE ##### 

N=5       ## Number of capital product in the system 

n=c(1,2,3,4) ## number of original product in the system 

pr=(1:99)/100  ##failure probability of original part 

ps=(1:99)/100  ##failure probability of printed part 

tab = expand.grid(N,n,pr,ps) ##build value space 

cond=((tab$Var1<tab$Var2)+(tab$Var3>tab$Var4)) ##eliminate undesired situations.  

value.space=tab[cond==0,] ; names(value.space)=c("N","n","pr","ps") 

value.space=cbind(value.space,0,0,0) 

names(value.space)[5:7]=c("binom.mu1","binom.mu2","binom.mu3") 

S=NULL ; I=NULL 

for (i in 1:dim(value.space)[1]) 

{ N=value.space[i,1] ;   n=value.space[i,2] ; pr=value.space[i,3] ; ps=value.space[i,4] 

  theo.first.center.moment=n*pr+(N-n)*ps ; value.space[i,5]=theo.first.center.moment 

  theo.second.center.moment=n*pr*(1-pr) + (N-n)*ps*(1-ps) 

  value.space[i,6]=theo.second.center.moment 

  theo.third.center.moment=n*pr*(1-pr)*(1-2*pr) + (N-n)*ps*(1-ps)*(1-2*ps) 

  value.space[i,7]=theo.third.center.moment 

  S[i]=theo.third.center.moment/theo.second.center.moment 

  I[i]=theo.second.center.moment/theo.first.center.moment } 

plot(I,S,ylim=c(-1,1),xlim=c(-0,1),xlab="I",ylab="S",main=sprintf("S-I Plot for N: 

%s",N)) 

abline(a=-1,b=2) ; abline(v=0,lty=2,col="red") ;abline(h=0,lty=2,col="red") 

segments(0,1,1,1,col="blue",lty=3) ; segments(1,0,1,1,col="blue",lty=3) 

value.space=cbind(value.space,S,I) ; epsilon=0.001; dist.vect=0 

for(i in 1:dim(value.space)[1]) 

{  S=value.space[i,8] ;  I=value.space[i,9] ;cond1=((abs(S-1) + abs(I-1))<epsilon) 

  cond2 = (abs(S-2*I+1)<epsilon) & (S>1) & (I>1) 
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  cond3=(-1<S & S<1) & ((S-2*I+1)>epsilon) & (I<1) 

  cond4=(abs(S-2*I+1)<epsilon) & (S<1) & (I<1) 

  if(cond1){dist.vect[i]="Pois"} ; if(!cond1 & cond2){dist.vect[i]="NBinom"} 

  if(cond3){dist.vect[i]="Hypergeo"} ;  if(cond4){dist.vect[i]="Binom"} 

  if((cond1+cond2+cond3+cond4)==0)   { print("Error")     break}} 

value.space=cbind(value.space,dist.vect) 

hyper.space=value.space[(value.space$dist.vect=="Hypergeo"),] 

hyper.space=cbind(hyper.space,0,0,0,0,0) 

names(hyper.space)[c(11:15)]=c("N.hyper","p1","n.root1","p2","n.root2") 

for(i in 1:dim(hyper.space)[1]) 

{  N=hyper.space[i,1] ; n=hyper.space[i,2];pr=hyper.space[i,3];ps=hyper.space[i,4] 

  binom.mu1=hyper.space[i,5]; binom.mu2=hyper.space[i,6] 

 binom.mu3=hyper.space[i,7] ; rho1=binom.mu2/binom.mu1 

  rho2=binom.mu3/binom.mu2 

  NN=(2*rho2-2*rho1+2*binom.mu1)/(rho2-2*rho1+1); hyper.space[i,11]=NN 

  alpha=1; beta=rho1*(NN-1)-NN-binom.mu1 ; gamma=NN*binom.mu1 

  delta=beta*beta-4*alpha*gamma 

  if(delta>=0) 

  {   m.root1=(-beta-sqrt(delta))/(2*alpha) ;m.root2=(-beta+sqrt(delta))/(2*alpha) 

    p1=binom.mu1/m.root1 ; p2=binom.mu1/m.root2 ;hyper.space[i,12]=p1 

    hyper.space[i,13]=m.root1;     hyper.space[i,14]=p2;    hyper.space[i,15]=m.root2 

  }} 

chivect.hyper.ord=0; chivect.hyper.adan=0; pval.chi.hyper.ord=0; pval.chi.hyper.adan=0 

LR.val.hyper=0; pval.LR.hyper=0 ; Adan.class.hyper=0; test.stat=0; 

size=10000; replicsize=100 

for (i in 1:dim(hyper.space)[1]) 

{  if(hyper.space$n.root1[i]==0) 

  {    chivect.hyper.ord[i]=0;  chivect.hyper.adan[i]=0;   pval.chi.hyper.ord[i]=0 

    pval.chi.hyper.adan[i]=0;  LR.val.hyper[i]=0;   pval.LR.hyper[i]=0 

    Adan.class.hyper[i]=0 } 

  if(hyper.space$n.root1[i]>0) 
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  { N=hyper.space[i,1];  n=hyper.space[i,2]; pr=hyper.space[i,3];    ps=hyper.space[i,4] 

    N.hyper=round(hyper.space[i,11]);  n.root1=round(hyper.space[i,13]) 

    p1=hyper.space[i,12];   n.root2=round(hyper.space[i,15]) 

    p2=hyper.space[i,14];  binom.mu1=hyper.space[i,5];    binom.mu2=hyper.space[i,6] 

    a.root1=round(N.hyper*p1); a.root2=round(N.hyper*p2);  avect=c(a.root1,a.root2) 

    pvect=c(p1,p2);  index=which(avect==max(avect)) 

    if(a.root1==a.root2)    {      index=1    } 

    a=avect[index];  b=round(N.hyper-a); n.hyper=round(binom.mu1/pvect[index]) 

    if(n.hyper>b) 

    {      if(index==1) 

      {        index2=index+1;  a=avect[index2];   b=round(N.hyper-a) 

        n.hyper=round(binom.mu1/pvect[index2]) } 

      if(index==2) {   index2=index-1;   a=avect[index2];   b=round(N.hyper-a) 

        n.hyper=round(binom.mu1/pvect[index2])} } 

    Dr=rbinom(size,n,pr) #original part demand  

    Dp=rbinom(size,N-n,ps) #printed part demand;    D=Dr+Dp #total demand 

    freqvect=as.numeric(table(D)/size);    freqvect.head=as.numeric(row.names(table(D))) 

    if(length(freqvect)<=N) 

    {      freqvect.head=c(freqvect.head,rep(0,N+1-length(freqvect.head))) 

      for(k in 0:N) 

      {        if(freqvect.head[k+1]!=k) 

        {    freqvect=append(freqvect,0,after=k) 

          freqvect.head=append(freqvect.head,k,after=k)        } 

      }} 

    xval = c(0:N);    probvect=dhyper(c(0:N),a,b,n.hyper);    expected= size*probvect 

    res.HYP=consolidate.chisq.v2(expected, freqvect,xval,FALSE) 

    expected.ord=res.HYP$expected.consol 

    freqvect.ord=res.HYP$freq.consol*size 

    chi2.hyper.ord=sum((freqvect.ord-expected.ord)^2/(expected.ord)) 

    chivect.hyper.ord[i]=chi2.hyper.ord 

    df.hyper=3;  pval.hyper.ord=1-pchisq(chi2.hyper.ord,df.hyper) 
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    pval.chi.hyper.ord[i]=pval.hyper.ord 

    adanvect=adan.dist.v2(c(0:N),binom.mu1,binom.mu2) 

    expected.adan=adanvect$prob*size 

    res.adan=consolidate.chisq.v2(expected.adan,freqvect,xval,FALSE) 

    expected.adan=res.adan$expected.consol;    freqvect.adan=res.adan$freq.consol*size 

    chi2.hyper.adan=sum((freqvect.adan-expected.adan)^2/(expected.adan)) 

    chivect.hyper.adan[i]=chi2.hyper.adan;    df.binommix=3 

    pval.hyper.adan=1-pchisq(chi2.hyper.adan,df.binommix) 

    pval.chi.hyper.adan[i]=pval.hyper.adan;    probvect.Ord=dhyper(D,a,b,n.hyper) 

    Adan.vect=adan.dist.v2(D,binom.mu1,binom.mu2) 

    Adan.class.hyper[i]=Adan.vect$dist;     probvect.Adan=Adan.vect$prob 

    k.Adan=Adan.vect$k;    probvect.Ord[probvect.Ord==0]=0.0001 

    ##probvect.Ord[D>n.hyper]=0.0001;    probvect.Adan[D>(k.Adan+1)]=0.0001 

    h0=sum(log(probvect.Ord));    h1=sum(log(probvect.Adan)) 

    LR.val.hyper[i]=-2*(h0-h1);   pval.LR.hyper[i]=1-pchisq(LR.val.hyper[i],df.hyper) 

  }} 

hyper.space=cbind(hyper.space,pval.chi.hyper.ord,chivect.hyper.ord,Adan.class.hyper,p

val.chi.hyper.adan,chivect.hyper.adan,LR.val.hyper,pval.LR.hyper) 

hyper.accept.ord=hyper.space[hyper.space$pval.chi.hyper.ord>=0.05,] 

hyper.accept.adan=hyper.space[hyper.space$pval.chi.hyper.adan>=0.05,] 

hyper.mu1.root1=NULL; hyper.mu2.root1=NULL; hyper.mu3.root1=NULL 

hyper.mu1.root2=NULL; hyper.mu2.root2=NULL;hyper.mu3.root2=NULL 

for(i in 1:dim(hyper.space)[1]) 

{   NN=hyper.space[i,11];   m.root1=hyper.space[i,13];  p1=hyper.space[i,12] 

  m.root2=hyper.space[i,15];  p2=hyper.space[i,14] 

  hyper.mu1.root1[i]=m.root1*p1 

  hyper.mu2.root1[i]=hyper.mu1.root1[i]*(((NN-m.root1)*(1-p1))/(NN-1)) 

  hyper.mu3.root1[i]=hyper.mu2.root1[i]*(((NN-2*m.root1)*(1-2*p1))/(NN-2)) 

  hyper.mu1.root2[i]=m.root2*p2 

  hyper.mu2.root2[i]=hyper.mu1.root2[i]*(((NN-m.root2)*(1-p2))/(NN-1)) 

  hyper.mu3.root2[i]=hyper.mu2.root2[i]*(((NN-2*m.root2)*(1-2*p2))/(NN-2)) } 
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hyper.space=cbind(hyper.space,hyper.mu1.root1,hyper.mu2.root1,hyper.mu3.root1,hyp

er.mu1.root2,hyper.mu2.root2,hyper.mu3.root2) 

binom.space=value.space[(value.space$dist.vect=="Binom"),] 

binom.space=cbind(binom.space,0,0) 

names(binom.space)[c(11:12)]=c("N.binom","p.binom") 

for(i in 1:dim(binom.space)[1]) 

{ N=binom.space[i,1];  n=binom.space[i,2]  pr=binom.space[i,3];  ps=binom.space[i,4] 

  binom.mu1=binom.space[i,5] ;  binom.mu2=binom.space[i,6]  

  binom.mu3=binom.space[i,7]   

  p.binom=1-(binom.mu2/binom.mu1); binom.space[i,12]=p.binom 

  N.binom=binom.mu1/p.binom;  binom.space[i,11]=N.binom } 

chivect.binom.ord=0; chivect.binom.adan=0; pval.chi.binom.ord=0 

pval.chi.binom.adan=0; pval.LR.binom=0; LR.val.binom=0 

Adan.class.binom=0; test.stat=0;size=10000; replicsize=100 

for (i in 1:dim(binom.space)[1]) 

{   N=binom.space[i,1];  n=binom.space[i,2];   pr=binom.space[i,3]  ps=binom.space[i,4] 

  binom.mu1=binom.space[i,5];  binom.mu2=binom.space[i,6] 

  N.binom=round(binom.space[i,11]);  p.binom=binom.space[i,12] 

  Dr=rbinom(size,n,pr) #original part demand  

  Dp=rbinom(size,N-n,ps) #printed part demand;  D=Dr+Dp #total demand 

  freqvect=as.numeric(table(D)/size);  freqvect.head=as.numeric(row.names(table(D))) 

  if(length(freqvect)<=N) 

  {     freqvect.head=c(freqvect.head,rep(0,N+1-length(freqvect.head))) 

    for(k in 0:N) 

    {  if(freqvect.head[k+1]!=k) 

      {  freqvect=append(freqvect,0,after=k) 

        freqvect.head=append(freqvect.head,k,after=k) 

      }    }   } 

  xval = c(0:N);  probvect=dbinom(c(0:N),N.binom,p.binom); expected= size*probvect 

  res.HYP=consolidate.chisq.v2(expected, freqvect,xval,FALSE) 

  expected.ord=res.HYP$expected.consol; freqvect.ord=res.HYP$freq.consol*size 
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  chi2.binom.ord=sum((freqvect.ord-expected.ord)^2/(expected.ord)) 

  chivect.binom.ord[i]=chi2.binom.ord;   df.binom=2 

  pval.binom.ord=1-pchisq(chi2.binom.ord,df.binom) 

  pval.chi.binom.ord[i]=pval.binom.ord 

  adanvect=adan.dist.v2(c(0:N),binom.mu1,binom.mu2) 

expected.adan=adanvect$prob*size 

  res.adan=consolidate.chisq.v2(expected.adan,freqvect,xval,FALSE) 

  expected.adan=res.adan$expected.consol; freqvect.adan=res.adan$freq.consol*size 

  chi2.binom.adan=sum((freqvect.adan-expected.adan)^2/(expected.adan)) 

  chivect.binom.adan[i]=chi2.binom.adan; df.binommix=3 

  pval.binom.adan=1-pchisq(chi2.binom.adan,df.binommix) 

  pval.chi.binom.adan[i]=pval.binom.adan;   probvect.Ord=dbinom(D,N.binom,p.binom) 

  Adan.vect=adan.dist.v2(D,binom.mu1,binom.mu2) 

  Adan.class.binom[i]=Adan.vect$dist 

  probvect.Adan=Adan.vect$prob; k.Adan=Adan.vect$k 

  probvect.Ord[probvect.Ord==0]=0.0001 ; probvect.Adan[D>(k.Adan+1)]=0.0001 

  h0=sum(log(probvect.Ord)); h1=sum(log(probvect.Adan)) 

  LR.val.binom[i]=-2*(h0-h1);   pval.LR.binom[i]=1-pchisq(LR.val.binom[i],df.binom) 

} 

binom.space=cbind(binom.space,pval.chi.binom.ord,chivect.binom.ord,Adan.class.bino

m,pval.chi.binom.adan,chivect.binom.adan,LR.val.binom,pval.LR.binom) 

binom.accept.ord=binom.space[binom.space$pval.chi.binom.ord>=0.05,] 

binom.accept.adan=binom.space[binom.space$pval.chi.binom.adan>=0.05,] 

binom.mu1.est=NULL; binom.mu2.est=NULL; binom.mu3.est=NULL 

for(i in 1:dim(binom.space)[1]) 

{  N.binom=binom.space[i,11];  p.binom=binom.space[i,12] 

  binom.mu1.est=N.binom*p.binom;  binom.mu2.est=N.binom*p.binom*(1-p.binom) 

  binom.mu3.est=N.binom*p.binom*(1-p.binom)*(1-2*p.binom) } 

binom.space=cbind(binom.space,binom.mu1.est,binom.mu2.est,binom.mu3.est)  
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Appendix A.2. C++ code for Numeric Experiments 

#include <math.h> 

#include <conio.h> 

#include <fstream> 

#include <algorithm> 

#include <functional> 

#include <queue> 

#include <vector> 

#include <time.h> 

#include <stdio.h> 

#include <iostream> 

#include <random> 

#include <string> 

#include <sstream> 

#include <ctime> 

#include <ios> 

#include <cmath> 

#include <ctime> 

//#include "\Users\Mustafa Hekimoglu\source\Mylib\sqlite3.h" 

#include<Windows.h> 

#include <thread> 

#include<process.h> 

#include"C:\Users\Zülal\Downloads\boncuk.h" 

 

using namespace std; 

int calculatestatespace(int i, int maxDmax, int lt, int v, int N, int yvect[], int mvect[]); 

int calculateindex(int yvect[], int mvect[], int lt, int v, int N, int maxDmax); 

double calculateprobvect(int v, int mvect[], double pvect[], double probvect[], int 

distsupport); 

double functionL(int y, int totqp, int mvect[], double probvect[], double holdrate, double 

backlograte); 
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double singlepercost3Dprint(int v, int y, int mvect[], int qr, int qpvect[], double cr, double 

cpvect[], double hold, double backlog, int d); 

void convolution2araydist(double dist1[], double dist2[], double targetdist[], int 

maxsupport); 

void calculatemvectdouble(int y, int mvect[], int mvectdoublebar[]); 

long double binompdf2(int k, int n, double p); 

const int v = 3;   

const int LT = 1; 

const int N = 5; 

const int M = 10000000; //very large number; 

double holdrate = 0.25; 

double backlograte = 3; 

double substitutionrate = 0; 

double gamma = 0.5; 

long double qrcost; 

long double qpcost; 

long double hc; 

long double bc; 

const double discountfactor = 0.995; 

int setup = 1; 

const double phi = 0.999; //0.929; // 0.65; // 

const double eta = 0.01; //0.032; //0.9; // 

char dbname[30]; 

char filename1[30]; 

char filename2[30]; 

const char* errMSG; 

const char* tail; 

char* zErrMsg = 0; 

bool testflg = FALSE; 

int horizon = 5; 

struct states { 
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 int st; 

 int per; 

 long double optcost; 

 int optqr; 

 int optqpvect[v]; 

 int yvect[LT + 1]; 

 int mvect[v + 1]; 

 

 

 long double gammacost; 

 float sales; 

 float lostsales_exp; 

 float carryc_exp; 

 float eip_exp; 

 float wos_exp; 

 float salvagecost_exp; 

}; 

int letter2ind(string letters); 

void readparams(int ind, int& param1, double& param2, double& param3, double& 

param4, double& param5); 

//int main(int argc, char* argv[]) 

int main() 

{ 

 cout << "=======================================NEW 

RUN===========================================================

=========\n\n" << endl; 

  cout << indexx << " " << horizon << " " << backlograte << " " << 

substitutionrate << " " << holdrate << " " << gamma << endl; 

 int i = 0, j, jj; 

 char c; 

 int d; 

 int d1, d2, d3; 
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 long double prob0, prob1, prob2, prob3; 

 float mu = 0.8, sigma = 1, epsilon = 0.001; 

 int yvect[LT + 1]; 

 int yvectnew[LT + 1]; 

 int mvect[v + 1]; 

 int mvectdoublebar[v + 1]; 

 int mvectnew[v + 1]; 

 double ptildevect[v + 1]; 

 double xivect[v] = { 100,200,300 }; //{ 100,200,300 }; //{ 50, 250, 450 };   //100;  

//{ 100,200,300,400,500 }; 

 double cpvect[v] = { 100,200,300 }; 

 double cr = 100; 

 double cp0 = 40; 

 double alpha = 3, r = 0.01, s = -0.00001; 

 long double probvect[N + 1]; 

 long double probvect2[N + 1]; 

 long double targetprobvect[N + 1]; 

 long double costper; 

 long double gammacost; 

 long double opttotcost, totcost; 

 long double nextpercost; 

 long double nextpergammacost; 

 long double hold = cr * holdrate; 

 long double backlog = backlograte * cr; 

 long double substitutioncost = substitutionrate * cr; 

 int maxDmax = maxdemandnormal(mu, sigma, epsilon); 

 int maxyupperbound = (N + 1) * (LT + 1); //(N + 1) * (v + 1); 

 int statesize = pow((double)N + 1, v) * pow(maxyupperbound, (LT + 1));  

//pow((double)N + 1, v)*pow(N + 1, (LT + 1)); 

 int statesize2 = pow((double)N + 1, v) * pow(N + 1, (LT + 1) * (LT + 1)); 

 cout << "Total State Size Per Period is: " << statesize << endl; 
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 int qr; 

 int qpvect[v]; 

 double optcost; 

 int optqr; 

 int optqvect[v]; 

 int searchspace = pow((double)N + 1, v); 

 int orderuptoqr; 

 long double ps1, ps2, ps3; 

 long double pr; 

 int totprintedparts; 

 int totprintedpartsafterchange; 

 int totorgpartsafterchange; 

 int totprintedpartsnew; 

 int totaldemand; 

 time_t now = time(NULL); 

 char dt[26]; 

 states* statevect = new states[statesize]; 

 states* statevectnextper = new states[statesize]; 

 if (setup == 1) 

 { 

  ptildevect[0] = 0.5; 

  for (i = 1; i <= v; i++) 

  { 

   ptildevect[i] = ptildevect[0] + 1 / (3 + 0.01 * xivect[i - 1] - 

0.000001 * pow(xivect[i - 1], 2)); 

   cpvect[i - 1] = 10 * pow(xivect[i - 1], gamma); 

  } 

 } 

 std::ostringstream paramheader; 

 paramheader << "Parameters: Horizon: " << horizon << " HoldingRate:" << 

holdrate << " BacklogRate:" << backlograte << " SubstitutionRate: " << substitutionrate 
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<< " xivect=(" << xivect[0] << "," << xivect[1] << "," << xivect[2] << "," << xivect[3] 

<< ")"; 

 paramheader << " alpha=" << alpha << ", r=" << r << ", s=" << s << ", ptilde.vect 

= (" << ptildevect[0] << "," << ptildevect[1] << "," << ptildevect[2] << "," << 

ptildevect[3] << ")"; 

 paramheader << " gamma= " << gamma << " cpr.vect = (" << cr << "," << 

cpvect[0] << "," << cpvect[1] << "," << cpvect[2] << ")"; 

 std::string parameterheader = paramheader.str(); 

 cout << parameterheader; 

 cout << "\n\nLaser Energy Density: \t xi.1=" << xivect[0] << "xi.2=" << xivect[1] 

<< "xi.3=" << xivect[2] << endl; 

 cout << "Failure Rates: \t\t p.org=" << ptildevect[0] << " p.1=" << ptildevect[1] 

<< " p.2=" << ptildevect[2] << " p.3=" << ptildevect[3] << endl; 

 cout << "Acquisition Costs: \t cr=" << cr << " cp1=" << cpvect[0] << " cp2=" << 

cpvect[1] << " cp3=" << cpvect[2] << endl; 

 ofstream outputfile, outputsub, resultfile, logfile, resultfile0; 

  resultfile0.open("resultfile0.txt", std::ofstream::out | std::ofstream::app); 

 resultfile0 << "horizon" << "\t" << "yvect[0]" << "\t" << "yvect[LT]" << "\t" << 

"mvect[0]" << "\t" << "mvect[1]" << "\t" << "mvect[2]" << "\t" << "mvect[3]" << "\t" 

<< "d" << "\t" << "d1" << "\t" << "d2" << "\t" << "d3" << "\t" << "totaldemand" << "\t" 

<< "qr" << "\t" << "qpvect[0]" << "\t" << "qpvect[1]" << "\t" << "qpvect[2]" << "\t" << 

"hc" << "\t" << "bc" << "\t" << "qpcost" << "\t" << "qrcost" << "\t" << "prob.Dr" << "\t" 

<< "prob.Dp1" << "\t" << "prob.Dp2" << "\t" << "prob.Dp3" << "\t" << "costper" << "\t" 

<< "gammacost" << "\t" << "nextpercost" << "\t" << "nextpergammacost" << "\t" << 

"totcost" << endl; 

 ofstream testfile; 

 testflg = true; 

 if (testflg) 

 { 

  testfile.open("filetest.txt", std::ofstream::out | std::ofstream::app); 

  testfile << setprecision(30) << "cpvect[0]" << "\t" << cpvect[0] << 

"cpvect[1]" << "\t" << cpvect[1] << "cpvect[2]" << "\t" << cpvect[2] << endl; 

  testfile << "i" << " \t " << "j" << "\t" << "jj" << "\t" << "yvect[0]" << "\t" 

<< "yvect[LT]" << " \t " << "mvect[0]" << "\t" << "mvect[1]" << "\t" << "mvect[2]" << 

"\t" << "mvect[3]" << endl; 

  for (i = 0; i < statesize; i++) 

  { 
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   calculatestatespace(i, maxyupperbound, LT, v, N + 1, yvect, 

mvect); 

 

   mvect[0] = N; totprintedparts = 0; 

   for (j = 1; j <= v; j++) 

    totprintedparts += mvect[j]; 

   mvect[0] -= totprintedparts; 

   if (totprintedparts > N) 

    continue; 

   jj = calculateindex(yvect, mvect, LT, v, N + 1, maxyupperbound); 

   testfile << i << " \t : \t " << j - 3 << "\t" << jj << "\t" << yvect[0] 

<< "\t" << yvect[LT] << " \t == \t" << mvect[0] << "\t" << mvect[1] << "\t" << mvect[2] 

<< "\t" << mvect[3] << endl; 

  } 

 } 

 outputsub.open(filename2); 

 outputsub << parameterheader << endl; 

 

 //LAST PERIOD 

 std::cout << "\n\n" << "Period " << horizon << " starts!" << endl; 

 for (i = 0; i < statesize; i++) 

 { 

  calculatestatespace(i, maxyupperbound, LT, v, N + 1, yvect, mvect); 

  mvect[0] = N; 

  totprintedparts = 0; 

  if (yvect[0] + yvect[LT] > maxyupperbound) 

   continue; 

 

  for (j = 1; j <= v; j++) 

   totprintedparts += mvect[j]; 

  if (totprintedparts > N) 

   continue; 
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  mvect[0] -= totprintedparts; 

  optqr = N; 

  optqvect[0] = 0; optqvect[1] = 0; optqvect[2] = 0; 

  opttotcost = M; 

  for (orderuptoqr = 0; orderuptoqr <= maxyupperbound; orderuptoqr++)  // 

qr search başlangıcı 

  { 

   gammacost = 0; 

   qr = maxoftwo(orderuptoqr - yvect[0] - yvect[LT], 0); 

   totcost = qr * cr; //+ minoftwo(y, totprintedparts) * 

substitutioncost; 

   qrcost = totcost; 

   hc = 0; 

   bc = 0; 

   for (d = 0; d <= mvect[0]; d++) 

   { 

    prob0 = binompdf2(d, mvect[0], ptildevect[0]); 

    for (d1 = 0; d1 <= mvect[1]; d1++) 

    { 

     prob1 = binompdf2(d1, mvect[1], ptildevect[1]); 

     for (d2 = 0; d2 <= mvect[2]; d2++) 

     { 

  prob2 = binompdf2(d2, mvect[2], ptildevect[2]); 

      for (d3 = 0; d3 <= mvect[3]; d3++) 

      { 

   prob3 = binompdf2(d3, mvect[3], ptildevect[3]); 

       totaldemand = d + d1 + d2 + d3; 

       optcost = M; 

       for (j = 0; j < searchspace; j++)   

       { 

    qpvect[0] = j % (N + 1); 
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     qpvect[1] = ((int)(j / pow(N + 1, 1))) % (N + 1); 

     qpvect[2] = ((int)(j / pow(N + 1, 2))) % (N + 1); 

if (qpvect[0] + qpvect[1] + qpvect[2] != maxoftwo(0, totaldemand - yvect[0] - 

yvect[LT])) 

         continue; 

costper = qpvect[0] * cpvect[0] + qpvect[1] * cpvect[1] + qpvect[2] * cpvect[2]; 

costper += hold * maxoftwo(0, yvect[0] + yvect[LT] - totaldemand) + backlog * 

maxoftwo(0, totaldemand - yvect[0] - qpvect[0] - qpvect[1] - qpvect[2] - yvect[LT]); 

hc = hold * maxoftwo(0, yvect[0] + yvect[LT] - totaldemand); 

bc = backlog * maxoftwo(0, totaldemand - yvect[LT] - yvect[0] - qpvect[0] - qpvect[1] - 

qpvect[2]); 

 

        if (costper < optcost) 

        { 

     optqvect[0] = qpvect[0]; 

     optqvect[1] = qpvect[1]; 

      optqvect[2] = qpvect[2]; 

         optcost = costper; 

        } 

     pr = prob0; ps1 = prob1; ps2 = prob2; ps3 = prob3; 

qpcost = qpvect[0] * cpvect[0] + qpvect[1] * cpvect[1] + qpvect[2] * cpvect[2]; 

 

       } //END OF qpvect SEARCH 

    totcost += optcost * prob0 * prob1 * prob2 * prob3; 

       if (qr == 0) 

       { 

gammacost += (optqvect[0] * cpvect[0] + optqvect[1] * cpvect[1] + optqvect[2] * 

cpvect[2] + hold * maxoftwo(0, yvect[0] + yvect[LT] - totaldemand) + backlog * 

maxoftwo(0, totaldemand - yvect[LT] - yvect[0] - qpvect[0] - qpvect[1] - qpvect[2])) * 

(prob0 * prob1 * prob2 * prob3); 

       } 

      } //CONDITIONAL PROBABILITY 

     } //CONDITIONAL PROBABILITY 
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    } //CONDITIONAL PROBABILITY 

   } //CONDITIONAL PROBABILITY 

 

   if (qr == 0) 

   { 

    statevect[i].gammacost = gammacost; 

   } 

 

   if (opttotcost > totcost) 

   { 

    optqr = qr; 

    opttotcost = totcost; 

   } 

  }  //END OF qr SEARCH 

  statevect[i].optqr = optqr; 

  statevect[i].optcost = opttotcost; 

  statevect[i].per = horizon; 

  statevect[i].yvect[0] = yvect[0]; 

  statevect[i].yvect[1] = yvect[1]; 

  statevect[i].mvect[0] = mvect[0]; 

  statevect[i].mvect[1] = mvect[1]; 

  statevect[i].mvect[2] = mvect[2]; 

  statevect[i].mvect[3] = mvect[3]; 

  statevect[i].optqpvect[0] = optqvect[0]; 

  statevect[i].optqpvect[1] = optqvect[1]; 

  statevect[i].optqpvect[2] = optqvect[2]; 

 

  if ((i % 500) == 0) 

  { 

   now = time(NULL); 

   ctime_s(dt, sizeof dt, &now); 
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   cout << "Period " << horizon << " State Index: " << i << ": State= 

(" << yvect[0] << " " << yvect[LT] << " || " << mvect[0] << " " << mvect[1] << " " << 

mvect[2] << " " << mvect[3] << ") " << " qr=" << optqr << " Cost=" << opttotcost << " 

Time: " << dt; 

  } 

 } //END OF WHILE LOOP 

 std::cout << "Period " << horizon << " is complete! Writing Starts!" << endl; 

 outputfile.open("outputfile.txt", std::ofstream::out | std::ofstream::app); 

 outputfile << "horizon" << "\t" << "yvect[0]" << "\t" << "yvect[LT]" << "\t" << 

"mvect[0]" << "\t" << "mvect[1]" << "\t" << "mvect[2]" << "\t" << "mvect[3]" << "\t" 

<< "optqr" << "\t" << "optqpvect[0]" << "\t" << "optqpvect[1]" << "\t" << "optqpvect[2]" 

<< "\t" << "optcost" << "\t" << "gammacost" << endl; 

 for (i = 0; i < statesize; i++) 

 { 

  calculatestatespace(i, maxyupperbound, LT, v, N + 1, yvect, mvect); 

  mvect[0] = N; totprintedparts = 0; 

  if (yvect[0] + yvect[LT] > maxyupperbound) 

   continue; 

  for (j = 1; j <= v; j++) 

   totprintedparts += mvect[j]; 

 

  if (totprintedparts > N) 

   continue; 

  mvect[0] -= totprintedparts; 

  outputfile << statevect[i].per << "\t" << statevect[i].yvect[0] << "\t" << 

statevect[i].yvect[1] << "\t" << statevect[i].mvect[0] << "\t" << statevect[i].mvect[1] << 

"\t" << statevect[i].mvect[2] << "\t " << statevect[i].mvect[3] << "\t" << statevect[i].optqr 

<< "\t" << statevect[i].optqpvect[0] << "\t" << statevect[i].optqpvect[1] << "\t" << 

statevect[i].optqpvect[2] << "\t" << statevect[i].optcost << "\t" << statevect[i].gammacost 

<< endl; 

 } 

 horizon--; 

 //NEXT PERIOD 

 while (horizon >= 1) 

 { 
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  cout << "Period " << horizon << " starts!" << endl; 

  for (i = 0; i < statesize; i++) 

  { 

  calculatestatespace(i, maxyupperbound, LT, v, N + 1, yvect, mvect); 

   mvect[0] = N; 

   totprintedparts = 0; 

   if (yvect[0] + yvect[LT] > maxyupperbound) 

    continue; 

   for (j = 1; j <= v; j++) 

    totprintedparts += mvect[j]; 

 

   if (totprintedparts > N) 

    continue; 

   mvect[0] -= totprintedparts; 

   optqr = N; 

   optqvect[0] = 0; optqvect[1] = 0; optqvect[2] = 0; 

   opttotcost = M; 

   for (orderuptoqr = 0; orderuptoqr < maxyupperbound; 

orderuptoqr++)  //N * (LT + 1) 

   { 

    qr = maxoftwo(orderuptoqr - yvect[0] - yvect[LT], 0); 

    gammacost = 0; 

 totcost = qr * cr;// +minoftwo(y, totprintedparts) * substitutioncost; 

    qrcost = totcost; 

    hc = 0; 

    bc = 0; 

    for (d = 0; d <= mvect[0]; d++) //totorgpartsafterchange 

    { 

     prob0 = binompdf2(d, mvect[0], ptildevect[0]); 

 

   for (d1 = 0; d1 <= mvect[1]; d1++) //mvectdoublebar 
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     { 

  prob1 = binompdf2(d1, mvect[1], ptildevect[1]); 

      for (d2 = 0; d2 <= mvect[2]; d2++) 

      { 

    prob2 = binompdf2(d2, mvect[2], ptildevect[2]); 

       for (d3 = 0; d3 <= mvect[3]; d3++) 

       { 

    prob3 = binompdf2(d3, mvect[3], ptildevect[3]); 

       totaldemand = d + d1 + d2 + d3; 

        optcost = M; 

      for (j = 0; j < searchspace; j++)   

        { 

        qpvect[0] = j % (N + 1); 

     qpvect[1] = ((int)(j / pow(N + 1, 1))) % (N + 1); 

     qpvect[2] = ((int)(j / pow(N + 1, 2))) % (N + 1); 

if (qpvect[0] + qpvect[1] + qpvect[2] != maxoftwo(0, totaldemand - yvect[0] - 

yvect[LT])) 

          continue; 

costper = qpvect[0] * cpvect[0] + qpvect[1] * cpvect[1] + qpvect[2] * cpvect[2]; 

costper += hold * maxoftwo(0, yvect[0] + yvect[LT] - totaldemand) + backlog * 

maxoftwo(0, totaldemand - yvect[0] - qpvect[0] - qpvect[1] - qpvect[2] - yvect[LT]); 

hc = hold * maxoftwo(0, yvect[0] + yvect[LT] - totaldemand); 

bc = backlog * maxoftwo(0, totaldemand - yvect[LT] - yvect[0] - qpvect[0] - qpvect[1] - 

qpvect[2]); 

         yvectnew[LT] = qr; 

   yvectnew[0] = maxoftwo(0, yvect[0] + yvect[LT] - totaldemand); 

 

  mvectnew[0] = mvect[0] - d + min(yvect[0] + yvect[LT], totaldemand); 

  mvectnew[1] = mvect[1] - d1 + qpvect[0]; 

  mvectnew[2] = mvect[2] - d2 + qpvect[1]; 

  mvectnew[3] = mvect[3] - d3 + qpvect[2]; 

jj = calculateindex(yvectnew, mvectnew, LT, v, N + 1, maxyupperbound); 
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nextpercost = statevect[jj].optcost; 

nextpergammacost = statevect[jj].gammacost; 

costper += nextpercost * discountfactor * phi + nextpergammacost * discountfactor * (1 

- phi); 

         if (costper < optcost) 

         { 

  optqvect[0] = qpvect[0]; optqvect[1] = qpvect[1]; optqvect[2] = qpvect[2]; 

      optcost = costper; 

         } 

   pr = prob0; ps1 = prob1; ps2 = prob2; ps3 = prob3; 

qpcost = qpvect[0] * cpvect[0] + qpvect[1] * cpvect[1] + qpvect[2] * cpvect[2]; 

        } //End of qp search 

 mvectnew[0] = mvect[0] - d + min(yvect[0] + yvect[LT], totaldemand); 

   mvectnew[1] = mvect[1] - d1 + optqvect[0]; 

    mvectnew[2] = mvect[2] - d2 + optqvect[1]; 

     mvectnew[3] = mvect[3] - d3 + optqvect[2]; 

jj = calculateindex(yvectnew, mvectnew, LT, v, N + 1, maxyupperbound); 

nextpercost = statevect[jj].optcost; 

nextpergammacost = statevect[jj].gammacost; 

totcost += optcost * prob0 * prob1 * prob2 * prob3; 

        if (qr == 0) 

        { 

         gammacost += 

(optqvect[0] * cpvect[0] + optqvect[1] * cpvect[1] + optqvect[2] * cpvect[2] + hold * 

maxoftwo(0, yvect[0] + yvect[LT] - totaldemand) + backlog * maxoftwo(0, totaldemand 

- yvect[0] - optqvect[0] - optqvect[1] - optqvect[2] - yvect[LT]) +  nextpercost * 

discountfactor * eta + nextpergammacost * discountfactor * (1 - eta)) * (prob0 * prob1 * 

prob2 * prob3); 

        } 

       }//CONDITIONAL PROB  

     } //CONDITIONAL PROBABILITY 

     } //CONDITIONAL PROBABILITY 

    } //CONDITIONAL PROBABILITY 
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    if (qr == 0) 

    { 

     statevectnextper[i].gammacost = gammacost; 

    } 

    if (opttotcost > totcost) 

    { 

     optqr = qr; 

     opttotcost = totcost; 

    } 

   }//END OF QR SEARCH 

 

   statevectnextper[i].optqr = optqr; 

   statevectnextper[i].optcost = opttotcost; 

   statevectnextper[i].per = horizon; 

   statevectnextper[i].yvect[0] = yvect[0]; 

   statevectnextper[i].yvect[1] = yvect[1]; 

   statevectnextper[i].mvect[0] = mvect[0]; 

   statevectnextper[i].mvect[1] = mvect[1]; 

   statevectnextper[i].mvect[2] = mvect[2]; 

   statevectnextper[i].mvect[3] = mvect[3]; 

   if ((i % 500) == 0) 

   { 

    now = time(NULL); 

    ctime_s(dt, sizeof dt, &now); 

    cout << "Period " << horizon << " State Index: " << i << ": 

State= (" << yvect[0] << " " << yvect[LT] << " || " << mvect[0] << " " << mvect[1] << " 

" << mvect[2] << " " << mvect[3] << ") " << " qr=" << optqr << " Cost=" << opttotcost 

<< " Time: " << dt; 

   } 

  } 

  std::cout << "Period " << horizon << " is complete! Writing Starts!" << 

endl; 



61 

 

  for (i = 0; i < statesize; i++) 

  { 

   statevect[i].optqr = statevectnextper[i].optqr; 

   statevect[i].optcost = statevectnextper[i].optcost; 

   statevect[i].per = statevectnextper[i].per; 

   statevect[i].gammacost = statevectnextper[i].gammacost; 

 calculatestatespace(i, maxyupperbound, LT, v, N + 1, yvect, mvect); 

   mvect[0] = N; totprintedparts = 0; 

   if (yvect[0] + yvect[LT] > maxyupperbound) 

    continue; 

   for (j = 1; j <= v; j++) 

    totprintedparts += mvect[j]; 

   if (totprintedparts > N) 

    continue; 

   mvect[0] -= totprintedparts; 

   outputfile << statevect[i].per << "\t" << statevect[i].yvect[0] << 

"\t" << statevect[i].yvect[1] << "\t" << statevect[i].mvect[0] << "\t" << 

statevect[i].mvect[1] << "\t" << statevect[i].mvect[2] << "\t " << statevect[i].mvect[3] << 

"\t" << statevect[i].optqr << "\t" << statevect[i].optcost << "\t" << statevect[i].gammacost 

<< endl; 

  } 

  horizon--; 

 } 

 outputfile.close(); 

 testfile.close(); 

 resultfile0.close(); outputsub.close(); 

 resultfile.open("resultfile.txt", std::ofstream::out | std::ofstream::app); 

 resultfile << indexx << "\t" << parameterheader << "\t" << statevect[0].per << 

"\t" << statevect[0].optcost << "\t" << statevect[0].optqr << endl; 

 resultfile.close(); 

 delete[] statevect; 

 delete[] statevectnextper; 

 return 0; 
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} 

double calculateprobvect(int v, int mvect[], double pvect[], double probvect[], int 

distsupport) 

{ 

 int i, j; 

 double dist1[N + 1]; 

 double dist2[N + 1]; 

 double targetdist[N + 1]; 

 for (j = 0; j <= N; j++) 

 { 

  dist1[j] = binompdf(j, mvect[0], pvect[0]); 

  dist2[j] = binompdf(j, mvect[1], pvect[1]); 

 } 

 convolution2araydist(dist1, dist2, targetdist, N); 

 for (i = 3; i <= v; i++) 

 { 

  for (j = 0; j <= N; j++) 

  { 

   dist1[j] = binompdf(j, mvect[i], pvect[i]); 

   dist2[j] = targetdist[j]; 

  } 

  convolution2araydist(dist1, dist2, targetdist, N); 

 } 

 for (j = 0; j <= N; j++) 

  probvect[j] = targetdist[j]; 

 return 0; 

} 

void calculatemvectdouble(int y, int mvect[], int mvectdoublebar[]) 

{ 

 int i, j; 

 int mtemp; 
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 mtemp = mvect[1]; 

 mvectdoublebar[1] = (int)maxoftwo(mtemp - y, 0); 

 mtemp = mvect[2]; 

 mvectdoublebar[2] = (int)maxoftwo((int)mvect[2] - (int)maxoftwo(y - 

(int)mvect[1], 0), 0); 

 mtemp = mvect[1] + mvect[2]; 

 for (i = 3; i <= v; i++) 

 { 

  mvectdoublebar[i] = maxoftwo(mvect[i] - maxoftwo(y - mtemp, 0), 0); 

  mtemp += mvect[i]; 

 } 

 mvectdoublebar[0] = mvect[0]; 

} 

 

double functionL(int y, int totqp, int mvect[], double probvect[], double holdrate, double 

backlograte) 

{ 

 int s = 0; 

 double expectedcost = 0; 

 for (s = 0; s <= N; s++) 

 { 

expectedcost += holdrate * maxoftwo(y - s, 0) * probvect[s] + maxoftwo(s - y - totqp, 0) 

* probvect[s] * backlograte; 

 } 

 return expectedcost; 

} 

double singlepercost3Dprint(int v, int y, int mvect[], int qr, int qpvect[], double cr, double 

cpvect[], double hold, double backlog, int d) 

{ 

 double cost = 0; 

  int totm = 0; 

 int totqp = 0; 
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 for (int i = 0; i < v; i++) 

 { 

  totm += mvect[i]; 

  cost += (double)qpvect[i] * cpvect[i]; 

  totqp += qpvect[i]; 

 } 

 cost += hold * maxoftwo(y - d, 0) + maxoftwo(d - y - totqp, 0) * backlog; 

 return cost; 

} 

int calculatestatespace(int i, int maxDmax, int lt, int v, int N, int yvect[], int mvect[]) 

{ 

 int lengthd = maxDmax;  //+1 

 int lengthv = N; 

 int l; 

 int num = lengthd, denom = 1; 

 int num2 = pow(lengthd, lt + 1) * lengthv, denom2 = pow(lengthd, lt + 1); 

 if (lt == 1) 

 { 

  for (l = 0; l < lt; l++) 

  { 

   yvect[lt - l - 1] = (i % num) / denom; 

   denom = num; 

   num *= lengthd; 

  } 

  yvect[lt] = (i % num) / denom; 

  for (l = 0; l < v; l++) 

  { 

   mvect[l + 1] = (i % num2) / denom2; 

   denom2 = num2; 

   num2 *= lengthv; 
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  } 

 } 

 return 0; 

} 

int calculateindex(int yvect[], int mvect[], int lt, int v, int N, int maxDmax) 

{ int multp1 = 0, multp2 = 0; 

 int lengthd = maxDmax; 

 int lengthv = N; 

 int l, res = 0; 

 if (lt == 1) 

 { 

  for (l = 0; l < lt; l++) 

  { 

   multp1 += yvect[lt - l - 1] * (int)pow(lengthd, l); 

  } 

  multp1 += (int)pow((double)lengthd, (double)lt) * yvect[lt]; 

  multp2 = (int)pow((double)lengthd, (double)lt + 1); 

 

  for (l = 0; l < v; l++) 

  { 

   multp1 += multp2 * mvect[l + 1]; 

   multp2 *= lengthv; 

  } 

 } 

 /* if (lt == 3) 

 { //RECALL THAT y[0] is IL with dmax  and y[1] and y[2] 

 multp1 = yvect[0] + yvect[1] * (1 + (double)dmax) + yvect[2] * (1 + 

(double)dmax)*(1 + (double)dmaxper); 

 multp2 = (int)pow((double)(1 + dmaxper), (double)(lt - 1))*(1 + dmax)*(horizon 

- per); 

 } 
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 */ 

 res = multp1; 

 return res; 

} 

long double binompdf2(int k, int n, double p) 

{ 

 long double res; 

 if (k <= n) 

  res = pow(p, (long double)k) * pow(1 - p, (long double)(n - k)) * comb(n, 

k); 

 if (k > n) 

  res = 0; 

 return res; 

} 

void convolution2araydist(double dist1[], double dist2[], double targetdist[], int 

maxsupport) 

{ int i = 1, k, j; 

 float temp[bignum]; 

 // float tempscalar; 

 for (k = 0; k <= maxsupport; k++) 

 { 

  temp[k] = 0; 

  for (j = 0; j <= k; j++) 

   temp[k] += dist1[j] * dist2[k - j]; 

 } 

 for (k = 0; k <= maxsupport; k++) 

  targetdist[k] = temp[k]; 

} 

int letter2ind(string letters) 

{ int a1 = letters[0]; 

 int a2 = letters[1]; 
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 int a3 = letters[2]; 

 int a4 = letters[3]; 

 int a5 = letters[4]; 

 int num = (a1 - 97) * 10000 + (a2 - 97) * 1000 + (a3 - 97) * 100 + (a4 - 97) * 10 

+ (a5 - 97); 

 cout << "Run index is: " << num << endl; 

 return num; } 

//readparams(indexx, horizon, backlograte, substitutionrate, holdrate, gamma); 

void readparams(int ind, int& param1, double& param2, double& param3, double& 

param4, double& param5) 

{ int trial, i, j; char c; 

 double param[6]; 

 double temp; 

 ifstream input; 

 input.open("params.txt"); 

 if (input.is_open()) //ADDED. LOD INDEX 

  cout << "Parameter file is opened successfully." << endl; 

 else 

 { 

  cout << "Unable to open the parameter file" << endl; 

  cout << "quitting..."; 

  cout << '\a'; 

  cin >> c; 

  exit(0); 

 } 

 for (i = 1; i <= ind; i++) 

 { 

  if (i != ind) 

  { 

   for (j = 0; j < 5; j++) 

    input >> temp; 
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  } 

  else 

  { 

   for (j = 0; j < 5; j++) 

   { 

    input >> param[j]; 

   } 

  } 

 } 

 input.close() 

 for (j = 0; j < 5; j++) 

 {  switch (j) 

  { 

  case 0: 

  { 

   param1 = (int)param[j]; break; 

  } 

  case 1: 

  { 

   param2 = param[j]; break; 

  } 

  case 2: 

  { 

   param3 = param[j]; break; 

  } 

  case 3: 

  { 

   param4 = param[j]; break; 

  } 

  case 4: 

  { 
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   param5 = param[j]; 

  } 

  } 

 } 

} 
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