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A B S T R A C T   

The rapid spread of COVID-19 has severely impacted many sectors, including the electricity sector. The reliability 
of the electricity sector is critical to the economy, health, and welfare of society; therefore, supply and demand 
need to be balanced in real-time, and the impact of unexpected factors should be analyzed. During the pandemic, 
behavioral restrictions such as lockdowns, closure of factories, schools, and shopping malls, and changing habits, 
such as shifted work and leisure hours at home, significantly affected the demand structure. In this research, the 
restrictions and their corresponding timing are classified and mapped with the Turkish electricity demand data to 
analyze the estimated impact of the restrictions on total demand and daily demand profile. A modulated Fourier 
Series Expansion evaluates deviations from normal conditions in the aggregate demand and the daily con
sumption profile. The aggregate demand shows a significant decrease in the early phase of the pandemic, during 
the period March–June 2020. The shape of the daily demand curve is analyzed to estimate how much demand 
shifted from daytime to night-time. A population-based restriction index is proposed to analyze the relationship 
between the strength and coverage of the restrictions and the total demand. The persistency of the changes in the 
daily demand curve in the post-contingency period is analyzed. These findings imply that new scheduling ap
proaches for daily and weekly loads are required to avoid supply-demand mismatches in the future. The long- 
term policy implications for the energy transition and lessons learned from the COVID-19 pandemic experi
ence are also presented.   

1. Introduction 

After starting as a regional epidemic in China in December 2019, 
COVID-19, caused by Severe Acute Respiratory Syndrome Coronavirus 2 
(SARSCOV-2), rapidly spread to at least 185 countries worldwide and 
was declared as a pandemic by the World Health Organization on March 
11, 2020. As of January 13, 2021, according to the Johns Hopkins 
University database, nearly 93 million people have been infected, and 
almost 2 million people have died due to COVID-19 (JHU, 2021). The 
US, India, and European countries have been the most affected regions 
from COVID-19. Various measures are taken to limit the spread of the 
virus and flatten the curve of the number of patients so that healthcare 
systems are not overwhelmed. These measures include social distancing, 
quarantine, self-isolation, closure of schools, workplaces, and shopping 
centers, full lockdowns, and constrained air, sea, and road trans
portation. As a result of these measures, almost all industrial facilities 
and sectors were affected, demand plunged significantly, and remote 

working and education became common practices (Nicola et al., 2020). 
Although some countries announced mandatory full lockdowns 

against this global challenge, their duration, as well as the strategies and 
policies proposed by decision-makers, changed considerably. Short- or 
long-term restrictions and regional or country-wide restrictions were 
adopted in different countries. These extraordinary precautions changed 
the daily industrial and household electricity consumption routine; 
however, the impact on the electricity demand is expected to be 
different depending on the size and duration of the restrictions. A time 
log of these restrictions is presented in the University of Oxford’s 
COVID-19 Government Response Tracker, where a Government 
Response Stringency Index (GRSI) is proposed to monitor and compare 
the restriction policies around the world (University of Oxford, 2020). 

As the impact of complete lockdowns on the economy is dramatic, 
complete long-term lockdowns are not preferred unless they are 
required. Turkey has followed a different strategy than many other 
countries and implemented age-specific restrictions (ages above 65 and 
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below 20), closure of schools, lockdown in certain cities for limited 
times, and travel limitations between cities. The majority of the indus
trial facilities stopped operations, and people stayed at home between 
March and June 2020, at the beginning of the pandemic. Pandemic 
conditions have significantly impacted the electricity sector as it is a 
supply chain in which resources are planned, delivered, and used to 
generate electricity to be transmitted to end consumers. The total elec
tricity demand has decreased considerably and, as expected, the impact 
of each restriction on the aggregate electricity demand is different and 
needs to be analyzed respectively. 

The substantial revenue loss is an obvious effect of the fall in elec
tricity demand on electricity producers. For Turkey, resources such as 
natural gas and imported coal are purchased with long-term contracts, 
and physically delivered resources must be consumed. Besides, the cost 
of these resources is calculated based on the assumption that electricity 
demand, and therefore prices, will continue in their ordinary course. 
According to the Turkish Electricity Transmission Corporation (TEIAS) 
reports, the share of installed capacity of natural gas and imported coal 
in the Turkish electricity system are 28% and 10%, whereas their con
tributions to annual generation in 2019 were 19% and 21%, respectively 
(Turkish Electricity Transmission Corporation, 2020). The liberated 
Turkish power market has a merit-based system, and the typical 
scheduling order in the supply stack is as follows: state-owned thermal 
plants, wind, solar, biomass, hydroelectric resources with dams, lignite, 
imported coal, hydroelectric (peak hours) resources, natural gas, and 
fuel oil-based generation resources (SHURA Energy Transition Center, 
2020). The order is determined based on the net cost that depends on the 
offer prices. The market mechanism had worked as expected such that 
when the demand decreased, the electricity was supplied from cheaper 
resources, and hence, the electricity price decreased. 

The total demand needs to be met with the available resources; 
however, the level of demand needs to be known for resource planning, 
maintenance, transmission, market operation, and investment planning. 
Given that there might be a risk of supply issues for imported coal and 
natural gas, the resources in the supply stack need to be used carefully, 
such as hydro resources that are considered base units in the Turkish 
power market. As it is still uncertain how the pandemic will continue 
and end, a possible solution might be using the available water wisely 
for more crucial times and prioritizing the use of resources that are easily 
accessible. Another possible issue is that long-term resource procure
ment may be interrupted, and the impact of each restriction on demand 
should be estimated to revise resource planning. 

The daily demand curve in a typical week has an expected pattern 
shaped by work hours and daily habits. The formation of this cyclic 
curve is based on typical conditions where people work in their offices, 
the schools are open, and people travel without any restrictions. The 
weekly cycle can be classified as weekdays and weekends, classified as 
Saturday and Sunday. Although demand changes in this weekly cycle, 
the pattern is determined based on the habits and routines and hence is 
similar. However, the pandemic measures have changed almost every 
manner and routine, and the daily variation curve was affected by this 
change. The demand shifted from daytime to night-time, and the peak 
hours were altered. The scheduling and resource planning decisions 
need re-planning based on this new paradigm, and the characteristics of 
the new curve need to be analyzed. 

Since the COVID-19 pandemic is an entirely new experience, there is 
relatively limited research in the literature addressing the effects of 
COVID-19 on the energy sector, especially for electrical energy, yet the 
number of studies is growing every day. Those works investigate the 
impacts of COVID-19 on the energy sector from various perspectives 
such as emissions, clean energy transitions, operational reliability, and 
market prices. However, studies considering the effects of the pandemic 
on electricity demand forecasting are limited. Ghiani et al. (2020) study 
the effects of restrictions on electricity demand, load shapes, and market 
prices in Italy during the COVID-19 outbreak. Their analysis shows that 
the demand plunged up to 37% compared to the year before. 

Abu-Rayash and Dincer (2020) investigate the trend changes in elec
tricity demand in the province of Ontario, Canada. They handle the 
subject from the perspective of smart cities and report that the average 
monthly demand decrease is 14% for April, and the highest daily de
mand reductions were observed on weekends, with an average daily 
reduction of 18% and a maximum reduction of 25%. Another study from 
Canada uses hourly electricity data and finds that demand declined by 
about 10% in Ontario and about 5% in Alberta, British Columbia, and 
New Brunswick (Leach et al., 2020). This study also reports that supply 
from some natural gas plants is reduced in Alberta, and net electricity 
exports increased in Ontario. Carvalho et al. (2020) analyze how elec
tricity consumption has changed due to the mobility restrictions in 
Brazil, and their findings show that the decline in consumption varies 
from 7% to 20% between regions because of the different electricity 
consumption profiles. The most affected regions are those with high 
industrial density, and the least affected ones are those with high resi
dential density. 

Similarly, Delgado et al. (2021) show that electricity loads decreased 
by 3%–19% for different regions in Brazil between January and 
September 2020. Snow et al. (2020) attempt to reveal drivers of 
household consumption shifts by monitoring the electricity use of 491 
residents and interviewing 17 households in the state of Queensland, 
Australia. The results identify substantial changes such as greater use of 
cooking and digital equipment, but a decrease in aggregate electricity 
consumption of most of the monitored households during the lockdown 
period, possibly as a result of reduced use of air conditioning due to the 
cold weather compared to the same period of last year. Aruga et al. 
(2020) investigate two hypotheses for India; the first one is that energy 
consumption rebounds after the ease of the lockdown measures, and the 
second one is that the energy consumption of economically developed 
regions is affected more positively. The results showed that both hy
potheses are accepted, and the result of the first hypothesis is parallel to 
our findings. In our study, the main focus is not only on the rebound 
effect, and regional analysis is not held. 

Several models are suggested in the literature to investigate the 
relationship between various factors and electricity demand during the 
pandemic. Norouzi et al. (2020) try to reveal the links between the 
pandemic and main economic parameters such as GDP growth, 
manufacturing PMI, and exports income, and impacts of these parame
ters on oil and electricity demand in China using two different methods: 
regression and artificial neural networks. In this paper, we also use a 
regression model but without any economic indicators. Liu and Lin 
(2021) introduce a deep-learning-based multivariate time series fore
casting model to investigate the correlations among containment mea
sures, weather conditions, renewable energy supplies, and electricity 
demand in the UK. They show that renewable energy supplies signifi
cantly affect the accuracy of this predictive model besides the number of 
new COVID-19 tests. 

Lu et al. (2021) developed a hybrid electricity consumption predic
tion model that can be applied in the pandemic using daily infections, 
daily deaths, and GRSI data. They use a multi-objective optimizer to 
ensure accuracy and stability and a support vector machine as the pre
diction model. Using the daily electricity demand of the US, the model 
considering the daily infections is reported to have the highest predic
tion accuracy and stability, although the number of daily infections is 
not the most correlated factor with the electricity demand. Eryilmaz 
et al. (2020) show that peak load and peak-to-base ratio decreased for all 
three major regional transmission organizations (RTOs) in the US during 
the stay-at-home advisory due to COVID-19, and electricity generation 
mixes were affected such that coal use decreased while the use of natural 
gas and renewables increased. In a more comprehensive study, Ruan 
et al. (2020) develop a cross-domain open-access data hub (COV
ID-EMDA+) that integrates data across all seven existing US RTOs with 
COVID-19 public health data, weather, mobile device location, and 
satellite imaging data, including night-time light brightness. A signifi
cant reduction in electricity consumption is found to be strongly 
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correlated with the number of COVID-19 cases, degree of social 
distancing, and level of commercial activity. 

From a broader viewpoint, Zhong et al. (2020) discuss the implica
tions of COVID-19 on the electricity market by analyzing supply and 
demand, describing difficulties in the operation of the power system, 
suggesting solutions, assessing market prices, and explaining emission 
and environmental influences as external impacts of the pandemic. 
Werth et al. (2021) investigate the impact of governmental restrictions 
on electrical load, generation, and transmission in 16 European coun
tries using a subset of indices provided by the Oxford COVID-19 Gov
ernment Response Tracker. They identified “stay at home, school 
closing, restriction on internal movements, and workplace closing” as 
the limitation types that correlate significantly with the load reduction 
during the pandemic. They also note that generation from nuclear, fossil 
coal, and gas sources was reduced in favor of renewables, and European 
countries balanced these changes by increasing energy exports and im
ports. Buechler et al. (2020) use clustering to analyze the electricity 
consumption of 58 countries for January–May 2020 and find out that 
there is a 2%–26% decline in the demand due to the pandemic situation. 
López Prol and O (2020) forecast baseline daily electricity consumption 
in the nine most impacted European countries and USA states between 
March and July 2020, using country-specific ARIMA dynamic harmonic 
regressions with Fourier terms for complex seasonality, quadratic tem
perature, and calendar effects. They show that COVID-19 measures 
decreased electricity consumption by 3%–12% in 5 months; still, most 
countries have recovered baseline levels by the end of July, and strin
gency measures and consumption decline are non-linearly related. 

There are many studies in the literature about short- and long-term 
electricity demand forecasting. The electricity demand data is struc
tured as time series due to its nature, and hence linear models and time 
series methods are commonly used for forecasting. Authors present 
literature on forecasting methods in which the usage of Artificial Neural 
Networks (ANN), Genetic Algorithms (GA), Support Vector Machines 
(SVM), and Particle Swarm Optimization (PSO) and other numerical 
methods are discussed (Suganthi and Samuel, 2012). ARMA and ARIMA 
models are also used to include stochastic effects in demand forecasting 
(Andersen et al., 2013; Lo and Wu, 2003; López Prol and O, 2020; Niu 
et al., 2010). The impact of temperature on electricity demand depends 
on the infrastructure and heating resources, and the temperature is used 
to increase the forecast accuracy. The different aspects of the influence 
of the temperature on the electricity demand have been analyzed in 
(Bašta and Helman, 2013; De Felice et al., 2013, 2015; Hor et al., 2005; 
Islam et al., 1995; Lusis et al., 2017; Momani, 2013; Taylor, 2012). The 
methods used for long-term forecasting differ from time series methods 
(Torrini et al., 2016). However, such forecasting approaches are used to 
forecast and analyze the demand assuming normal circumstances and 
expectations, i.e., no COVID-19 effects. 

The impact of COVID-19 should be considered multidimensional as it 
will also affect producers, customers, and the economy in general. Due 
to its criticality, the electricity sector should be prepared for generation 
and transmission problems. The impacts of the crisis caused by the 
current COVID-19 outbreak should be examined, and they are mostly 
related to the restrictions taken by authorities. Hence, the impact of each 
restriction on total demand and the daily demand curve should be 
analyzed compared to pre-pandemic periods to extract useful informa
tion for upcoming periods. 

This study aims to analyze the impact of the global pandemic on the 
electricity demand and daily demand profile using the Turkish Power 
Market as a case study. The novelty of this study revolves around the 
sensitivities of electricity demand to restrictions, how the system re
sponds to changes, the change in the daily demand profile and how 
much of the demand is shifted to night-time. The proposed restriction 
index is based on the restricted population, and how much more demand 
loss should be expected if the restricted population increases are also 
worth mentioning. This paper contributes to the discussions on elec
tricity in relation to the pandemic conditions by forecasting electricity 

demand, identifying the level of decrease in the demand due to each 
restriction and affected population, determining the level of shift in 
daily demand, and discussing the potential impact of these changes on 
the electricity sector. The possible policy implications for energy tran
sitions deduced from the pandemic process are also presented in the 
discussion section. The specific objectives of this work can be further 
described as:  

• To determine the estimated impact of each restriction on the total 
demand within the context of the Turkish power market and COVID- 
19 restrictions in Turkey,  

• To analyze the change in the daily demand profile and determine the 
estimated level of shifted demand to other hours, especially from 
daytime to night-time,  

• To develop a population-based restriction index and determine the 
relationship between the restricted population and the total demand,  

• To extract useful information for policymakers from this unexpected 
situation to address the energy transition and future crises. 

The remainder of the paper is organized as follows. In Section 2, an 
overview of the restrictions and their effects on electricity demand in 
terms of changes in total demand and the daily demand curve is pre
sented. Section 3 presents the methods used to estimate the impact of 
each restriction on total demand. A modulated Fourier Series Expansion 
method is used to forecast the demand based on past data, estimating the 
changes in consumption caused by the pandemic. The impact of re
strictions on total demand and daily demand profile is presented in 
Section 4. In Sections 5 and 6, discussions for future directions and 
conclusions are provided, respectively. 

2. Data processing and overview of the COVID-19 effects 

The electricity sector is unique as it is related to all sectors, and an 
interruption can lead to catastrophic consequences. The hourly demand 
and hourly generation data, as well as the breakdown of generation 
resources, are released by Energy Exchange Istanbul (EPIAS), the elec
tricity system operator of Turkey. The released data include total gen
eration from each resource, historical hourly demand data, reserve rates, 
scheduling data, maintenance information, and other parameters to 
analyze the market. The total hourly demand data for the 2016–2020 
period is obtained from EPIAS (EPIAS, 2020). Although the restrictions 
and the progression of the pandemic were similar to other countries, the 
timing of the restrictions was different. The first case was observed on 
March 11, 2020, and the first fatality was reported on March 18th, 2020. 
On March 21st, the first restriction, an age-based mobility restriction 
imposing a stay-at-home requirement for people of ages above 65 and 
below 20, was announced. Then, other restrictions follow as the spread 
of the pandemic progresses. The restrictions can be classified as 
age-based restrictions, travel-based restrictions and closure of the 
noncritical facilities, and lockdowns. Their order is determined almost in 
parallel to the spread rate of COVID-19, and they are classified into three 
levels as listed below. It should be noted that Level 2 restrictions include 
the shutdown of mostly service industry while Level 3 restrictions 
include the shutdown of the production industry. 

Level 1 (Age-specific restrictions): Turkey started to apply re
strictions based on risky age groups, and the people above 65 are 
required to stay at home because of greater vulnerability to disease. 
The restriction was expanded to include people below the age of 20 
to slow down the spread of the epidemic. 
Level 2 (Social restrictions and business shutdown): In April, 
Turkey started to apply social restrictions to decrease contact be
tween people in daily life. Travel restrictions between cities, closing 
social places like restaurants or cafés, and suspension of sports events 
were applied. Schools and universities started online learning, and 
remote working became common to prevent mobility. 
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Level 3 (Lockdowns and industrial shutdown): Complete lockdowns 
were applied during weekends and public holidays in April and May. 
On these days, all industry was shut down except for only critical 
industrial factories, and people were banned from leaving their 
homes. 

Such classifications are determined to analyze the impact of each 
restriction on the demand profile. Fig. 1 presents the timing of re
strictions and the total demand change. The restrictions started in 
March, applied in April and May, and a transition to normal life was 
made at the beginning of June. After a summer period with relatively 
lower risk, the cases started to increase in fall, but no restrictions were 
applied until December 2020. Hence, the March–June period is selected 
as the analysis period. The figure shows that as the level of restrictions 
increases, so does the decline in total demand. The level of demand loss 
is observed clearly when a new restriction is imposed. Also, the sudden 
decline in total demand due to the religious holiday is observed at the 
end of May. 

2.1. COVID-19 and the total electricity demand 

The sudden fall in demand is expected to impact the revenue for 
electricity producers significantly, and the consequences might be 
devastating if the pandemic is prolonged. Decreasing demand lowers 
market prices due to the merit-based market system. A lower-than- 
expected demand will also impact investment plans and market opera
tion. The total electricity demand in Turkey during the years 2016 
through 2020 is shown in Fig. 2. One can see the significant fall in 
March–June 2020 compared to the same period of the previous year. 

Possible reasons for the decreasing demand include production 
interruption in plants, shortened work hours due to restrictions, and 
lockdowns in cities. Total electricity demand typically depends on 

climatic conditions and industrial activities, but fluctuations under 
normal conditions cannot explain the observed decrease. This sudden 
fall is due to a crisis and a clear result of the pandemic conditions. In 
Fig. 2, sharp decreases in the demand both in 2019 and 2020 are due to 
religious holidays on which most industrial facilities are closed. The 
consumption in such periods is representative of the base household 
consumption (EPIAS, 2020). The timing of these religious holidays is 
based on the lunar calendar, and they move back by 11 days each year. 
Thus, the low demand period of 2020 lags the same holiday period in 
2019. 

In Fig. 2, total demand over the March–June period is presented 
separately for 2016–2020. When the demand in March for the last four 
years is compared with that of 2020, it is observed that the first reaction 
is higher electricity consumption in the following week compared with 
weekly averages of March. This finding can be explained by increasing 
industrial use due to restriction expectations in the following weeks. The 
main reason for these expectations was that the first COVID-19 case was 
observed very late in Turkey compared to the other European countries. 
Therefore, companies and the public were aware of the possible re
strictions and took action rapidly. The sudden fall in 2017–2020 is due 
to national holidays, as explained above. 

2.2. COVID-19 and the daily demand profile 

The primary motivation behind the restrictions is to maintain social 
distance due to the pandemic. The figures above show a significant 
decrease in demand between March and May 2020 due to restrictions. 
All public places such as restaurants, shopping malls, schools, and uni
versities were locked down during the same period. People intended to 
stay at home as much as possible, most companies allowed working from 
home, and universities switched to online education. 

As people stayed at home more, they moved away from the 

Fig. 1. COVID-19 restrictions and total hourly electricity demand in Turkey (March–June 2020).  
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environments where they regularly work or spend time. The change in 
sleeping habits and other daily activities followed. The cyclic con
sumption profile, known as the weekly electricity demand profile, where 
the demand started to increase in the morning hours on working days, 
peaked in the afternoon, and dropped to its lowest level at night and 
weekends, is affected by this situation. Fig. 3 shows the total and 
normalized demand for 13–20 April 2019 and 15–22 April 2020. The 
demand data is normalized by dividing each hour’s consumption by the 
total consumption in the day to identify the level of pattern change. 

When the electricity demand curve is examined, it is seen that the 
demand increases when people are active and during working hours and 
decreases at the end of working hours when people return to their homes 
under normal conditions. Industrial demand and household demand 
portray an expected profile under typical conditions in the electricity 
demand curve; nevertheless, due to people spending a significant 
amount of time at home, both the shape of the demand curve and the 
amount of demand change. 

3. Methodology and model development 

Electricity demand has an increasing trend component, climatic ef
fects, and stochastic characteristics. The restrictions on electricity de
mand are superimposed on this stochastic behavior. Thus, a direct 
comparison with the previous year may be misleading; hence it is 
necessary to compare actual demand with a forecast by a model. In order 
to measure the impacts, a modulated Fourier Series Expansion (FSE) is 
used to forecast the demand, as presented in Section 3.1. Section 3.2 

proposes two contingency indices, a 3-level contingency index, Index 1, 
and a population-based restriction index, Index 2. The percentage 
decrease in the demand is evaluated as a function of these indices. 
Finally, Section 3.3 discusses changes in the daily variation curves. 

3.1. Estimating the demand loss using Fourier Series Expansion 

A linear model of a modulated Fourier series expansion was used to 
forecast hourly electricity demand over a 1-year horizon (Yukseltan 
et al., 2020). This method is especially useful in cases where periodic 
variations are dominant, and electricity is used predominantly for illu
mination, i.e., heating and cooling-related demand is negligible. The 
model’s effectiveness is shown by Yukseltan et al. (2017) and Yukseltan 
et al. (2020). 

The model based on modulated FSE can be summarized as follows. A 
periodic function f(t) with period T can be represented as an infinite sum 
of cosine and sine functions with periods T/n. Those sinusoidal functions 
with periods T/n are called the “harmonics” of the main variation. In the 
time series for the hourly electricity demand, the daily variation with a 
24-h period is the dominant component of the hourly electricity de
mand. The harmonics of this variation have periods of 12, 8, 6, 24/5, 
and so on, hours. In addition to these “fast” variations, there are weekly 
and seasonal variations. The weekly variation reflects the weekend ef
fect, i.e., industrial and office consumption shutdown. Seasonal varia
tions have components arising from illumination, heating, and cooling 
needs. The change in the demand due to the changes in the daylight 
hours can be incorporated into the FSE by adding the “modulation” of 

Fig. 2. Total electricity demand in Turkey in 2016–2020 (March–June) (EPIAS, 2020).  
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the high-frequency variations (i.e., sinusoids with periods of 24/n hours, 
n = 1,2, …) and the low-frequency variations (i.e., the harmonics of the 
seasonal variation with periods of 365/n days, n = 1,2, …). This 
“modulation” takes into account the variations in the amplitude of the 
24-h variation throughout a year, and it is achieved by adding the 
products of high- and low-frequency harmonics as regressors. The de
mand arising from heating and cooling needs is modeled by adding the 
deviations from comfortable temperatures as a regressor to the linear 
model. In addition to these periodic components, overall trends arise 
from demographics and economic growth. Finally, it should be noted 
that electricity demand on special days, such as holidays, has to be 
treated separately. Time-series methods, such as AR or ARMA, focus on 
short-term electricity consumption forecast, while the modulated FSE 
provides hourly forecasts over a long-term horizon such as a year, within 
acceptable modeling and forecast errors, in particular in cases where 
illumination and industrial usage are dominant (Yukseltan et al., 2017). 

The number of regressors to be included in the modulated FSE is 
limited theoretically by the “Sampling Theorem”, stating that the 
shortest period that can be included in the expansion is twice the sam
pling interval, in this case, 2 h. Accordingly, the number of regressors 
should be large enough to capture the essence of the data but should be 

moderate to avoid the inversion of matrices with high condition 
numbers. 

In the model, the hourly electricity demand is denoted by S. A con
stant vector (denoted by 1) and a linear term (denoted by t) are used for 
the linear trend in the data. Periodic variations consist of Xn (the nth 
harmonics of sinusoidal functions with a period of one year, i.e., 364/n 
days, n = 1,..,N), Zm (the mth harmonics of one week, i.e., 7/m days, m 
= 1, …,M) and of Yk (the kth harmonics of sinusoidal functions with a 
period of 24 h, i.e., 24/k hours, k = 1,..,K). The regressors that represent 
the modulation of the high-frequency variations (Zm and Yk) by the low- 
frequency variations (Xn) is included by the component-wise product of 
the corresponding vectors, denoted as XnZm and XnYk. The number of 
this last group of regressors should be moderate to avoid over-learning. 
The effect of climatic conditions is represented by Tδ = abs(Tc - T), which 
measures the deviation from a threshold temperature TC, that people 
start to use electricity for cooling or heating. By taking these consider
ations into account, a model is built that uses 47 time-based regressors to 
represent sinusoidal variations and 80 regressors to implement modu
lation effects as follows. 

F =
[
1, t, X1X2…XN ,Z1Z2…Zm,Y1Y2…YK ,X1Z1..XiZj..X1Y1..XkYlTδ

]
(1) 

Then, the coefficient vector a and model vector y can be calculated as 
below. 

a=(FtF)− 1FtS (2)  

y=Fa (3) 

The model is adopted to the prediction as follows. Data is split into 
“training” and “test” periods. Recall that the regression coefficients are 
obtained from the equation a=(FtF)− 1 Ft S, where S is the data and F is 
the matrix whose columns are the model functions and the best fit to the 
data in the mean square sense is given by y = Fa. Splitting the data into 
training and test periods corresponds to splitting the matrix F and the 
vector S as, Ft = [F1

t F2
t], St = [S1

t S2
t], where F1 and S1 cover the 

training period. The model coefficients are computed in terms of F1 and 
S1 as 

a1 =
(
Ft

1F1
)− 1Ft

1S1 (4)  

and the prediction for the test period is obtained from the equation 

y2 =F2a1 y2 = F2 × a1 (5) 

The prediction error is the norm of the difference between the pre
diction for the test period, y2, and the data for the test period, S1, i.e., | 
F2a1-S2|. In the present case, the training period covers 2018–2019 and 
the test period is 2020. Forecast errors and their relation to COVID-19 
restrictions are discussed in detail below. 

3.2. Restriction indices 

In the pandemic period, different types of restrictions were imposed 
by governments to prevent the spread of the virus and decrease the load 
of healthcare services. After the outbreak of COVID-19, the University of 
Oxford proposed a Government Response Stringency Index (GRSI) as an 
indicator of the degree of lockdown and separated restrictions into three 
groups: “Containment and closure”, “Economic response”, and “Health 
systems” (University of Oxford, 2020). Then the average restriction 
index, GRSI, is calculated for each country. This index that aims to relate 
stringency measures to the spread of the epidemic consists of economic 
support and health system response together with closures. Thus, it is 
not adequate for explaining changes in electricity demand since eco
nomic supports or policy changes in the health system do not impact 
consumption directly. For this purpose, we designed two contingency 
indices, Index 1 (I1) and Index 2 (I2), described below, to figure out the 
level of restriction applied in Turkey. 

In order to determine the relationship between the contingency 

Fig. 3. Hourly electricity demand for the weeks of 13–20 April 2019 and 15–22 
April 2020, (a) total demand, (b) normalized demand. 
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measures and the electricity demand, the Level 1, 2, and 3 restriction 
classifications are used for I1 to analyze the total electricity demand 
when these restrictions are in place. As mentioned, the total electricity 
demand is forecasted based on the past demand, and the expected de
mand is determined to be compared with the actual demand. For a more 
accurate representation of the coverage of restrictions, we consider 
regional aspects of Level 1, 2, and 3 restrictions, some restrictions in 

terms of the affected population. The affected population of each re
striction is calculated based on affected regions/cities and used as I2. In 
Fig. 4, the components of the GRSI (stringency level) for Turkey and 
population-based index, I2, for the period January–June 2020 are 
compared. I2 is rising after March 2020 and, except for peaks arising 
from weekend restrictions, falls in May and June 2020, consistent with 
the gradual return to normal conditions. Although the I2 index is quite 

Fig. 4. Comparison of the population-based index (I2) with Oxford stringency and closure index (GRSI).  

Fig. 5. Actual and forecasted demand for January–June 2020.  
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similar to GSRI, there are differences, especially in the peak levels. It is 
observed that no other restriction affects electricity demand more than 
complete lockdowns. 

4. The impacts of COVID-19 and market analysis 

COVID-19 is an obvious threat and unexpected challenge which 
impacts many sectors profoundly, including the electricity market. As 
explained above, the restrictions and their duration varied across the 
countries, and the restrictions applied in Turkey are classified into three 

categories. I1 and I2 are proposed to assess the restriction level imposed 
in Turkey to compare it with other countries. A modulated FSE is pro
posed to forecast the expected demand based on the past data as if the 
pandemic was ineffective. The estimated impact of each restriction is 
determined based on the comparison of expected and actual demand. 
The estimated level of demand that is shifted in the daily demand curve 
and the impact of restricted population on demand are also analyzed in 
this section. 

4.1. The impact of COVID-19 on total demand 

The modulated FSE is applied to the data set for 2018–2019, the 
demand is forecasted for each year based on the previous two years, and 
monthly errors are calculated to make comparisons. In this computation, 
hourly demand over a year horizon is obtained from data for the pre
vious two years; that is, data for 2016–2017 is used to forecast hourly 
demand for 2018. Similarly, data for 2017–2018 is used to forecast 
hourly demand for 2019, and finally, data for 2018–2019 is used to 
predict hourly consumption during 2020. 

Fig. 5 shows the forecasted demand and the actual demand for 

Fig. 6. Forecast errors (MAPE) for 2018–2020.  

Fig. 7. Histogram of hourly forecast errors.  

Table 1 
Reductions of consumption for weekdays, weekends, and all days of the week.  

Restrictions Weekdays Weekends All Days 

Level 1 2% 2% 2% 
Level 2 9% 8% 9% 
Level 3 21% 10% 12% 
Total loss 31% 19% 23% 
R2   89.92%  

Fig. 8. The effect of restrictions on demand for each hour.  

Fig. 9. Electricity demand as a function of restrictions.  
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January–June 2020. As seen in Fig. 5, there is a considerable difference 
between the model forecast and actual consumption during the period 
March–June 2020. 

In order to assess the discrepancy between the forecasted and the 
actual demand, Mean Absolute Percentage Errors (MAPE) are computed 
as presented in Fig. 6. The mean MAPE is 4.4% for January 2018 to 
March 2020, but it rises to 13.13% for April–June 2020, much beyond 
previous statistical variability. Forecast errors rise above the 1-σ band 
during fall 2018 also. This relatively high error level is still within sta
tistical variability due to unusual climatic conditions in that period. In 
June 2020, with the “return to the normal”, forecast errors fell back to 
the 1-σ band. We recall that the errors displayed in Fig. 6 are monthly 
errors of the hourly forecast over a year horizon. This prediction method 

is tailored to long-term forecasts and overlooks short-term variations in 
the demand, such as variations in the demand due to climactic effects as 
in 2018, or the drastic change in the demand such as in 2020, due to 
unusual events. We also note that temperature effects would be included 
in the model by updating the FSE model by more sophisticated models, 
but as the errors during 2018 are within statistically acceptable limits, 
while the errors during 2020 are substantially beyond, we omit this 
analysis. 

The histogram of forecast errors for hourly demand is given in Fig. 7. 
It is observed that the forecast errors are within the 20% band under 
normal conditions. The histogram is skewed to the right, reaching the 
60% band, and since the demand is reduced, the errors are positive and 
high. The error rates indicate a parallel structure with the restriction 
indices, they increase as more restrictions are imposed, and they can be 
used to estimate the impact of restrictions on demand. 

The error rates are mapped with the demand and timing of the re
strictions, and they are used to calculate the impact of each restriction 
on total demand. For this, each day is labeled by the level of the relevant 
restriction, as given by the index I1, and forecast errors, as representa
tives of the deviations from the expected demand, are tabulated. In 
Table 1, we present their averages to represent the decrease in the de
mand caused by the corresponding type of restriction, i.e., the impact of 
each restriction on total demand. Note that the decrease rates are mar
ginal, and the cumulative impact should be considered at each level. The 
restrictions range from low to high levels; hence, the incremental im
pacts explain decreasing demand when a new restriction is imposed. The 
coefficient of determination, R2, of the model for all days of the week is 
almost 90%, as provided in Table 1. 

The results in Table 1 show that the age-specific restrictions result in 
a 2% decrease in demand. If the social distancing restrictions are added, 
the total decrease becomes 11%; finally, total lockdown leads to a 23% 
decrease in total demand. The forecasting model’s predictive power is 
extensively tested using two types of k-fold cross-validation tests, details 
of which are given in the Appendix. Validation tests show that the 
proposed model generates demand forecasts with a prediction error of 
3–5% for 2018 and 2019. For 2020, forecast deviation larger than this 

Table 2 
Description of eleven pairs of restrictions and affected populations.  

Age 
Group 

City Group* Population 
Type 

Affected 
Population 

Percentage of 
Affected Population 

Details of the Contingency Measures Population Types and 
Contingency Levels (I2) 

Percentage of 
Demand 

All ages All cities A 0 0 No restriction A.0 100.00% 
>65 All cities B 7,550,727 0.0908 Age restrictions (>65) B.1 87.90% 
>65 and 
< 20 

All cities C 33,094,666 0.3979 Age restrictions (>65, <20) C.1 87.95% 

All ages 15 
Metropoles 

D 60,424,294 0.7266 Age restrictions (>65, <20) 
+ Social restrictions for 15 metropoles 

C.1, 
D.2 

84.04% 

All ages 15 
Metropoles 

D 60,424,294 0.7266 Age restrictions (>65, <20) 
+ Social restrictions for 15 metropoles 
+ Lockdowns for 15 metropoles 

C.1, 
D.2, 
D.3 

83.51% 

All ages 24 
Metropoles 

E 66,931,982 0.8049 Age restrictions (>65, <20) 
+ Social restrictions for 24 metropoles 

C.1, 
E.2 

79.09% 

All ages 24 
Metropoles 

E 66,931,982 0.8049 Age restrictions (>65, <20) 
+ Social restrictions for 24 metropoles 
+ Lockdowns for 24 metropoles 

C.1, 
E.2, 
E.3 

77.64% 

All ages 31 
Metropoles 

F 72,742,762 0.8747 Age restrictions (>65, <20) 
+ Social restrictions for 31 metropoles 

C.1, 
F.2 

70.57% 

All ages 31 
Metropoles 

F 72,742,762 0.8747 Age restrictions (>65, <20) 
+ Social restrictions for 31 metropoles 
+ Lockdowns for 31 metropoles 

C.1, 
F.2, 
F.3 

69.29% 

All ages All cities G 83,154,997 1.0000 Half-day lockdown (08:30–18:30) for 
all cities, no industrial shutdown 

C.1 
G.3 

89.76% 

All ages All cities G 83,154,997 1.0000 Age restrictions (>65, <20) 
+ Social restrictions for all cities 

C.1 
G.2 

58.85% 

* 15 Metropoles: Ankara, Balikesir, Bursa, Eskisehir, Gaziantep, Istanbul, Izmir, Kayseri, Kocaeli, Konya, Manisa, Sakarya, Samsun, Van, Zonguldak. 
24 Metropoles: Adana, Ankara, Balikesir, Bursa, Denizli, Diyarbakir, Eskisehir, Gaziantep, Istanbul, Izmir, K.Maraş, Kayseri, Kocaeli, Konya, Manisa, Mardin, Ordu, 
Sakarya, Samsun, Şanliurfa, Tekirdag, Trabzon, Van, Zonguldak. 
31 Metropoles: Adana, Ankara, Antalya, Aydin, Balikesir, Bursa, Denizli, Diyarbakir, Erzurum, Eskisehir, Gaziantep, Hatay, Istanbul, Izmir, K.Maraş, Kayseri, Kocaeli, 
Konya, Malatya, Manisa, Mardin, Mersin, Mugla, Ordu, Sakarya, Samsun, Sanliurfa, Tekirdag, Trabzon, Van, Zonguldak. 

Fig. 10. Electricity demand with respect to I2.  
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base-level error is attributed to the impact of curfews and COVID-19. 
The percentage decrease in the demand for each restriction and hour 

in a day is computed similarly to examine changes in the hourly demand, 
with the results are presented in Fig. 8. From Fig. 8, one can see that the 
impact of all restrictions on daytime demand is higher than the impact 
on night-time demand. It is also worth mentioning that Level 1 re
strictions have almost no impact on night-time demand, whereas other 
restrictions have gradual impacts. 

The restriction levels forming the index I1 increase in severity and the 
percentage of the affected population. They are also inclusive because 
Level 2 includes Level 1, and Level 3 includes level 2. It is thus expected 
that the plot of total demand with respect to I1 will be monotone 
decreasing. In Fig. 9, we present the plot of total demand for weekdays, 
weekends, and all days of the week for days corresponding to Level 1, 2, 
and 3 restrictions and for days without restriction. The impact of each 
restriction is observed. Even though demand is usually higher on 
weekdays than on weekends, weekday demand gets closer to weekend 
demand with each applied restriction. Weekday and weekend means are 
approximately the same for Level 3 restrictions. Level 1, i.e., the “Age 
restriction” effect, seems higher than expected since all ordinary days in 
2020 are in the Winter, and the restrictions started at the beginning of 
the Spring. The consequence is a higher mean for days with “No re
strictions” due to the already high consumption in Winter. 

During March–June 2020, the age restrictions classified as Level 1 
were applied nationwide. The coverage of Level 2 and Level 3 re
strictions increased gradually; they were put in force in 3 groups of 
major metropolitan areas, consisting of nested sets of 15, 24, and 31 
cities. In order to refine the dependency of the electricity both on the 
severity of the restrictions and on their coverage, we use a two-variable 

index I2, consisting of a pair of labels, such as A.0, where the first label 
represents the coverage as “the affected population” and the second 
label represents the “Level” of restrictions applied. Population groups 
are labeled by capital letters, A-G, denoting nested sets of cities, as 
described in Table 2 below. Different restrictions may be applied to 
different groups of people at a given period, as indicated in Table 2. 

Fig. 10 shows the relationship between the demand and the popu
lation affected by each restriction, i.e., the index I2. Restrictions are 
grouped based on types and number of affected people, and eleven 
different restriction and population pairs are obtained as described in 
Table 2. It is observed that electricity demand decreases with the con
tingency level, with the only exception for the type G.3 contingency 
measure. This restriction is a half-day lockdown for the whole country 
because of the country-wide university entrance exam. It seems that it 
had little effect on electricity consumption. The restrictions on this 
specific day had little effect on electricity consumption, mainly because 
it was not accompanied by the shutdown of industrial plants, as opposed 
to previous lockdowns. 

4.2. The impact of COVID-19 on the daily demand curve 

In order to observe the changes in daily habits and response to re
strictions, daily demand curves are plotted for each day. We analyzed 
pattern changes in March–June in Fig. 11 by plotting the data for 
Mondays in each month. The figures show that the daily curves of the 
weekday (Monday) demand pattern changed in April and May in 2020. 
On typical weekdays, the consumption starts to increase at 7:00 a.m. On 
the contrary, in the pandemic period, the starting time for the rise in 
consumption shifted approximately 1 h and became 8:00 a.m. 

Fig. 11. Daily consumption pattern on Mondays of March–June in 2016–2020.  
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Moreover, the shape of the curve changes in that weekend and 
weekday consumption patterns are similar, and differences observed 
between typical weekend and weekday consumptions are not observed 
here. In addition to this, intra-day consumptions have an increasing 
trend between 08:00 a.m. and 09:00 p.m.; this is also different from the 
typical weekday pattern. Normally, consumption reaches a higher level 

at noon and continues at this level until 07:00 p.m. We can clearly say 
that stopping industrial use and closing residential buildings/areas 
cause a lower consumption profile and represent household habits more 
clearly. People working from home during the pandemic start and finish 
daily active life later than before. Their routine daily activities are 
shifted, and consumption patterns resemble those of national holidays. 
There are no differences between the years in June because of reduced 
restrictions that allowed industrial operations and residential activities 
to return to normal. Starting on the 1st of June, public places like 
shopping malls and restaurants were allowed to open, and many in
dustrial companies started operating again. 

The estimated ratio of shifted demand to other hours is helpful in
formation for the market operator and electricity system players. In 
order to measure the estimated level of demand shifted to other hours, 
the hourly demand of the day is normalized over 24 h of demand, and 
the ratio of demand allocated to each hour is calculated. The same 
process is followed for 2016–2019, and their average values are calcu
lated for each hour. Then, the normalized curves of 2020 and 
2016–2019 are compared. Fig. 12 shows the total normalized demand 
for Mondays of March–June 2020, and the average normalized demand 
for Mondays of 2016–2019. In the pandemic period, a change in the 
demand pattern is observed, such that the ratio of night-time demand 
increases and the peak demand in daytime decreases and shifts. The 
demand shift to other hours starts in March, increases in April and May, 
and approaches normal expectations with the transition to normal life in 
June. The daily peaks change and sometimes flatten, the peak demand at 
night increases. It is also observed that more demand is shifted to night 
hours, where the demand used to be the lowest. 

The same approach is applied to all Mondays in the March–June 

Fig. 12. Normalized daily electricity demand for the months March–June.  

Fig. 13. Comparison of normalized consumption profiles for the 
months March–June. 
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period, and the ratio of the shifted demand to other hours is calculated. 
Fig. 13 shows both normalized data and their difference. It is observed 
that the demand profile in the daily curve changed significantly in April 
and May. 

The ratio of the difference from the 2016–2019 averages for each 
hour is calculated to estimate further the percentage of demand that is 
shifted. Table 3 provides the percentage change in the consumption for 
each hour and each month. The provided data shows the value of the 
line labeled “Differences” in Fig. 13. In this table, changes below ±1% 
are considered as horizontal behavior. It can be seen that there is no 
significant change in January and February; there is an increase in the 
consumption at night, starting from March with the onset of restrictions. 
This consumption shift to night-time increased in April and reached a 
maximum in May. Such a result might show that the level of risk and 
threat was understood well, and people behaved accordingly. In June, 
electricity consumption returns to normal levels as activities transition 
to normal. The standard deviations also confirm this argument. 

4.3. An overview of the change in sectoral demand 

The dynamics of electricity demand have changed along with other 
sectors. The demand for this unique commodity comes from industrial, 
residential, commercial, and other areas. Generation, transmission, and 
maintenance schedules are planned long before the actual generation 
day, and the demand forecasts are critical inputs to this process, even if 
they are not perfect. Although the total hourly demand data is released 
by the system operator EPIAS, the demand is not classified at this phase. 
The demand is classified as residential, industrial, business, and agri
cultural by Energy Market Regulatory Authority (EMRA), and the data is 
released as monthly sector reports in which the total monthly demand is 
released. In Fig. 14, electricity consumption is plotted for residential, 
industrial, business, and agricultural use in 2020 compared to the 
average consumption in the years 2016–2019. The latest sectoral data 
available for 2020 is published in October (EMRA, 2020). 

In 2020, there is a persistent increase in residential consumption, 
whereas business consumption decreased significantly until September 
due to the measures taken to reduce mobility. As there have been recent 
business shutdowns in November and December 2020, business con
sumption is expected to decline further. Although a sharp decline in 
industrial consumption can be observed in April and May, there is a 
steep increase starting in June with over-consumption due to delayed 
production. However, there is no significant change in agricultural 
consumption, other than a slight increase that becomes more apparent 
starting in August, since food supply never ceased to be essential and 
agricultural production had to be maintained during the pandemic. 
These trends in electricity consumption by various sectors highlight the 
importance of reliable power supply, and the impact of disruptions in 
the electricity supply chains based on generation types can be investi
gated as a future research direction. Understanding the impact of the 
pandemic and behavioral restrictions on demand requires further work 
as the future of COVID-19 is still uncertain. 

5. Discussion and lessons learned 

Electrical energy is an essential resource for the well-being of hu
manity and has become even more crucial in 2020 with the outbreak of 
the COVID-19 pandemic that profoundly affected lives globally. There 
are several uncertainties about the duration and extent of the pandemic, 
as well as the development, delivery, and effectiveness of the drugs and 
vaccines against the disease. Due to these uncertainties, the duration and 
characteristics of the restrictions such as social distancing, the closing of 
borders, and limiting transportation are also uncertain. The electricity 
market strives to use the most proper resources to meet the total demand 
at the most affordable prices. The measures taken due to the spread of 
COVID-19 were unexpected and had unforeseen effects. 

It is an obligation to carry out informative studies on the level of 
effects such emergency events may have on the electricity demand to 
inform decision-makers and relevant stakeholders by examining the 

Table 3 
Comparison of hourly demand shift ratios in January–June 2020. 
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data with uncertainty assumptions. When the pandemic is examined, the 
duration of the outbreak, the levels of restrictions, and the availability of 
international supply/transportation stand out as the three most impor
tant aspects. Although it is known that drug and vaccine studies are 
continuing, a short-term solution is not envisaged, the epidemic may 
come in new waves, and the virus may mutate. The restrictions imposed 
by the governments varied depending on the size of the spread, and in 
Turkey, the restrictions are imposed gradually. The proposed indices I1 
and I2 and comparison with the Oxford stringency index (GRSI) show 
that the contingency measure level in Turkey is quite close to GRSI. 

The pandemic experience recalls national holidays on which indus
trial facilities are closed, and demand behaves differently than under 
normal circumstances but raises unique estimation issues. In previous 
work, the effect of industrial demand has been calculated in terms of the 
decrease in electricity demand during holidays, and it was also shown 
that the role temperature is limited in increasing forecast accuracy 
(Yukseltan et al., 2017). It was observed that adding the temperature 
information of past years gives little improvement to predicting hourly 
demand for a one-year horizon, just for the fact that the modulation of 
diurnal variation by the seasonal variation is good enough to predict the 
demand under “normal” climate conditions, provided that, electricity is 
not used excessively for heating and cooling. However, climate condi
tions that are way above the expected limits can still lead to an increase 
in the forecast error; but this situation can be remedied only in forecasts 
over shorter horizons. The proposed Modulated Fourier Series Expan
sion methodology applied to the electricity consumption in Turkey is 
shown to forecast demand quite successfully as it captures daily and 
seasonal variations as well as temperature effects, in such a way that no 
additional explicit climactic information is needed. The forecasted and 
actual demand comparison produced the rate of demand loss in each 
restriction type that provides interesting results. Although the total 

impact of a lockdown is estimated as 23%, Level 1, 2, and 3 have 2%, 
9%, and 12% expected marginal impacts on demand. The most signifi
cant demand loss is apparently due to reduced industrial demand rather 
than the reduced mobility of social groups. These rates can be used for 
demand forecasting, given that the expected demand can be estimated. 

The daily demand profile in a typical week is also relevant to system 
sustainability, considering the availability of renewable and nonre
newable generation resources and the transmission system. The analysis 
shows that the demand is shifted, especially to night-time. The peaks in 
the daytime shifted and sometimes flattened, while the peaks at nights 
increased and shifted to hours where normally lower demands are ex
pected. The estimated impact of restrictions on hourly demand confirms 
this argument. The system operator, as well as market participants, can 
adjust their plans based on the restrictions if the pandemic is prolonged. 

Turkey is a net energy importing country, and a significant amount of 
electricity is provided from imported resources. Natural gas and im
ported coal comprise a significant portion (28% and 10%) of installed 
capacity in the Turkish electricity system, and each contributes around 
20% to the annual generation (TEIAS, 2020). The pandemic process 
severely impacted the supply chains, and the supply of natural gas and 
coal can be a problem if the epidemic lasts longer in the region, in which 
case the available capacity should be able to meet the demand. How
ever, demand has declined, and the rate of decline depends on 
restrictions. 

6. Conclusion 

The impacts of restrictions on the total demand and daily demand 
profile are apparent and need to be carefully analyzed for each country. 
The impacts are expected to differ based on industrial, residential, and 
commercial use. The total demand declined more as the restrictions 

Fig. 14. Electricity consumption by area.  
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were imposed incrementally in Turkey, and the daily demand profile 
significantly changed. A comparison with the Oxford stringency index 
(GRSI) shows that Turkey is restricted almost like other countries. This 
analysis of demand pattern changes due to the pandemic helps us 
observe significant changes in habits and routines in terms of electricity. 
The main findings can be summarized as follows: 

• Demand decreased by 2%, 9%, and 12% when Level 1, 2, and 3 re
strictions were in place, respectively, while the cumulative decline in 
Level 3 reached 23%.  

• The proposed population-based index (I2) provides analysis for 
restricted population and the demand loss, and it is shown that the 
demand will decline more if more of the population is restricted.  

• There is a significant demand shift to nights. Especially the demand 
between 7:00–14:00 is shifted to evening and night hours while the 
ratios of shifted demand can be seen for each hour. The peak demand 
and the total demand at night increased as people stayed home more.  

• The change in demand pattern and supply can provide vital feedback 
to assess the system flexibility and sustainability and a roadmap for 
the energy transition. The main findings and lessons learned are also 
discussed for the policymakers. 

The first case in Turkey was observed on March 11, 2020, and the 
restrictions are imposed until the beginning of June. The transition to 
normal life started, and after a relatively stable summer in terms of the 
number of new COVID-19 cases, the spread increased again, and the 
restrictions were imposed beginning in December. However, the re
strictions are not imposed after May, and hence it is not safe to use the 
data after May to analyze the impact on the demand. Remote working, 

home offices, online meetings and education, and social distancing rules 
became common practices. It is expected that a significant amount of the 
demand will be lost due to the shifted demand structure compared to the 
pre-pandemic period. 

Pandemics have significant impacts on almost all sectors and can be 
considered global crises. As the crises challenge the resilience of hu
manity and the systems built to provide the needs of humanity, they also 
teach lessons for the future and provide opportunities for change. The 
decision-makers should take action for the future and development of 
the energy system. The importance of the flexibility of the electricity 
system both on the supply and demand side to overcome unexpected 
issues is reconfirmed with the results of this study. The availability of 
national resources to meet the demand by replacing a missing capacity 
with other resources without significantly increasing the cost should be 
considered for a future vision. An increased resource mix, efficient re
sponses to crises, and meeting the demand under uncertainty can help 
increase the flexibility and resilience of electricity systems. 
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Appendix 

Our study uses the Fourier series to model hourly electricity demand in Turkey between 2016 and 2019 and then forecast electricity demand for 
2020. Deviations from our forecasts are attributed to the effect of restrictions on electricity consumption. 

In this part of the study, we conduct k-fold cross-validation to measure the predictive power of our model. We start our tests by dividing the data 
into two parts: the years 2016 and 2017 are set as the training set, and data from the 2018–2019 period is kept as the test set. The test set is divided into 
eight parts, each of which is a 3-month interval. After re-calibrating the model and measuring the forecast deviation, the training set is updated in two 
ways: a) Tested data is added to the training set, whereas the same amount of old data is removed from the training set. In this option, the training set is 
considered a sliding window of constant length; b) Tested data is added to the training set without removing old data. In this application, the size of the 
training set increases incrementally after every test until it includes the entire demand dataset for the 2016–2019 period. Results show that the model’s 
predictive performance is satisfactory, with a maximum 4.4% MAPE value, whereas the predictions are more accurate when the training set size is 
held constant. As the length of the training set increases, the model slightly underestimates the actual value, observed at peak errors that occur before 
or after holiday periods. Table A presents the MAPE values for different time slices, and Figures A, B, and C present the ranges for weekly, monthly, and 
quarterly time slices, respectively.  

Table A 
MAPE values for different time horizons  

Error Period Weekly Monthly Quarterly 

Training Period Type Sliding Window Incremental Sliding Window Incremental Sliding Window Incremental 

Set 1 2.82% 2.94% 3.14% 3.20% 3.46% 3.47% 
Set 2 3.22% 3.36% 3.85% 3.95% 3.27% 3.52% 
Set 3 3.98% 3.73% 3.85% 3.81% 4.26% 4.22% 
Set 4 2.61% 4.94% 2.87% 5.55% 4.91% 4.98% 
Set 5 2.95% 4.04% 2.90% 3.80% 3.25% 5.30% 
Set 6 5.16% 4.10% 5.68% 4.35% 3.04% 4.11% 
Set 7 4.13% 4.22% 4.73% 4.40% 5.41% 4.07% 
Set 8 2.17% 3.47% 2.27% 3.85% 4.58% 3.91%   
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Fig. A. Error ranges for weekly time slices  

Fig. B. Error ranges for monthly time slices   
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Fig. C. Error ranges for quarterly time slices  
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