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ABSTRACT The emergence of technological innovations brings sophisticated threats. Cyberattacks are
increasing day by day aligned with these innovations and entails rapid solutions for defense mechanisms.
These attacks may hinder enterprise operations or more importantly, interrupt critical infrastructure systems,
that are essential to safety, security, and well-being of a society. Anomaly detection, as a protection step,
is significant for ensuring a system security. Logs, which are accepted sources universally, are utilized
in system health monitoring and intrusion detection systems. Recent developments in Natural Language
Processing (NLP) studies show that contextual information decreases false-positives yield in detecting
anomalous behaviors. Transformers and their adaptations to various language understanding tasks exemplify
the enhanced ability to extract this information. Deep network based anomaly detection solutions use
generally feature-based transfer learning methods. This type of learning presents a new set of weights
for each log type. It is unfeasible and a redundant way considering various log sources. Also, a vague
representation of model decisions prevents learning from threat data and improving model capability. In this
paper, we propose AnomalyAdapters (AAs) which is an extensible multi-anomaly task detection model.
It uses pretrained transformers’ variant to encode a log sequences and utilizes adapters to learn a log structure
and anomaly types. Adapter-based approach collects contextual information, eliminates information loss
in learning, and learns anomaly detection tasks from different log sources without overuse of parameters.
Lastly, our work elucidates the decision making process of the proposed model on different log datasets to
emphasize extraction of threat data via explainability experiments.

INDEX TERMS Anomaly detection, adapters, cyber threat intelligence, explainability, log, transfer learning.

I. INTRODUCTION
System security poses a big step for enterprises, governments,
and safety critical systems. Adaptation of Industry 4.0 and
IoT concepts open up more vulnerabilities, because the sys-
tems become more interconnected. In large-scale systems
misidentifying an action can obstruct operations and nega-
tively affect the maintenance of their services. Monitoring
and analyzing threats is crucial as the state of technology
grows rapidly. The more complex a system becomes, the
harder it is to detect threats’ behavior. Thus, scalable and
flexible security solutions are required for an organization [1].
Anomaly detection systems are a part of Intrusion Detection
or Prevention Systems (IDS/IPS), which are connected to
different sources. A common practice is to use rule-based
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applications with the help of system administrators that are
responsible for investigating events based on the threat intel-
ligence. These types of approaches tend to fail, due to joined
sources in a system yielding excessive data. Identifying
anomalous behavior differs in sources and also is challenging
considering streaming data in an online setting. Therefore,
detecting anomalous events accurately and timely is cru-
cial [18]. Log is accepted as an universal indicator of events
for debugging and analysis purposes. They are designed to
deliver information about an action and its related variables
of a system. System logs are the main source of monitoring
cyber incidents in real-time [6]. Continuous expansion of
configurations of logs with each update to a system compli-
cates sustaining the stability of defense mechanism.

Anomaly detection is the process of revealing undefined
and abnormal actions in the system according to movements
that are usually detrimental, predefined, or determined by an
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observation [2]. This is a data-driven technique for investi-
gating unexpected behaviors [6]. A log is a unstructured text
that is designed for debugging and monitoring. It is stored
in a text form for readability and convenience. Creating logs
for readability produces an excessive number of instances
and increases the difficulty of automation [8]. Moreover,
it makes detecting anomalies harder with a combination of
many sources [7].

Log mining, parsing, and anomaly detection techniques
must evolve to capture a decisive intelligence. Anomaly
detection studies can be divided into two categories: log
key-based and semantic-based, according to how they use log
data. As key-based methods, earlier works focused on static
indicators or kill-chain analysis methods utilizing logs such
as; PCA [9], invariant mining [10], and workflow monitor-
ing [11]. DeepLog [12] approaches logs as an unstructured
text and adopts text processing techniques to extract log
templates(or keys) with a parsing tool [24]. It uses long short-
term memory (LSTM) to predict next log keys via learn-
ing the current normal log event sequence from antecedent
events. Furthermore, advances in deep networks started to
lead anomaly detection studies. More recent studies oriented
toward NLP techniques are able to extract contextual infor-
mation. These are also called log semantic-based methods.
LogAnomaly [16] and LogRobust [17] both utilize semantic
information of log sequences with combination of their tem-
plates. Transformer [5] architecture brings promising results
in various domains’ problems and tasks, especially in text
data. Thus, it suitable to be experimented in anomaly detec-
tion studies. HitAnomaly [15] indicates the instability of
log parsing tools and combines semantic information with
log’s parameter values. Another recent work, Logsy [18]
removes the need of log parsing tools to prevent informa-
tion loss in yielding templates and uses transformer model
with a multi-head attention mechanism. To achieve that,
these semantic-based works utilize a pretrained embedding
to transfer knowledge into anomaly detection task. Trans-
fer learning methods are not signified between anomaly
task domains; however the method of implementation can
improve tasks in the existing environment. To that extent,
we believe that anomaly detection studies based on log data
can be improved via semantic information, which is enabled
by transformer architecture. Besides, it can be optimized and
adapted for applications in which multiple models need to be
trained for anomaly tasks in an online setting.

In this study, we approach anomaly detection as a
data-driven application and propose a task-based anomaly
detection method considering a central system that manages
multiple sources. To achieve that, we utilize an adapter-based
learning in the detection model. Adapters were first intro-
duced as transfer learning method for detecting visual repre-
sentation [48], and later introduced for language processing
for transformers [45]. Additionally, as discussed in [2]
and [3], we study the types of anomalies in three cat-
egories: point, conditional, and collective. We are moti-
vated by the advantages and versatility of transformer-based

language models and propose a model for host-based
anomaly detection systems. Considering each log as a sen-
tence and system-calls as a language; our aim is to gain
semantic information through adapters to distinguish anoma-
lies. Using the nature of language models, we aim to use a
multi-purpose approach, which is expandable to new sources
without loss of information and overuse of parameters.

Our contributions can be summarized as follows:
• We utilize ROBERTa [31] English language model as
a knowledge base, which is a robust version of the
BERT architecture. In contrast to related studies, we use
Byte-Pair Encoding [13] instead of WordPiece [14] in
tokenization.

• Instead of a fully fine-tuning model, we have designed
language and anomaly adapters for system logs to trans-
fer knowledge without loss of information.

• We experimented on widening the applicability of
anomaly detection in the systems. We designed multi-
anomaly task detection using a combination of multiple
adapters.

• We also presented explainability on our evaluation
through gradient-based algorithms and visualized model
decisions for investigation of cyber threat data.

II. BACKGROUND AND RELATED WORK
Anomaly detection is the activity to distinguish unmatched,
peculiar, or unknown examples from the data [2]. This type
of detection techniques are used in different applications such
as; fraud detection in finance, intrusion detection in cyber
security, fault detection in safety critical systems, and access
control models [20] in critical infrastructures. These defense
applications have a system-wide priority, since it is crucial to
maintain their services. Analyzing system logs is also a way
to understand runtime behavior. As an example, a peculiar
network traffic flow at a workstation points out a port scan
attack, which is an investigation attack by hackers to find
open ways or check the state of security of an organization.
In addition, a vast number of logs are created by complex
systems constrain analyzes manually [21]. System operators
usually investigate state of a system, but large number of
attributes included in logs generate complexity prohibiting
the understanding contextual information. Most solutions for
anomaly detection are for a specific domain or problem,
because the availability of the data for stating anomalous
behavior is a problem [4]. As in the definition, detection of
anomalies are simple; however, in application domain, it is
very challenging. Key components of anomaly detection are
detection techniques, problem characteristics, and the appli-
cation source [19].

There are several categorization of the existing anomaly
detection techniques, but one can confine them into; log
template or key based, log semantic-based under the hood
of supervised, and unsupervised methods [12], [15]–[18].
Key-based methods use log parsing tools to overcome free
text problem and identify structured versions of logs as a
template. There are two parsers that have been tested in
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recent works. Spell is an unsupervised parsing method which
operates based on longest common sub-sequence. Drain,
named Drain3 with Python3 compatibility update,1 is an
online tree based parser with specific written rules [25]. Sev-
eral setbacks appear in utilizing parser: requiringmanual con-
figurations and controlling rules become complexier, wrong
parsed logs create false alarms due to the inability in capturing
parameter values or actions [15], and acquired templates can
cause loss of information [18]. Recent studies have mainly
focused on capturing semantics from logs using pretrained
embeddings to overcome these problems. It also means less
processing requirement before a preparing detection model.

Considering anomaly detection as an NLP task, using pre-
trained word or sub-word embeddings greatly increases the
accuracy instead of a sparse definition such as a one-hot rep-
resentation.Word2vec [26] and fastText [27] are shallow deep
network based language models used in the area. There are
two types of usages in anomaly detection: pretrained embed-
dings for encoding directly or utilizing related algorithms to
create a variant from scratch.Word Embeddings for Anomaly
Classification (WEAC) method [29] extracts features from
event logs through word embeddings, which indicate abnor-
mal behaviors. Skip-gram and Continuous Bag of Words
are used in training from scratch. So, Word2vec algorithm
was used to gather vector representation of words. On the
contrary, WEAC does not discard infrequent words, because
it is important not to omit those for anomaly detection.
LogAnomaly [16] presents template2vec algorithm which
is based on the distributional lexical-contrast embedding
(dLCE)’s method [28] to define word representation based
on log sources from scratch. Produced vector representations
are the inputs fed into LSTM model to detect anomalies.
LogRobust [17] uses pretrained fastText embeddings, which
is already trained on theWikipedia dump.2 It attempts to cap-
ture semantic information of log events and eliminates more
parsing errors, due to provide better similarity in embedding
space.

Natural language understanding methods have improved
with the introduction of transformer-based LMs. BERT [30]
is a pioneer language representation model trained on English
Wikipedia and BooksCorpus in the pretraining stage. It is
a masked language model that efficiently provides bidirec-
tional semantics. It is greatly contributed in various NLP
tasks, due to its fine-tuning ability to adapt downstream
tasks. BioBERT [32], SciBERT [33] andNeuroBERT [34] are
examples of variants of transferring knowledge in different
domains. In anomaly detection studies, HitAnomaly [15] uses
BERT for gathering word vector representations to build
log sequence embeddings, then uses the information to dis-
tinguish anomalies within hierarchical transformer blocks.
Logsy [18] uses its own tokenization method and creates a
log vector token that is similar to ‘[CLS]’ token presented

1https://github.com/IBM/Drain3
2https://dumps.wikimedia.org/

in BERT paper. It represents a summary of a log event and
identifies anomalous behavior with a transformer model.

There are two examples of transfer learning methods:
feature-based and fine-tuning. The anomaly detection meth-
ods, we investigated, utilize feature-based transfer learn-
ing. They profit from pretrained embeddings to define log
sequences’ representations and are adapted into proposed
deep learning architectures (LSTM, Bi-LSTM and Trans-
former). In procuring security of a complex system, central
log monitoring tools are responsible for analyzing sequences
from multiple and nonidentical log sources. Proposed deep
networks need to adapt each different source, which relates
to different tasks based on the source. In this process, both
feature-based and fine-tuning present new updated weights
for each task. This is an inefficient way considering trans-
ferred model’s degree of sharing parameters. if we are up
to create new models for each source or update learned
weights, the processes cause loss of information also known
as catastrophic forgetting [39]. In an online setting, streaming
vast amount of log sources create a necessity to train new
model for a new source sequentially without retraining shared
models.

In our work, we focus on log semantic-based methods and
improve anomaly detection as a downstream task. We uti-
lize pretrained ROBERTa language model. In contrast to
its predecessor (BERT), it uses a dynamic changing mask-
ing pattern, is able to support longer sequences and dis-
cards next sentences prediction task in pretraining [31].
By this way, the model indicates enhanced performance
in post-training methods and downstream tasks in exper-
iments [31]. To learn datasets and anomalies, we deploy
adapter-based [45] transfer learning to create scalable and
parameter-efficient model which is applicable to various log
sources at once. We aimed to build a compact model, consid-
ering stream of log sequences as an input.

III. EXPERIMENTS
The proposed model is constructed as a pipelined flow.
First, log events are gathered from system logs and prepared
for language model training, then we prepare log language
adapters for learning synthetic structure. Second, we pre-
pare data structure of log sequences according to definition
of anomalies, then we build structured logs for anomaly
adapters. Third, we combine anomaly adapters(AAs) for
multi-anomaly task objective. Lastly, we evaluate our exper-
iments with related metrics and compare with recent stud-
ies, but importantly we test single-source and multi-source
pipelines with explainability methods to understand model
decisions and acquire feedback on treat data.

Our experiments are performed using a local AI-powered
machine. We used a Volta-type architecture GPU with
16GB memory (3xNVIDIA RTX A4000-16GB) and Intel(R)
Core(TM) i9-10900X CPU @ 3.70GHz. Volta architecture
allows mixed precision ability in execution and enables faster
iterations in our experiments. ‘O1’ option -Mixed Precision-
is used (NVIDIA-Automatic Mixed Precision library [42]).
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It means tensor-type calculations is made on FP16(fixed
precision, 16) which are called white-listed operations.
Moreover, black-listed operations are executed in FP32(fixed
precision, 32) such as softmax. By this way, large-scale
of logs trained and adapted to tasks more efficiently and
timely [23].

Source code of experiments can be found on the github
page.3

A. DATASETS
1) FIREWALL LOGS
The firewall dataset consists of 14,277,447 logs. Three days
activity in a corporate network are simulated. We have used
all log sequence except for the first day, which includes a
Denial of Service (DoS) attack. We have extracted %0.01
of the abnormal event. Most of the data in first day is pre-
dominated by DoS attack, which we omitted and edited data
without changing timeline of log events, since attack focuses
on only several workstations in the network. 172,135 number
of normal logs and 16,902 number of anomalous logs, which
consist of DoS, Port scanning, worms and unknown machine
connections. This dataset was also mentioned in finding a
DoS attack at [12]. This dataset is particularly simulated for
IEEEVisual Analytics Science and Technology (VAST) 2011
MiniChallenge-2.

We chose to introduce this dataset because of the explain-
ability motivation aligned with existing Use of Policy Rules
in documentation. Additionally, the dataset presents new type
of anomalous events different than HDFS dataset, which also
fits the expected scenario.

2) HDFS
Hadoop Distributed File Systems (HDFS) dataset was first
presented in Xu et al.’s work [9]. It consist of 11,175,629
logs gathered fromAmazon EC2 nodes. A total of 10,887,379
logs are tagged normal and 288,250 logs are tagged abnormal.
Dataset can be found in LogHub, which is collection of
system log datasets for AI-based analytics [40].

Both datasets include ground truth information about
anomalous and normal behaviors. HDFS dataset includes
labeled block IDs indicating which block’s log sequence is
anomalous. Firewall dataset can be found in challenge called
Computer Network Operations at All Freight Corporation.4

Reviewer documents and Use of Policy Rules for All Freight
Corporation provide ground truth related to attacks in Fire-
wall and other log files(such as; PCAP and IDS logs).

B. CLEANING DATA
Log sources are for controlling and analyzing system events.
Those are prepared by system developers in nature of free text
for readability concerns [18]. It is crucial to clean duplicated
terms and augment symbolic information in the text without

3https://github.com/uunal/anomaly-adapters
4http://vacommunity.org/Computer+Networking+Operations+at+All+

Freight+Corporation

losing information. This process helps build a better knowl-
edge base for the anomaly detection model.

In the firewall dataset,message_codes are inserted into log
events for identification, as an index. Some event logs include
source and destination IPs. They are written in parenthesis.
Also, hex coded information can be found included in brack-
ets. This represents duplication of information. We removed
redundant text content and kept semantics intact. Symbolic
presentation of event actions, e.g., ‘− >’, is converted to
‘to’ in verbally describable form. In the HDFS dataset, event
logs consist of headers which its content also is included in
readable form. ‘INFO dfs.FSNamesystem: BLOCK*..’ and
‘WARN dfs. PendingReplicationBlocksPendingReplication-
Monitor:..’ are some examples which are removed to pre-
vent duplication. In this dataset, block information scripted
in different forms, we merged block identifiers ‘blk_-’ and
‘blk_’ to ‘blk’ for text regularization. These domain specific
cleaning steps are applied to sources before building log
vector representations.

C. PROCESSING
Logs can be considered unstructured or semi-structured type
of text. We aim to gather much broader contextual informa-
tion. To achieve that, processing data in our setup is two-folds;
First, we prepare data for a log language model. Second,
we prepare data for a log sequence anomaly detection model.

In log language model, we maintained line by line arrange-
ment of the log events in firewall and HDFS datasets and
applied cleaning steps. In this manner, we can learn contex-
tual structure of an event log.

In anomaly detection, datasets’ timeline and order of logs
need to keep intact during preprocessing, since log order
has a huge impact on defining anomalous events. In our
definitions, see Figure-1, timeline is used to point out order,
not specifically time that log occurs. Anomalous events dif-
fers in their data structure. In section a), log events formed
as T = [t1, t2, .., tN ] such that, tn−x is an event con-
sists of semantic features. On timeline n − x, a log event
has a abnormal token or token groups or whole log event.
In section b), log events are structured as T = [t1, t2, .., tN ],
such that tn−x+1 describes an event in the context of tn−x and
tn−x+2. On the timeline, event flow should not step on tn−x+1
unless it is abnormal. In section c), log events are structured
as T = [t1, t2, .., tN ] such that, log events collectively create
unwanted behavior for system health between tn−x and tn−y.
Contextual signs reveal anomalous behavior which spread
through log sequences in point, conditional and collective
anomalies.

From the point of language processing, each log line is
processed in a distinct context based on anomaly type. In a
simpler context, each line in log data set as L = [f1, f2, .., fN ]
such that fi, i ∈ [i, ..,N ]. N is number tokens created by
Byte-Pair Encoding (BPE) [13] and has similarities to Word-
Piece algorithm used in original BERT paper. Original BPE
algorithm was used for compressing bytes. In this version of
the algorithm, it combines most frequent characters to form
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FIGURE 1. Processing log sources by anomaly types.

n-grams till whole words. Using vocabulary of ROBERTa
language model, we prepared chunks of 512 tokens (maxi-
mum) via BPE for corresponding log sequence. Sequence of
tokens is defined by behavior of log event. In HDFS dataset,
this is determined using block ID. In firewall dataset, this
is determined by normal and various anomalous events. For
example, if fx describes port scan attack, all continuation logs
included in the chunk until max tokens are reached without
splitting a log event.

IV. ANOMALY DETECTION MODEL
Anomaly detection system is a part of intrusion detection or
security event monitoring (SIEM) tools [43]. Also, anoma-
lous events are not predefined or not expected patterns in the
normal activity [2]. The detection system analyzes log events
within diverse range of sources and indicate anomalous pat-
terns. To detect these patterns, we can explicate the problem
as binary classification [36], [37].

FIGURE 2. Overview of anomaly detection model.

Earlier log semantic-based approaches utilize mainly a
feature-based transfer learning. Transformer-based variants’
are good at learning from huge chunks of data and pro-
duce millions of parameters. Considering explosion of logs
and nature of analysis, detection models need to adapt

different (ab)normal behavior without retraining for each
source. By this way, we prevent creating new parameters and
forgetting information of the latter for each task [46].

Adapter fine-tuning is introduced for transformers archi-
tecture as explained in [45], aims to create a bottleneck in
transformer block to restrain created parameters and ease
sharing. We utilize ROBERTa as base model which has
2 parameters. This will be our shared parameters across
learning log sources and anomaly detection tasks. Each task
adapter introduces new parameters 8 and attached to cor-
responding transformer block n such that n ∈ {1, 2, ..,T },
T is the number of transformer block used pretrained model
(in our case, T = 12). To formulate, 8 is trained with loss
function as L and used source data asD for each task, see (1).
By this way, each task presents new set of parameters which
contains %1-3.4 of the base model [45]. For task t = 0:

80← argmin
8

L0(D0;2,8) (1)

As in described in processing step, there two types of
log data structure is created. First, we kept each log event
separately in order to capture syntax in log language mod-
eling. This process is only implemented in training language
adapters for further composition with log anomaly adapters.
Second, we formalise log sequences according to defined
anomaly types, see Figure 1. Streamed log sequences are
encoded with BPE tokenizer and fed into detection model.

In this work, we propose AnomalyAdapters which is a
flexible, modular and parameter-efficient transformer-based
model which provides transferring knowledge without losing
learned parameters and sharing among tasks with adapter-
tuning [45]. Our anomaly detection approach is two folds
for a log source: log source language learning, anomaly task
learning. Lastly, we propose multi-anomaly task detection
with AdapterFusion [46] method to analyze multiple sources
simultaneously.

A. LOG LANGUAGE ADAPTERS
Language modeling is required to comprehend distribution
of a log source [38]. Masked Language Model(MLM) train-
ing improves base model to represent syntactic structure of
a downstream task [41]. Therefore, building log source’s
language model expedites comprehending semantics of log
events. In MLM objective, randomly selected tokens in the
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log event. From that selected tokens, %80 of them replaced
with [MASK] special token,%10 of them unchanged and%10
of them changed with token in the vocabulary [31]. In MLM
training, cross-entropy loss function is used for optimization
of the model. In (2), it aims to learn q distribution from
inputed log event to true distribution of p in log source. DKL
denotes Kullback–Leibler (KL) divergence from p to q, and
training attempts to minimize divergence [38].

H (p, q) = −
∑
x

P(x)logP(x)−
∑
x

P(x)log
q(x)
p(x)

= H (p)+ DKL(p|q) (2)

In log language adapter (LLA) training, we kept original
ROBERTamodel implementation fromHuggingface [44] and
add adapter modules into transformer blocks using Adapters’
library [47]. We are using language adapter which introduced
in [49]. It is able to learn language specific transformations,
and we utilizing to adapt various log types. Adapter modules
are optimized and actual weights of base model are frozen
during training. This way we efficiently create less parame-
ters in tuning. In Figure 3, we have shown how log language
adapter module is added into transformer block. We aim
to transfer the information into distinguishing anomalous
activities.

FIGURE 3. Log source’s language adapter inside transformer block [46].

B. LOG ANOMALY DETECTION
In this section, we provide an architectural addition to adapt
anomaly detection in log sequence representations. Adapters
are able to create composition blocks in order to share infor-
mation at ease, see Figure 4. Language adapters are intended
to capture source specific knowledge. Furthermore, task
adapters aim to learn downstream task. In our setup, anomaly

detection is the second-order downstream task which adapt-
ing behavior of log sequences [49]. Anomaly adapters learns
these behaviors in a binary classification setup. In this step
of training, only log anomaly adapter(LAA) is activated and
optimized. Thus, Log LA and transformer weights are kept
frozen.

In (3), LLA includes a down-projection to hxd where h is
the hidden size of the model and d is the adapter’s dimension
with a ReLU activation afterwards. Finally an up-projection
to dxh is applied. The output of the log LA is fed into a down
projection again with following a swish activation function.
Then, up-projection is applied again to match dimensions
with h layers. In addition, r indicates residual value from
transformer block’s feed forward layer. Each value represents
adapter components in corresponding transformer block b.

LLAb(hb, rb) = Ub(ReLU (Db(hb)))+ rb
LAAb(hb, rb) = Ub(swish(Db(LLAb)))+ rb (3)

FIGURE 4. Log sequence’s anomaly task adapter inside transformer block.

C. MULTI-ANOMALY TASK DETECTION
In real-life log monitoring and analysis tools, log instances
are gathered from various machines in a system. To extend
the applicability of the approach, we propose multi-anomaly
task detectionwith creating composition of different LLA and
LAA stacks. We introduce a new ψ number of parameters to
learn how to cooperate stacks together on solving multiple
anomalies from different sources. In (4), for combined task
t we learn 9t parameters for n different task such that n ∈
{1, 2, . . . ,N }.

9t ← argmin
8

Lt (Dt ;2,φ1, . . . , φN ,8) (4)
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In this approach, presented ψ parameters consist of
Query(Qb), Key(Kb) and Value(Vb) that b indicates corre-
sponding transformer block. In each block, output of feed
forward layer fed into Qb and adapter’s output use as input
for Kb and Vb. In this way, we utilize attention-based learning
to decide which stack should be responsible for incoming log
sequence.

We calculate output of values from each adapters and
transformer block:

z′b,n = zTb,nVb
Z ′b = [z′b,0, . . . , z

′
b,N ] (5)

Key and query values are input into a softmax function to
learn which log AA is suitable for that log sequence. Then,
it is multiplied with AAs values create output.

sb = softmax(hTbQb ⊗ z
T
b,nKb)

ob = sTb Z
′
b (6)

In this multi-anomaly task training, we combined Firewall
Log AA and HDFS Log AA under the fusion module
explained above. Combination of AAs in fusion structure is
shown in Figure 5 that represents each transformer block in
the base model.

FIGURE 5. Multi-anomaly task detection block in each transformer block.

V. EVALUATION
In the experiments we applied the processing steps required
for both Firewall and HDFS datasets in Section III. First we
prepared log sources for language adapter training. Then,
we selected half of the datasets for language modeling. In this
selection we kept distribution of normal and abnormal log
events. In firewall dataset, type of events are found via attacks

that cause anomalies. In HDFS dataset, it is determined by
the distribution of normal and abnormal blockIDs. Stratified
sampling was used in the process of the data splitting. In log
sequence anomaly adapter training, log events are trans-
formed into normal and anomaly definitions as described
in 1. In both processing, normal events structured collectively.
Additionally, we have used %80 of data for training and
%20 of data for testing in each training phase. For additional
training hyperparameters, see Appendix B.

A. EVALUATION METRICS
Anomaly detection is a binary classification problem. False
Positive (FP) rates indicates wrongfully detected anomalies
and False Negative (FN) shows missed anomaly ratio in
detection from existing anomalous log events. To maximize
the performance, FP and FN rates should be minimized.
For this reason, we utilize Precision, Recall and F1-score
measures in evaluation.

Precision =
TP

TP+ FP
Recall =

TP
TP+ FN

F1-Score =
2 · Precision · Recall
Precision+ Recall

(7)

FIGURE 6. Evaluation on HDFS dataset. Evaluation metrics for Single AAs
for Firewall datasets are: Precision:0.99, Recall:0.98, F1-score:0.98.

In both training process and dataset, we used pre-
trained ROBERTa language model, as a transformer variant,
to encode and adapt defined anomaly types through adding a
bottleneck element. We have used several baselines to com-
pare log key-based and log semantic-based anomaly detection
methods. In log key-based approaches, we compared with
two studies, PCA [9] which analyzes log representation as
count vectors, DeepLog [12] which uses LSTM model to
predict next log key in workflow. In log semantic-based
approaches, LogAnomaly [16] creates feature-based learning
via dLCE log vector representation in LSTM model. LogRo-
bust [17] is another solution which initiates log representation
with shallow deep embeddings and facilitates from Bi-LSTM
model in detection. HitAnomaly [15] uses BERT-based log
and parameter embeddings with hierarchical transformer
architecture. As a counterpart, AnomalyAdapters is a novel
way to train on various log sources with an efficiency. And
we are able build composable and scalable anomaly detection
model. As a result, we have selected HDFS dataset as a
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common comparator and utilized firewall logs to establish
diversity in sources.

Additionally, we investigated the amount of newly intro-
duced parameters for log language and anomaly adapters.
ROBERTa model has 120M parameters which we share
among different anomaly tasks and sources. Single AAs
solution presents; %1.47 in LLA,%2.66 in LAA of the base
model’s parameters in Firewall logs, %1.47 in LLA,%3.38
in LAA of the base model’s parameters in HDFS logs. Multi
AAs fusion solutions presents additional%30 of basemodel’s
parameters for detecting anomalies from multiple sources.
In comparison to methods used in log semantic-based
anomaly detection models, we generated %2-4 base model
parameters for the anomaly detection model on a single
log source instead of creating %100 or more task specific
parameters.

In overall, we achieved on-par results with recent studies
with less parameters in Single AAs model for the HDFS
dataset. For the Firewall dataset, we achieved acceptably
high scores, especially in F1-score (0.98) in Single AAs
model. In combination of both log datasets, multi-anomaly
task detection model achieves considerably high F1-score
(0.945) with highly shared parameters without compromising
contextual information. This approach also establishes com-
petitive advantage on building extensible models for anomaly
detection in an online setting.

VI. EXPLAINABILITY OF MODEL DECISION
AND THREAT DATA
In recent years, understanding deep neural network becomes
necessity with acquiring good results. Complex models can
create precise decision making on trained tasks, but lack
of comprehending how. Yet, not showing importance of
model functionality in domain applications impedes fur-
ther advancements in deep networks [50]. There are many
domains that need an explainability of a model decision
such as; health, education and security [51]. In cyber secu-
rity domain, using algorithms to test a model function is
beneficial in perspective of CTI life cycle [52]. These algo-
rithms builds comprehensive visuals to unbox decision mak-
ing by deep networks. Doshi-Velez states that lack of prob-
lem formulation creates ‘incompleteness’ [51]. We believe
that rapidly changing technological advancements obstruct
adaptability of model function to a problem in cyber domain,
in consequence of incompleteness.

Transformer architecture and its applications to different
domain problems are considered as complex or black-box
model [50]. In cyber security, DNN-based solutions to
anomaly or intrusion detection have lack of presenting a way
to explain inference results. In general, experiments are based
on trusting a model decision via only evaluation metrics.
Using attributing techniques can reveal the affect of input
features on decision making and more importantly enlightens
cyber threat data. By this means, it can be used to improve
proposed solutions.

In our experiments we have tested three gradient-based
algorithms to explain inference results in our evaluation.
Integrated Gradients (IG) [53] method tries to understand
inference of a deep network with its input features. Gradi-
ents are, simply, the coefficients learned by DNN. It can
create cause-effect relationship on the model inference stage.
Acquiring IG is to accumulate gradients along with a path
considering input x and x ′. In Eq. (8), we can see calculation
of integrated gradient for ith dimension for x considering F is
the model function.

IGi(x) = (xi − x ′i )×
∫ 1

a=0

∂F(x ′ + α × (x − x ′)
∂xi

dα (8)

Smooth Gradient(SG) method yields gradients and acts
on them as saliency or sensitivity maps. This method brings
noise into gradient calculation and can be combine with other
gradient map techniques. By label(or class), it is known that
sensitivity maps correlates with decision boundaries [54].
Especially, it is working with image classification very well
and comprehensible by human perception. Expert knowledge
and experience are needed to interpret a specialized domain
such as; cyber security domain and anomaly detection task.
In (9), SGc calculates the effect of minimum change on class
decision.

ŜGc(x) =
n∑
1

SGc(x + η(0, σ 2)) (9)

Lastly, Input Reduction (IR) is different way to analyze
interpretation. In contrast to saliency interpreters we dis-
cussed before, it examines the importance via counterfactual
way [55]. Importance is defined by difference in confidence
change after altering input values. In (10) shows the calcula-
tion of importance on input perturbation. This gradient-based
methodology also enlightens the pathological behavior of a
model. In the reduction process, wemay see one or two tokens
to be selected at the end and the method protects the original
result. By this way it also reveals adversarial examples for a
model.

IR(xi|x) = f (y|x)− f (y|x−i) (10)

In Figure 7 and 8, we have presented an example sequence
fromHDFS and firewall logs.We chose a log sequence which
alarms the detection model as anomaly. For brevity, we omit-
ted part of log sequence, as methods indicate less impor-
tance or lower gradient-based value on the model decision.
In Figure 7, we are looking at an anomalous behavior of
a block in HDFS logs. IG method focuses context between
sequences and shows the most impacting phrase as ‘not
belong’ (event action) and its context. SG method slightly
differs from others and focuses to create boundary on a start-
ing point of the action such as; ‘request received’ or ‘added
invalid-set’. Subwords that are highlighted in grey show
omitted inputs without changing model decision. IR method
focuses on the same phrase again as in IG to decide anoma-
lous behaviour. The result also depicts adversarial exam-
ple for the log sequence. In Figure 8, we investigated a
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FIGURE 7. Model decision on HDFS logs by integrated/smooth gradients
and input reduction methods.

FIGURE 8. Model decision on firewall logs by integrated/smooth
gradients and input reduction methods.

port scan activity on workstations. IG method emphasises
overall context of a log sequence, but indicates ‘tcp con-
nection’ for creating an abnormal event on the worksta-
tion. SG method again focuses on the action word ‘built’
of an event boundary, but also points out IP range (.175)
defined in the network. IR method singled out ‘tcp’ and
‘.175’ which is a good example of pathological behaviour
of a model, but we can comprehend that connection type
and source IP are the indicators of an anomaly. To sum
up, overall results are logical, methods focus on worksta-
tions which are infected and port scanning other systems
in their sub-network. Additionally, .175 is not in the range
of defined IPs in the Use of Policy Rules for the tested
network and sequences conditionally point out port scan
attack.

Overall in our explanation tests, we used proposed models
for Single and Multi AAs (see Appendix C) and examine

model decision without providing any context information,
policy rules for the network or configuration file of a log
type prior to training a model. Comparing facts from HDFS
and Firewall dataset, our proposed model understand the
reasoning behind an anomaly and can match useful threat
data. Also, models exposes their pathological behaviors to us
that some tokens in context have high importance in decision
making. This also leaves a gap for improving the current
stage.

VII. CONCLUSION
Security applications are a necessity for systems in differ-
ent domains, such as enterprises and critical infrastructures.
Anomaly detection is the crucial part of these systems for
ensuring security of the continuous activities. Logs are the
first source to consult when analyzing events in a system.
By this means, system administrators and security profes-
sional put log monitoring systems into center of security
operations centers. In addition to that, SIEM tools are the
preferred implementation space for security enhancements.

Log events are recorded in free form or unstructured text.
System developers prefers to build readable log events in
exchange to ease manual monitoring [35]. It also opens up
a problem when considering the complex nature of systems.
Manual labor can not match in existing problem space, hence
there are many suggested solutions based on automating log
analysis in anomaly detection systems. There are different
categorization of presented solutions. If we simplified solu-
tion proposal under security domain, we can divide them into
two: log key-based and semantic-based anomaly detection
methods. Semantic-based methods mainly elaborates con-
textual knowledge of logs from pretrained deep or shallow
networks. These findings also reveal the need of researching
learning methods considering applicability to the domain
needs.

Under this hood, we proposed AnomalyAdapters, which
provides an extensible and modular approach for anomaly
detection. It brings a competitive advantage on yielded
parameters and simultaneous adaptability to different log
sources. Addition to that, adapter’s bottleneck architecture
improves sharing information without catastrophic forgetting
issues. In our experiments, we have compared our work with
other recent studies in the field and also tested model deci-
sions to get feedback in a readable form. Explainablity is a
known issue for black-box models, thus it also enables threat
intelligence actively in the log semantic-based learning which
opens a new direction for enhancing solution of anomaly
detection problem.

Future directions of this work is to focus on collaborating
with algorithms in learning which interprets semantic-based
anomaly detection models. By this way, we may create intel-
ligible decisions, which can be acted efficiently and timely.
Enhancing quality of the decisions, not numeric evaluations
only, consolidates into consistent decision making on identi-
fying anomalous behaviors.
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APPENDIX A
UTILIZED ADAPTER ARCHITECTURES
The base adapter structure includes a residual connection,
a reduction factor (2,8,16,64) which is the bottleneck that
makes able to down and up projections and a non-linearity
layer (ReLU, LeakyReLU, Swish) [46], see 9. This form of a
base adapter is used in both LLA and LAA setups. Adapter
structure variations and possible implementation presented in
Pfeiffer’s work [46].

FIGURE 9. Base adapter structure [45].

We presented LLA and LAA stack for complete view
of anomaly detection infrastructure inside the transformer
block. The type of an adapter structure, implemented for
LAA, is shown in Figure 10. In this architecture, the
base adapter is added twice for each transformer block of
ROBERTa model. One adapter is after multi-head attention

FIGURE 10. Log anomaly adapter detailed implementation inside
transformer block [45].

FIGURE 11. Multi AA decision on HDFS logs by integrated/smooth
gradients and input reduction methods.

and other adapter is added after feed-forward layer [45]. For
simplicity, we omitted the lower stack on LAA implementa-
tion in Section IV.

APPENDIX B
TRAINING CONFIGURATIONS
In training, ROBERTa pretrained language model is selected
as a base which is transferred during adaptations. The model
architecture’s configuration is 12 transformer blocks, a hid-
den size of 768 and a vocabulary size of 50264 subword
tokens. It generates approximately 120M parameters at start
of the learning process and also, those are shared among
adapter-tuning.

For the LLA training, we used the setup in Figure 3 with
a reduction factor of 16 and ReLU as a non-linearity func-
tion. We have trained 3 epochs in MLM training objective.
Same procedure applied for both Firewall andHDFS datasets.
For the LAA training, we combined language and anomaly
adapters as explained in Section IV. To achieve that, we used
the setup in Figure 10 with a reduction factor 16 and a
non-linearity using Swish function. Differently, LAA does
not have layer norm at the bottom. We have trained 3 epochs
in binary classification objective. Same procedure is applied
for both Firewall and HDFS datasets. For multi-anomaly
task detection’s training, we only optimized attention-based
adapter selection module for one epoch using combination of
Firewall and HDFS dataset.

In all training phases, we implemented an early stopping
criteria for controlling degradation in the F1-score and eval-
uated models in step-wise to prevent overfitting.

APPENDIX C
EXPLAINABILITY: MULTI-ANOMALY TASK DETECTION
Multi-anomaly task detection model fuses various AAs’
architectures together. In Figure 11 and 12, we can interpret
that different model decision mechanism is protected overall.
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FIGURE 12. Multi AA decision making on firewall logs by
integrated/smooth gradients and input reduction methods.

We observe that the base model can be adapted to respond
finding anomalies from different sources.
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