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Abstract
Irregularly sampled time series analysis is a common problem in various disciplines. Since
conventional methods are not directly applicable to irregularly sampled time series, a com-
mon interpolation approach is used; however, this causes data distortion and consequently
biases further analyses. We propose a method that yields a regularly sampled time series
spectrum of costs with minimum information loss. Each time series in this spectrum is a
stationary series and acts as a difference filter. The transformation costs approach derives
the differences between consecutive and arbitrarily sized segments. After obtaining regu-
lar sampling, recurrence plot analysis is performed to distinguish regime transitions. The
approach is applied to a prototypical model to validate its performance and to different
palaeoclimate proxy data sets located around Africa to identify critical climate transition
periods during the last 5 million years and their characteristic properties.

1 Introduction
Time series analysis techniques have been employed for decades to extract the characteristics of
the data sets to tackle various challenges and explain phenomena occurring in natural, social, and
engineering sciences [1]. This progress significantly helps us understand past variations in asso-
ciated systems and the underlying mechanisms behind them, allowing us to make goal-directed
predictions [2].

Traditional time series analysis methods are designed to perform on regularly sampled data,
i.e., the time resolution ∆t = t(si + 1)− t(si) = const ∀i ∈ [0,N − 1] [3, 4, 5]. However, data
sets are naturally collected with irregular spacing in several disciplines such as astrophysics and
earth sciences due to data point scanning costs or lack of high-quality observation. For exam-
ple, in palaeoclimate science, time series are retrieved from measuring historical archives such
as stalagmites, tree rings, and lake sediments [6, 7, 8, 9].The measurements on sediment proxies
are performed on an equidistant length axis but due to the changing growing rate of structures
(sedimentation rate), the corresponding inferred temporal axis is not equidistant. Thus, these
measurements result in irregularly sampled time series. Moreover, scanning data points is a pro-
longed and expensive process from such data sources and it is preferable to scan only the most
reasonable time spans and sometimes selectively for the research aims and this may result in non
stationary sampling rates.
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Interpolation is a common approach to preprocess such irregularly sampled time series to ana-
lyze it with traditional methods. However, interpolation techniques generally cause harmful data
reconstruction by replacing all data points with a given arbitrary function [10, 11]. The palaeo-
climate data sets naturally have poor quality and need a preprocessing method to regularize the
sampling while protecting the data’s sheltered information of natural climate events.

The TrAnsformation Cost Time Series (TACTS) method was recently introduced to regularize
time sampling of data with low bias [12, 13]. Although TACTS is a promising data preprocessing
method, it reduces the number of time points by converting consecutive data segments using a
metric distance. Palaeoclimate proxies are generally sparse data sets; reducing the total number
of points is not preferable for the analysis. Furthermore, TACTS has an arbitrary segment size,
ω , to compute the distance between consecutive segments. There is no unique way to set this
segment size, and varying this parameter causes changes in the resulting cost time series.

This current study introduces a modified TACTS method to produce a spectrum of cost time
series in the desired length. Note that the spectrum construction eliminates the heavy depen-
dency on the arbitrary segment size, ω . The manuscript is organized as follows: in the following
section, we introduce the modified TACTS technique to construct a spectrum of cost time series
and highlight how the parameters of the cost-transformation function can be determined based
on measurement data. In Sect. 3, we discuss how to analyze the produced cost spectrum time
series using recurrence plot [14] and recurrence quantification measures. In Sect. 4, we apply our
method using numerical data from a paradigmatic model system, the logistic map, with irregular
sampling and measurement noise. We then analyze paleoclimate records surrounding Africa over
the past 5,000,000 years as a real-world application. Finally, we express a conclusion in Sect. 5.

2 Data preprocessing in time series analysis
TACTS method was introduced to regularize time series with minimum bias [12, 13], which
was motivated from the following Refs. [15, 16]. Here, we present the TACTS technique along
with a spectrum analysis to detect different types of bifurcations and distinguish various periodic
windows.

2.1 Transformation cost time series
In TACTS, data segments are mapped to points of a metric space where we can define the scalar
cost of transformation (c) between consecutive segments as the metric. Let t(α),X(α) denote
irregularly spaced measurements for a set of events {α} in a segment. TACTS is a difference
operator on the series of consecutive segments coming from this set and employs the cost of
transforming two adjacent segments using a sequence of operations of three kinds: (1) scaling or
changing the amplitude of a data point, (2) shifting a data point in time, and (3) ignoring (creating
or deleting) a data point. The transformation cost of converting a segment Sa into a non-empty and
non-overlapping consecutive segment Sb is given by the infimum of all possible transformation
costs. The equations for segment-to-segment and point-to-point transformation costs c and d are
as given below:

c(Sa,Sb) =
1
‖I‖

inf

λ‖I− J‖+ ∑
α,β∈J

d(α,β )

 (1a)

d(α,β ) = λτ |ta(α)− tb(β )|+λx|X(α)−X(β )| (1b)
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where I = Sa ∪ Sb is the set of events and J ⊆ I is the set of those events which are shifted and
scaled between segments. α ∈ Sa∩ J and β ∈ Sb∩ J denote two such shifted/scaled events in ad-
jacent segments. ta(α) and tb(β ) are the relative time signatures of points α and β in sets Sa and
Sb offset by the minimum time of intervals which span these segments. |.| denotes absolute value,
and ‖.‖ denotes the cardinality of a set. Parameters λx and λτ are the cost factors of amplitude
and time transformations, and λ is the cost of ignoring a point operation.

In previous iterations of TACTS method, amplitudes were observed to be strongly correlated
with the data sampling rate and a non-stationary sampling rate distribution produced biased re-
sults. Braun et al. [17] offer a treatment of these biases using sampling rate constrained (SRC)
surrogates. For modified TACTS, we instead introduce a normalization procedure for c(Sa,Sb)
to be robust against variable sampling rates by dividing the segment transformation cost by the
total number of measurement points in interval Sa∪Sb, in other words, the number of point-wise
transformations necessary to match the segments. This modification formulated in Eq.1a is more
advantageous because it is preferable to analytically remove the sampling rate dependency so that
TACTS remains deterministic. We can consequently use multiple TACTS series with arbitrary
resolutions and offsets to tackle the problem of segment size dependency.

Now, for a set of evenly sampled time points T = {t0+ iδ | i∈N} where t0 is initial time point
and δ is an arbitrary sampling rate, we can evaluate TACTS: C(t) = c(Sa(t),Sb(t)) where Sa(t)
is the segment of points in (t−ω, t) and Sb(t) is the adjacent segment containing the points in
(t, t +ω) for some time window size ω . When we set ω > δ , the segments Sa and Sb overlap and
TACTS provides higher resolution output as long as Sa(ti))∩Sa(ti+1) 6= Ø and Sb(ti))∩Sb(ti+1) 6=
Ø, that is, set of points considered in consecutive time points are distinct. Let T ∗= {t ∈ T | Sa(t) 6=
Ø,Sb(t) 6=Ø} be the subset of T with no empty segments. Also let D= {ti+1−ti | i∈N} be the set
of time differences for t(α) and D∗= {d ∈D | d <ω} be those differences which are smaller than
a single segment’s size. Parameters λx, λτ are normalization parameters chosen to be functions of
timeline T , segment size ω and data characteristics X(α) and t(α):

λ
−1
x =

1
|T ∗|∑

t∈T ∗

∣∣∣∣∣ 1
|Sa(t)| ∑

α∈Sa(t)
X(α)− 1

|Sb(t)| ∑
β∈Sb(t)

X(β )

∣∣∣∣∣ (2a)

λ
−1
τ =

1
‖D∗‖ ∑

d∈D∗
d (2b)

where λx is the reciprocal of the expected mean amplitude difference between two consecutive
non-empty ω-segments, and λτ is the reciprocal of the expected time difference between two con-
secutive time points which are not at the boundary of empty segments (gaps) for a given ω along
timeline T . Consecutive gaps result in a transformation cost of zero for consecutive time points
in the TACTS series, so we remove these segments from further analyses to eliminate artificially
high recurrence in these regions.

Finally, the cost of ignoring a point, λ , is the most critical parameter for optimization. Larger
λ promotes larger shifting and scaling magnitudes for the point-to-point transformations, and
smaller λ promotes high sampling rate adaptivity for the almost regular sampling. Since modi-
fied TACTS is normalized with respect to the number of considered data points and the highest
possible cost corresponds to the segment transformation that chooses to ignore all points in the
segments, we have C(t) ≤ λ . Furthermore, we select λ (ω,T ) to minimize the Kolmogorov-
Smirnoff (KS) distance of the resulting TACTS series to achieve the most gaussian distribution
of the costs C(t). The transformation of an irregularly sampled time series to a cost time series is
illustrated in Fig. 1(A-D).
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Figure 1: Illustration of the methodology. (A) An irregular time series where the distance
between time points has a non-uniform distribution. (B) Segments of length ω are extracted
from the time series and considered two adjacent segments denoted Sa and Sb shown with blue
and orange colors. (C) The minimum cost transformation between these segments among
all possible transformations between segments. Finding the minimum includes point-wise
transformation costs for aligning respective points in time/space dimensions for the points
mapped to each other and the cost of ignoring any other point in Sa ∪ Sb. (D) Generating a
spectrum of regular and stationary TACTS time series from these costs corresponding to each
choice of ω-window. The TACTS is analyzed using rolling windows Wt with fixed length
|Wt |= L, suitably chosen to contain enough TACTS points to distinguish different dynamical
behavior. (E) A recurrence plot is generated for all TACTS series. Rolling windows analysis
gives a single determinism value associated with the time point at the center of our rolling
windows. (F) After obtaining an ensemble of DET series from each TACTS, it is possible
to use them as more or less independent response signals associated with a particular period
or aggregate these series at each time point to a single measure SDET, called a spectrum
determinism. Gray horizontal band in (F) is the confidence interval and blue(orange) shadings
represent regions with significantly high(low) determinism values.
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2.2 TACTS spectrum
In modified TACTS, we consider a set of segment sizes {ω1, ..,ωk} and optimize a discrete spec-
trum of TACTS functions Ci(t), where i = 1, ..,k. These functions represent the speed of change
for their respective embedding of the original data. Each Ci(t) is sensitive to ωi-periodic pat-
terns in the original time series since the segment states of the interval ωi evolve the slowest in
ωi-periodic regimes. The ignoring cost λi for each Ci is optimized to interpret the particular data
sampling concerning different time-frames. As the point sets for segments is also a function of
ωi, unit costs λx,i and λτ,i are also distinct for each Ci. Finally, Each Ci is evaluated along the
same - preferably regular - timeline T , so we can use quantitative time series methods on each
to obtain an aligned analysis for the entire discrete spectrum. While each Ci can also be used
individually for different time series analyses, we advocate using ensemble methods on the en-
tire spectrum since we observe that no single segment size ωi successfully captures the target
dynamics at every point.

3 Time series analysis
After time sampling regularization, the time series can be analyzed by traditional techniques such
as wavelets and spectral analysis [18], Lyapunov exponents [19], entropy-based measures [20]
and visibility graph [21]. Among many data analysis tools, we opt to use recurrence plot methods
since we aim to detect regime changes and RP is one of the most used and successful tools for
this goal [14].

3.1 Recurrence Plot
The recurrence plot (RP) is a powerful tool for visualizing dynamical systems’ recurrences in
their phase space [22] and was used to quantify the behavior of dynamical systems in various
fields, e.g., earth science [9, 23], chemistry [24], economics [25], heart rate variability [26], traf-
fic congestion [27], music studies [28], psychology [29]. This current study aims to detect critical
transitions in prototypical dynamical systems and paleoclimate records by RP after preprocessing
by TACTS.

The RP is a matrix containing the Poincaré recurrences of phase-space states [30]. The
Poincaré recurrence theorem says that a trajectory ~xi ∈ Rm for i = 1, . . . ,N, on sufficiently long
and finite time, will revisit the ε-neighborhood of a previous state. The RP is a time vs. time
matrix of the recurrences and is defined as

Ri, j(ε) = Θ(ε−||~xi−~x j||) i, j = 1, . . . ,N (3)

where ε is some threshold distance, || · || is some distance measure, and Θ(y) = 1 if y ≥ 0 and 0
otherwise [14]. Although there are some suggested techniques to choose an optimal recurrence
threshold ε , selecting ε depends on the associated research question.

Quantifying recurrence patterns of the RP infers the properties of dynamical systems, and this
quantification can capture the regime changes such as extreme events in climate systems [6], and
economic crises [31]. Among different kinds of structures, diagonal lines of the RP, parallel to the
main diagonal (bottom left to top right in Fig. 1(E)), indicate the joint period when a trajectory
accompanies locally neighboring paths. Therefore, comparing the abundance of the recurrence
points forming diagonal lines with the single points in the RP measures the predictability of the
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dynamical systems. The determinism of RP, DET , measures the predictability with the fraction
of points that lie in diagonal lines with respect to all points and is given by

DET =
ΣN

l=lmin
lP(ε, l)

ΣN
l=1lP(ε, l)

(4)

where ε is the selected RP threshold and P(ε, l) is the histogram of diagonal lengths. In this study
we use lmin = 2 and RP is computed using the Euclidean distance norm, i.e ‖x,y‖ = |x− y| for
one-dimensional time series, and ε-threshold distance is chosen as a fraction of the standard de-
viation of our TACTS time series, ε = 0.1σ(x), to allow for enough recurrences populating the RP.

We use sliding windows analysis on our TACTS series by fixing a recurrence frame size L
and a regular recurrence timeline TR and calculating the determinism series DET (t) where t ∈ TR.
DET (t) is the determinism evaluated at time t and comes from the partial recurrence plot asso-
ciated with data segment Wt = {xi|ti ∈ (t−L/2, t +L/2)} (Fig. 1(D-F)). For the typical case, Wt
are overlapping data segments because recurrence frame L is chosen to be much larger than ∆TR,
timestep for the regular recurrence timeline TR.

3.2 Determinism spectrum
Treating each series in the spectrum independently, we can measure the determinism series for the
TACTS spectrum Ci(t) and use their aggregate determinism values at each time point. Spectrum
determinism, SDET , is the average determinism of segments from TACTS series with different
ωi evaluated along some recurrence timeline TR (see Fig. 1(B)),

SDET (t) =
1
k

k

∑
i=1

DETi(t) (5)

where DETi(t) are the time series of determinism values corresponding to different TACTS series
with distinct ωi, evaluated at the centers of rolling windows for some fixed recurrence frame size
|W |= L (Fig. 1(E)).

4 Applications
The primary focus of our study is to identify regime changes in a dynamical system that goes
through critical transitions. This section shows a prototypical application on the logistic map and
a real-world application on a set of palaeoclimate time series around Africa.

4.1 Logistic Map
We consider the modified logistic map given by xn+1 = rn ·xn ·(1−xn) to be able to apply a rolling
window analysis and get closer to real-world application. We assume that the system parameter
rn ∈ [3.5,4] slowly drifts as we generate N = 20,000 time points to simulate a system that changes
behavior along its single trajectory. We then remove a fraction of random points from the series
{x0, ..,xN} to mimic temporal irregularity. Finally, to portray a noisy measurement process as en-
countered in real data, we add constant uniform noise, |ξi| ≤Kσ(x) to the measurements bounded
by a fraction K of the standard deviation of time series data.
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We assess the fidelity of our method using the following binary classification task: we can
compute the maximum Lyapunov exponent (Λ) of this system for the parameter rn at each time
step, and we classify the system at every point as chaotic if Λn > 0 or periodic if Λn < 0 (Fig. 2(A)).
We select a range of TACTS segment sizes {ω1, ..,ωk} and generate the timeline for the vector
of costs c(t) = (c1, ..,ck)(t) ∈ Rk

+. The set of ωi corresponds to segments that contain between 3
and 12 data points. We then chose a set of sliding recurrence frames of lengths L ∈ [50,1000] and
built the spectrum determinism series SDET . In order to compare the TACTS method with the in-
terpolation, we first calculated the determinism, DET, series from {x̂i} obtained from using linear
interpolation on {xi}. We used the following classifier method for both TACTS and interpolated
series: If the determinism value is greater than the mean determinism of the series, we classify
dynamics around this time as periodic. Conversely, we classify chaotic regimes if a determinism
score is less than the mean determinism. The results of this classification method for both series
and the ground truth can be seen in Fig. 2

Figure 2: Classification of dynamical regimes. The data possess noise with an amplitude of 0.3
of the standard deviation (xi = xi + ξi where |ξi| ≤ 0.3σ(x)), and 10% of the data is randomly
removed. (A) The ground truth classification was computed by the Lyapunov exponent Λ. The
classifications by (B) TACTS and (C) interpolation indicate periodic regions with blue areas and
chaotic regions with white areas in the trapezoids.

The mismatch ratios (E) between the ground truth (Fig. 2(A)) and regions classified as chaotic
or periodic by TACTS (Fig. 2(B)) or interpolated series (Fig. 2(C)) for different levels of data

7



distortion is summarized in Fig. 3. For all of our test cases except the least distorted example,
TACTS provides a classification closer to the Lyapunov exponent classifier for every selected L.
Even in the case of least data distortion (Fig. 3(A)-top left subplot) where TACTS and interpo-
lation have similar classification abilities, the fact that TACTS can better classify the dynamics
using a smaller recurrence frame means that it can practically detect more abrupt regime changes.
This general trend is observed for the average errors as well. (Fig. 3(B)).
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Figure 3: Comparison of classification errors (E) between TACTS and interpolation regarding the
recurrence frame’s length (L). Orange lines denote error rates for interpolation, and Blue lines
denote error rates for the TACTS series. (A) Logistic map experiments with varying removal ratios
and noise levels. (B) The classification error rates averaged across all experiments, µ(E), for
TACTS and interpolation. Transparent traces belong to individual results in (A).
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An optimal recurrence frame for each method minimizes the classification error; however,
TACTS performs better for a wider range of recurrence frames. This is important since a choice
of smaller recurrence frames allows detecting shorter periods of distinct dynamical properties.
Note that for this example, it is impossible to find the shortest periodic regions visible in the
ground truth obtained from Lyapunov exponent, even with undistorted data since its resolution
is low and periodic behavior does not manifest due to existence of transient dynamics. Aggre-
gated determinism series generally provide a more accurate picture but individual TACTS series’
determinism also contains added information. While more stable regimes are registered in all
determinism series, shorter or more transient regimes are detected only by the TACTS series with
segment sizes ω close to the periodicity of data. Therefore, while we identify periodic dynamical
windows, we are also able to estimate the period of these windows. For instance, We can see the
determinism series for two TACTS windows generated from the distorted logistic map with 0.1
standard noise and 10% removal in Fig. 4. Here, we highlighted some regions of dynamics which
are reflected differently by different TACTS embeddings.

Figure 4: Illustration of the effect of TACTS’ segment size ω with a recurrence window L = 150.
Blue (orange) areas indicate that when DET values are higher (lower) than the average DET .
Yellow vertical lines show different periodic windows for the transient logistic map only detected
by specific ω values. (A) Bifurcation diagram of the logistic map to visualize periodic and chaotic
windows. (B) Determinism with ω1 = 4.25 successfully detects the period-4 related dynamics
around r ∼ 3.96. (C) Determinism from TACTS with ω2 = 6.75 identifies the period-7 region
around r ∼ 3.7. Note that period-10 region at r ∼ 3.6 is also detected using ω1 = 4.25(B) which
corresponds to approximately half of the period in this region.
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We can see that the determinism series obtained from a TACTS series with window ω1 = 4.25
in Fig. 4(B) shows peaks in regions of the logistic map with the period-4 around r = 3.96 and the
period-10 region at r = 3.6. These regions are not identified for ω2 = 6.75 (Fig. 4(C)). On the
other hand, DET values for ω2 = 6.75 allow the identification of the period-7 region at r = 3.7,
which has a period close to its TACTS segment size – concluding that each TACTS series in the
spectrum efficiently captures short transient dynamics with specific periods regarding segment
size ω . Nevertheless, using aggregated determinism of the TACTS’ spectrum provides a better
overall classification performance. Error rates of individual DET classifiers over all points can be
seen in Fig. 5 compared to error ratio of spectrum determinism SDET .

0.4

0.3

0.2

0.1

3 6 9 12ω

E

SDET

Figure 5: The TACTS’ segment size ω versus the classification error ratios (E) associated with
the Lyapunov exponent. SDET (orange dashed line) provides a better classification than each
individual DET series (black dots). We used the transient logistic map with 0.1 standard noise and
10% removal for this test with the recurrence window L = 150.

4.2 Real world application
An important application of the TACTS method is the identification of regime changes in palaeo-
climate data [9, 32]. Palaeoclimate archives yield irregular time series since the archives accumu-
late with a time-dependent sedimentation rate and we assume temporal noise since the sampling
time points are measurements themselves with potentially large and time-dependent uncertainties.
We use several proxy data series obtained from marine sediments located around northern Africa
used by previous studies [33, 34, 6]. Locations of these archives are illustrated in Fig. 6.

We consider 7 data series coming from 3 different types of proxies: Terrigenous dust flux
(Dust) for the aridification, alkenone-based sea surface temperature (SST) for the regional tem-
perature, and benthic δ 18O for global ice volume. These data sets and the period they span are
illustrated on a single timeline in Fig. 7 next to their effective sampling distributions.

The timeline in Fig. 7 contains several established climate regime transitions. The transition
from Pliocene to the Pleistocene 2.6 million years ago was signified by the onset of periodic
Northern Hemisphere Glaciation (NHG). This transition follows a significant climate reorganiza-
tion during the Pliocene with the establishment of a strong Walker circulation denoted by IWC
(Intensified Walker Circulation) between 4500 and 4000 ka BP [35] and the period of anoma-
lously cold marine isotope stage M2 at 3300 ka BP [36, 37] which contains the first occurrence of
partial glaciation on the northern hemisphere (MG2) regarded as a failed attempt by the climate
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Figure 6: Locations of the proxy archives used in this study.

system to establish an ice age [38]. Then another regime, accompanying strong and shifted atmo-
spheric Walker circulation between 2200 and 1500 ka BP [35] occurred. Finally, Mid-Pleistocene
Transition (MPT) took place between 1100 and 700 ka BP, which is characterized by the change
in the periodicity of the glacial cycles from approximately 41 ka to a 100 ka dominant periodicity
[39].

Data properties and the parameters used in the analysis for both TACTS and RP stages are lo-
cated in Table 1, which also includes our data sources’ references. We evaluate all TACTS series
on the regular timeline with ∆t = 1 ka. For each proxy data series, we choose a number (Nω ) of
TACTS window sizes ωi using data characteristics and sampling envelopes for each proxy. The
shortest ω-windows are chosen such that their corresponding TACTS series encode only a few
empty data segments, and these gaps do not appear consecutively. The longest ω-windows are
chosen to allow for enough independent values for the corresponding TACTS series. In all the
proxy series except one, this procedure eliminated most of the viable spectrum due to a small
number of long gaps in the data. In these cases, we sacrificed a portion of our overlapping recur-
rence timeline containing such problematic regions and repeated the procedure described above,
disregarding the points in these regions. Table 1 lists the number of such gaps that had to be cre-
ated in the recurrence timeline as well as the minimum and maximum period lengths associated
with the choice of ωi for each proxy data. All determinism series are evaluated with a recurrence
frame size L = 200 ka and along the shared timeline Tρ = {0,5,10, ...,5000}(ka). The number of
determinism values calculated from the TACTS series of proxy data evaluated along this timeline
is denoted by Nρ . This number is reduced to Nρ∗ in the presence of gaps, as we accommodate
several distinct partial recurrence timelines.
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Figure 7: Data used in this study. Palaeoclimate time series: blue – sea surface temperature proxies,
orange – terrigenous dust flux proxies, yellow - oxygen isotope proxies and important palaeocli-
mate regimes: Mid-Pleistocene transition (MPT), Northern hemisphere glaciation (NHG), Marine
Isotope stage M2 and two distinct periods of intensified Walker circulation (IWC) (left column).
Time sampling distributions of time series and their average time step µ(∆t) and their standard
deviations σ(∆t) (right column).

To test for statistical significance in the determinism values associated with the proxy data, we
use the method of bootstrapping as outlined in Ref. [44]. We create surrogate determinism scores
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Table 1: Characteristics of the proxy archive data set, the parameters used for their analyses and
the original data references.

ODP662 ODP659T ODP659I Medisect ODP967 ODP721 ODP722
Type SST Dust Iso Iso Dust Dust SST
T (Ma) 3.54-1.37 5.00-0 5.00-0 5.33-1.21 3.03-0 5.00-0 3.33-0
N 360 1221 1170 811 8417 2757 1680
µ(∆t) (ka) 2.39 4.10 4.28 5.08 0.36 1.81 1.98
σ(∆t) (ka) 1.05 2.69 2.88 2.06 0.31 1.52 0.89

TACTS
minP (ka) 7.16 16.38 12.83 15.25 5.40 7.25 5.94
maxP (ka) 22.67 38.91 40.62 48.30 10.61 17.21 18.80
ω 3-9.5 4-9.5 3-9.5 3-9.5 15-29.5 4-9.5 3-9.5
Nω 14 12 14 14 30 12 14
Gaps 1 2 1 0 2 3 1

RP
Tρ (Ma) 3.35-1.55 4.80-0.20 4.80-0.20 5.15-1.40 2.85-0.20 4.80-0.40 3.15-0.20
Nρ 360 920 920 750 530 880 590
Nρ∗ 349 787 851 750 406 697 528

REF [40] [36] [36] [41] [42] [33][43] [33][43]

bootstrapped to our data properties as follows: (1) we record the probability distribution of the
lengths of diagonal structures, P(ε, li) in the recurrence plots of the TACTS series at each point
in our timeline Tρ and the number of these structures, including isolated points which correspond
to diagonal structures with li = 1. (2) We calculate a number of surrogate determinism values
for each TACTS series using the average number of diagonal structures we encountered and with
lengths coming from the average probability distribution of diagonal line lengths among all time
points, E(P(ε, li)). (3) Determinism surrogate values calculated from these distributions are then
used to build a two sided confidence interval by using 1% quantiles of the value distribution. (4)
Since we aggregate all DET series into a single measure SDET, we also aggregate the confidence
intervals for each DET series into an averaged confidence interval. We identify the SDET values
outside this interval as significant.

Spectrum determinism series generated for our proxies are shown in Fig.8 where the time is
measured in ka BP (thousand years before present) and chronological order is from right to left.
In Fig.8, we identify several critical periods. Pleistocene IWC starting from 4500 ka BP is char-
acterized by high predictability in dust records from east of Africa (ODP721) while the Atlantic
coast proxies show highly chaotic dynamics (ODP659 dust and δ 18O). Another strongly accentu-
ated period we detected is the Marine Isotope Stage M2 around 3300 ka BP where all of δ 18O and
Dust proxies from both sides of the continent (ODP659,ODP721) and Mediterranean (Medisect)
report very predictable behavior. In particular, we found a dominant ω-window corresponding to
a 10 ka cycle driving the Arabian and Mediterranean seas during the M2 cooling event.

Prior to 2600 ka BP (NHG period), Eastern Africa (ODP721/722) proxies start to display sig-
nificantly low predictability followed by a significant drop of predictability in the Mediterranean
(Medisect, ODP967) during NHG; however, the west side is yet unaffected (ODP659). This
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Figure 8: Spectrum of determinism series generated from the proxy data span a period of about 5
Million years. Each proxy time series is encoded by a number of TACTS series with viable window
sizes given in Table 1. and we take the average determinism given by the ensemble as SDET . We
have visible gaps in some SDET series in periods where the proxy data is too sparse to translate
into a meaningful TACTS series. Confidence intervals for the determinism values is displayed with
gray horizontal bands which correspond to 1st-99th percentiles. Values of determinism which lie
outside this interval are the extremities. We denote regions of high determinism/predictability with
the color blue and low-determinism or unpredictable regions with the color orange.
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transition over the Mediterranean signifies a re-organization of regional climate actors until 2200
ka BP, after which Atlantic coast dust records (ODP659) show a long period of unpredictabil-
ity, coinciding with the strong Walker circulation period (IWC) driving the ocean and stabilizing
temperature cycles (ODP662). The transition period after NHG is followed by the consequent
stabilization of the Mediterranean climate during the IWC event, starting from the east Mediter-
ranean. (ODP967, Medisect)

During the Mid-Pleistocene Transition (MPT), starting at 1100 ka BP, we see a gradual in-
crease in the determinism of Dust and SST proxies located in the eastern parts of Africa (ODP
721/722) and the eastern Mediterranean (ODP967). This is mirrored by a corresponding gradual
decrease of determinism on the west coast (ODP659 δ 18O). While individual determinism val-
ues do not clearly indicate a regime transition (ODP659 determinism stays significantly high and
ODP967 determinism stays significantly low), persistent anti-correlation between these clusters
during this period suggests a transient see-saw dynamics between east and west. After the MPT,
this strong anti-correlation breaks, and Arabian sea proxies (ODP721/722) start to signal unpre-
dictable dynamics again.

The same proxy data set is analyzed using interpolation with several analysis methods, in-
cluding windowed determinism DET (t) analysis, Ref. [6]. Although there is a general agreement
between our results and DET results of Ref. [6], there are also some crucial differences. We
found the Arabian Sea (ODP721) to be relatively predictable during the Pliocene IWC, while it
is significantly unpredictable and unresponsive to IWC in Ref. [6]. Both results agree with the
indication of the cooling event M2; however, we also found a more pronounced transition to or-
der in the Mediterranean (Medisect) accompanying partial glaciation. While our findings agree
with Ref.[6] on the loss of predictability in Africa after the onset of NHG, our analysis suggests a
longer reign of low determinism in the Mediterranean (which we find to be highly deterministic
at other times) until the transition occurs. In contrast, analysis of Ref. [6] shows high predictabil-
ity in this period compared to a chaotic pre-NHG Mediterranean. Our application employed the
TACTS spectrum and used a smaller recurrence frame (200 ka instead of 410 ka). Thus, we ob-
served smoother trends in determinism series, specifically during Mid-Pleistocene Transition and
IWC events.

5 Conclusion
This paper introduces modifications for the TACTS method for analyzing irregularly sampled
time series by transforming the data into regularly sampled cost time series. We have evalu-
ated the modified TACTS method’s performance on the logistic map and analyzed palaeoclimate
records surrounding Africa to demonstrate the method’s usefulness.

The fundamental modification is to construct a spectrum of TACTS time series following ele-
mentary three point-wise operations: (1) scaling the amplitude, (2) shifting a data point in time,
and (3) ignoring a data point. Each operation incurs a cost with selected factors. While the cost
coefficients of operations (1) and (2) directly depend on the associated time series and the TACTS
timeline, the cost of operation (3) is a free parameter to optimize our metric. Note that this free
parameter allows us to tweak a suitable and information-preserving time series preprocessing
method for further analysis without the corruption risk of interpolation methods. The total cost
of transforming neighboring data segments to each other determines the TACTS point; applying
this procedure over the entire data generates TACTS for an arbitrarily selected segment size (ω).
However, different segment sizes ω lead to changes in the resulting cost time series. We demon-
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strated that ω value behaves as an embedding dimension [45], and varying ω allows detecting
different periodic regions in the system’s phase space. Therefore, we introduced analyzing the
TACTS spectrum of various ω values to detect all regime transitions.

The performance of the modified TACTS has demonstrated that the approach is functional
even for extremely irregular sampling and high measurement noise. Blending the spectrum of
TACTS with RP analysis, we accurately detected dynamical regime changes in the logistic map
whose control parameter systematically changes in time. The systematic comparison of the per-
formances of interpolation and TACTS in this test showed that TACTS outperforms the interpo-
lation.

Applying the TACTS and RP approach to palaeoclimate data surrounding Africa, we identi-
fied various important regime changes in the climate dynamics during the last 5,000,000 years.
We provided a timeline consistent with this period’s well-documented transitions. Detailed cli-
matological interpretation of our findings is the subject of an ongoing study collaborating with
climatologists and will be published in more appropriate climate journals.

An irregular sampling of proxy records is a natural fact in Earth science where the temporal
data comes from the measurement process of aging and uneven growth rates of proxy structures
and sedimentation rates result in irregularly spaced time points. Furthermore, the proxy records
may have poor quality and resolution due to unavoidable damages over the lifetime of the histor-
ical structures and scanning expenses. Therefore, the TACTS technique has significant potential
in quantitative Earth science to gently preprocess the data and prepare it for analysis by modern
time series analysis techniques.
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