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Abstract The usage of heterogeneous devices presents two main problems. One is
their complex programming, a problem that grows when multiple devices are used.
The second issue is that even if the codes for these devices can be portable on top of
OpenCL, they lack performance portability, effectively requiring specialized imple-
mentations for each device to get good performance. In this paper we extend the
Heterogeneous Programming Library (HPL), which improves the usability of hetero-
geneous systems on top of OpenCL, to better handle both issues. First, we provide
HPL with mechanisms to support the implementation of any multi-device application
that requires arbitrary patterns of communication between several devices and a host
memory. In a second stage HPL is improved with an adaptive scheme to optimize
communications between devices depending on the execution environment. An evalu-
ation using benchmarks with very different nature shows that HPL reduces the SLOCs
and programming effort of OpenCL applications by 27 and 43 %, respectively, while
improving the performance of applications that exchange data between devices by
28 % on average.
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1 Introduction

The usage of heterogeneous devices has enormously grown during the past few years.
Unfortunately, the codes for these devices lack portability unless they are developed
in OpenCL [12], as most frameworks are vendor- or device-specific [18]. Also, the
programming of these systems is much more complex than that of traditional CPUs,
as they require dealing with much more issues such as explicit memory manage-
ment, transfers and synchronizations between different devices, among others. This
complexity grows with the number of devices involved in the application. To make
things worse, even if the codes are written in OpenCL to achieve portability, the large
diversity of heterogeneous systems makes it impossible to reach good performance
across different devices by applying uniform programming and optimization strate-
gies. As a result, OpenCL applications usually need to be tuned for different kinds of
devices.

There have been many proposals to simplify the programming of heterogeneous
systems. A recent one is the Heterogeneous Programming Library (HPL) [23], whose
unique feature is a language embedded in C++ in which the computations to run in
the devices should be written. The library translates this language to OpenCL, so
that it enjoys the portability of this standard together with run-time code generation
capability. Furthermore, HPL avoids the high programming cost of OpenCL [17]
thanks to the automation of all the tasks it requires, making them totally oblivious to
the user. The result is a portable high-productivity programming tool.

An important limitation of HPL was that it lacked critical mechanisms to enable the
general effective use of multiple accelerators.This way, our initial experience using
several GPUs on HPL [24] relied on the mechanisms available in [23], which restricted
it to algorithms in which different devices could only work on different arrays, as
there was no support for coherency or data movements between devices. Relatedly,
no mechanism was provided to copy data between arrays. In this paper we extend this
tool to manage multiple devices while keeping its characteristics of minimum user
effort and maximum performance. This extension consists of a totally general data
coherency scheme for the data structures managed by HPL as well as a mechanism
to make assignments between these structures so that they can be easily copied. The
implementation is efficient, as it not only requires the minimum number of transfers,
but also applies the most efficient mechanisms to perform these transfers. This latter
characteristic implies a dynamic adaption capability of our library, as different transfer
mechanisms suit better different systems. Finally, this paper evaluates for the first time
HPL on the new Intel Xeon Phi systems.

The rest of this paper is organized as follows: the next Section briefly describes
HPL. Section 3 describes the new extensions and Sect. 4 is devoted to the evaluation.
The paper finishes with a review of the related work in Sect. 5 and our conclusions
and future work plans in Sect. 6.
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2 The Heterogeneous Programming Library

Our library, which is publicly available at http://hpl.des.udc.es, provides a program-
ming model similar to that of CUDA [18] or OpenCL [12], in which a main application
running in a host CPU can execute computational kernels in the form of functions in
heterogeneous devices attached to it. Each one of these devices has its own separate
memory, and the communication with the host takes place by means of the arguments
to the kernel functions. The devices have a number of processors that can run in par-
allel the kernels in a SPMD fashion, i.e, using a number of threads that are identified
by a unique identifier. When the user submits a kernel for execution to a device, she
must specify the number of threads to use by means of a space of natural numbers
of between one and three dimensions called global domain. A local domain with the
same number of dimensions as the global domain and whose dimensions divide those
of the global domain in each dimension can be specified. This domain divides the
threads of the global domain in groups that can be synchronized by means of barriers
and share data using a fast scratchpad. Threads that do not belong to the same local
domain cannot cooperate, however.

The library API is explained in detail in [23]. Here we provide a brief description of
its three components so that the reader can understand the examples along the paper.
The first component is the data type Array <type, nd [, memoryFlag]>, which repre-
sents a nd-dimensional array of elements of type type. The optional memoryFlag
indicates where is the array located, as HPL supports global, local, constant and pri-
vate memory in the devices, following the naming and characteristics of the kinds of
memory supported by OpenCL [12]. When nd is 0, the data type represents a scalar,
although the library provides a convenient naming based on an initial uppercase letter
(Int, Float, etc.) to define scalars. Vector types are supported with a similar syntax
(Int4, Floats,etc.). The constructor of a non-scalar Array receives the sizes of its
dimensions. If the variable is defined in host code, it also allows as optional argument
a pointer to the array data in the host memory. If that pointer is not provided, HPL
automatically manages the host memory required to support the array.

The second component are a series of macros, predefined variables and functions
that constitute together with Array a language embedded in C++ in which the HPL
kernels must be written. For example, the control structs are those of C finished with an
underscore, and the arguments to a for_ loop must be separated by commas instead
of semicolons. The predefined variables allow to obtain critical data for the kernels,
such as their unique identifiers or the size of each dimension of the global and the
local domain of the execution of the current kernel.

The last component is the host API, whose main purpose is to find the devices
available and their properties and request the execution of kernels in them. This way,
the execution of akernel £, which is aregular C++ function written using the embedded
language provided by HPL, on the arguments argl and arg? is requested using the
syntax eval (f) (argl, arg2). By default, the global domain of the execution
is given by the dimensions and size of the first argument, while the local domain
is automatically chosen by the library. However, these and other parameters can be
detailed by inserting specifications, in the form of methods, between eval and the
argument list.
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void mxProduct(Array<float,2> ¢, Array<float,2> a, Array<float,2> b, Int P)
{
Size_tk;
c[idy][idx] = 0.f;
for_(k =0, k < P, k++)
c[idy][idx] += a[idy][k] * b[k][idx];

[ NS - T W R UUR R
-

9 .

10 Array<float,2> c(M,N),a(M,P),b(P,N);
11 ...

12 eval(mxProduct)(c, a, b, P);

Fig. 1 Matrix product on a single device using HPL

Example 1 The matrix product code c=a x b in Fig. 1 illustrates the usage of HPL.
Lines 1 to 7 contain the kernel definition, which implements the work performed by
each thread using the embedded language provided by HPL. The idx and idy vari-
ables identify the thread in the two dimensions of the global domain. Each thread
calculates one position of the solution by multiplying a row of matrix a and a column
of matrix b. In the main code, three two-dimensional arrays, a, b and ¢ are defined
in line 10. These three arrays correspond to the three matrices involved in the com-
putation. The eval method is invoked on this kernel in line 12. As the global space
is not specified, the sizes of the two dimensions of matrix ¢ are used as the sizes of a
two-dimensional global domain. The size of the local domain is set automatically by
HPL. The device where the kernel is executed is not specified; thus, the computation
will take place in the first OpenCL capable accelerator found. The kernel receives
as parameters the three Arrays and the size of the loop whose iterations are not
distributed among the threads of the global domain.

3 Multi-device support in HPL

The exploitation of multiple devices requires several features of the HPL library:
support in its API for multiple devices, the improvement of its coherency and syn-
chronization scheme and an easy syntax to copy data between Arrays. These features
are first presented in turn, while implementation details are discussed in Sect. 3.1.

Multi-device support in the HPL API The HPL API allows to identify the devices that
can be used and their characteristics, which is necessary to enable multi-device support.
HPL currently classifies the devices as either CPUs, GPUs or generic accelerators (this
is for example the case of the Xeon Phi). The user can obtain the number of devices
of each kind (e.g. getDeviceNumber (GPU) provides the number of GPUs) and
refer to a specific device using an object of type Device that can be built providing
a device type and a number of device. For example, Device (ACCELERATOR, 2)
would be the third accelerator in the system, as the numbering is zero-based. An
object d of this type can be used to specify where to run a kernel using the syntax
eval (f) .device (d), that is followed optionally by other execution modifiers,
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and finally, the kernel arguments.The method getProperties of this class fills
a structure of type DeviceProperties that has a field for each property of the
associated device, thus allowing their inspection.

Advanced coherency and synchronization scheme When an HPL kernel execution is
requested, the host copies to the memory of the selected device the kernel inputs
that were not available in it, then launches the kernel, and it continues executing
the main program without waiting for the kernel to finish. This allows parallelizing
computations in the host and the devices as well as requesting parallel executions of
kernels in different devices.

The synchronization mechanism that allowed to wait for a kernel execution to finish
and retrieve its results in [23] was only based on the host accesses to the Arrays used
as arguments to the kernel executions. This way, when the host code tried to read an
array that was written by a previously launched kernel, the HPL runtime waited for
the kernel to finish and copied the resulting array to the host memory, after which the
execution of the main thread in the host would be allowed to continue. Subsequent
host accesses to the array would be immediately satisfied from the host-side copy until
new kernel executions that wrote to the array were requested. Similarly, an array used
as input in a kernel execution would be copied to the device only in the first usage of
the array in the device or if the host had written to the array in its memory after the
most recent usage of the array in the device. These mechanisms sufficed for efficient
single-device executions as the evaluation in [23] shows.

However, to successfully exploit with a reasonable performance and consistent
semantics several accelerators, HPL had to be extended in several ways. First, since
the user can request to use the same array in multiple devices, and they do not share
memory, the HPL runtime was improved to support multiple simultaneous copies of
the same array, one per device where it is used, in addition to the host-side copy. The
copies of each Array are hidden from the user, who only sees its current logical value.
The underlying copies are managed following a multiple-readers/single-writer policy
(MRSW) policy [21] with an invalidation protocol on writes [15] to keep a single
coherent image. Let us notice that a general implementation of the data replications
implied by the MRSW strategy requires the copy of data between devices, which
is automatically performed by our runtime. Finally, since the host code considers in
its turn each one of the kernel execution requests as well as the host accesses to the
arrays, the main thread of the application provides sequential consistency [14] to all
these accesses to the Arrays, which is the simplest and most convenient model to
reason about parallel programs.

Since the Array is the unit of consistency, the usage of the same Array in several
kernel executions serializes them, even if each kernel operates on disjoint parts of its
data, unless of course if the Array is only a read-only input to all these kernels. This
way, to successfully parallelize executions of kernels that update different portions of
the same array in several devices, a different HPL Array, associated with the specific
portion updated in the device, must be defined for each device. This policy also makes
sense for read-only arrays when each device only needs to read a portion of the array.
The reason in this case is not to avoid the serialization of the tasks, but to minimize
the data transferred, as the Array is also the unit or allocation and transfer. The
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float cx[M][N], ax[M][P], bx[P][N];
Array<float,2> xxc, **a, b(P, N, bx);

W N =

const int ndevices = getDeviceNumber(GPU);
¢ =new Array<float, 2> x [ndevices];
a =new Array<float, 2> * [ndevices];

[N e Y

for(i = 0; i < ndevices; i++) {
9  c¢[i] = new Array<float, 2>>(M/ndevices, N, cx+i*(M/ndevicesxN));
10 a[i] = new Array<float, 2>(M/ndevices, P, cx+ix(M/ndevices*P));

1}
12

13 for(i=0; i< ndevices; i++)
14 eval(mxProduct).device(Device(GPU,i))(xc[i], *a[i], b, P);

Fig. 2 Matrix product on multiple GPUs using HPL

construction of HPL Arrays associated with different portions of the same host array
is facilitated by the fact that their constructor supports an optional argument to specify
the location in host memory of the data managed by the Array, as commented in
Sect. 2. This way, different Arrays can start in different positions within the same C
array.

Example 2 Figure 2 shows a multi-device implementation of the same matrix product
as Example 1 where the work is splitted among the available GPUs by rows. This
example uses the features provided by the multi-device support in the HPL API and
takes advantage of the extended coherency and synchronization algorithm by working
with Arrays associated with different parts of the original underlying matrices. For
simplicity the code assumes that the number of rows M is a multiple of the number
ndevices of GPUs, obtained in line 4. The underlying matrices are declared in line 1
as regular arrays. Since the whole matrix bx is used in each one of the parallel kernel
executions, a single HPL Array b is declared in line 2 that contains it.

As explained before, the kernel executions in different devices will only take place
in parallel if separate Arrays for cx are used in each one of them; thus an array of
ndevices pointers to Arrays is builtin line 5. Then each Array of the appropriate
size is created, associating its storage with the corresponding portion of matrix cx in
line 9. The same approach is followed with respect to matrix ax, as this minimizes the
amount of data transferred to each device. Finally, the kernel executions in lines 13—
14 use the i-th Arrays of ¢ and a for the run in the i-th GPU. After the kernels are
launched, the host continues executing the code after line 14. It will only stop and wait
for a kernel execution to finish when either the host code tries to read the associated
output Array c[i] or a kernel execution in a different device requires c [1] as
input. In the latter case, the host will wait for c [1] to be computed, and then it will
transfer it to the other device.

The totally general coherency support implemented in HPL together with its auto-
mated movement of data enables to program algorithms that require transfers between
devices in a very natural way. For example, stencil codes are usually parallelized by
means of ghost regions [9] that replicate a portion of an array that is updated by
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Fig. 3 Data exchange to 1 bool f1_was_run = false;

implement a pipeline between 2 while(read(input0)) {

devices 3 eval(f0).device(d0)(input0, output0);
4 if(fl_was_run) write(outputl);
5 eval(fl).device(d1)(outputO, outputl);
6  fl_was_run = true;
7}
8

9 if(f1_was_run) write(outputl);

another processor or accelerator. These structures need to be refreshed with the most
recent version of the data they replicate after each update and before the next round of
computations begins. When accelerators are used, this gives place to a data exchange
between them [25]. Another example are pipelines, in which data proceed through
a series of tasks that transform them and handle the results to the next task in the
sequence. The parallelism comes from the fact that different tasks work in parallel in
different processors or devices on different sets of data.

Example 3 Figure 3 shows an multi-device pipeline implemented with HPL. In this
code we assume that the first argument of each task is only read, and the second
one is only written. The pipeline iterates while there are new inputs to read in the
initial Array inputO (line 2). Device A0 runs task £0 on this input to generate
the intermediate result outputO. If this is not the first iteration of the pipeline,
the boolean £1_was_run is true, so in line 4 we write to a file the final result of
the pipeline, contained in Array outputl. When the host accesses outputl in
function write through its API, HPL checks this Array status, so that if there are
pending writes to it (from the execution of £1 in line 5 in the previous iteration),
HPL waits for them, updates the host copy with the current value and finally provides
the data to the user code. When line 5 requests to run £1 on device d1 taking as
input output0, the HPL coherency system waits for the most recent execution of £0
to finish to generate the most up-to-date value, which is then transferred to d1. Both
operations are blocking for the host, so lines 5 and 6 are only executed once output0
has been safely copied to a buffer in d1. Line 9 ensures that the last result generated
is written. Notice that since £1 only reads the copy of output0 in the device d1, its
execution does not delay the next execution of £0, which just writes to its local copy
of outputO in device A0, located thus in a separate buffer, as HPL knows there is
no dependency between both tasks.

Copy data between arrays A final programmability improvement has been the imple-

mentation of an intelligent assignment operator (see Sect. 3.1) that allows to easily
copy data between Arrays using the natural notation a=b in the host code.

3.1 Implementation details

HPL Arrays were extended to support multiple simultaneous copies of the same
Array, one per device where it is used, each copy being supported by an underlying
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Fig.4 Bandwidth of copies between devices. T stands for two transfers in sequence and C for clEnqueue-
CopyBuffer usage

OpenCL buffer, in addition to the host-side copy, which s located in plain host memory.
HPL builds the buffer images of Arrays on demand so that an Array is only allocated
in a device if it is used in a kernel execution in the device. The potential existence
of copies in several devices implied the need for a coherency strategy, which is the
multiple-readers/single-writer policy (MRSW) policy [21] with copy invalidations on
writes [15]. Our implementation takes into account the new situation that an array in
a device could become outdated not only by host-side modifications as in [23], but
also by executions of kernels in other devices that wrote to the array. This required in
turn a new update mechanism that implied device-to-device transfers of Arrays, in
addition to the transfers between host and device considered in [23].

A very important issue that we have not seen discussed in the bibliography is
how to transfer data between OpenCL buffers in different devices, which corresponds
to the copies of Arrays between devices.There are two possibilities to perform
this transfer in OpenCL, which is our backend. One is to use the OpenCL function
clEnqueueCopyBuf fer, which performs a copy between two buffers. The other
possibility is to first transfer the data from the source device to a host location and once
it has finished, transfer the data from the host to the destination buffer. Common sense
suggests that the first option should be the best one, since it uses a specific runtime func-
tion defined for this purpose, which enables it to exploit better possibilities when they
are available and fall back on the second option when that is not possible. In fact, the
families of OpenCL benchmarks that support multiple devices that we know of, such
as the SNU NPB suite [19], use this approach to exchange data between devices. Also,
the benchmarks to characterize OpenCL [22] have never compared these two possibil-
ities as far as we know. We have found, however, that c1EnqueueCopyBuf fer can
be in fact much slower than the two sequenced transfers possibility in some systems.
Figure 4 shows the bandwidth observed in transfers between two devices of the same
type in the S2050, K20 and Xeon Phi systems that will be described in Sect. 4 using the
two copy mechanisms described, two transfers (T) and c1EnqueueCopyBuffer
(C). We can see that there is a substantial difference between both approaches, and
while the Xeon Phi systematically favors c1EnqueueCopyBuf fer, the situation
is the opposite in the Nvidia GPUs.
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In order to cope with this variability, HPL follows an adaptive approach. The library
runs tests making a few transfers using both copy mechanisms to choose the best one
for each kind of device when it is installed in a system. The chosen copy strategy
is stored in a configuration file that is read whenever a HPL application begins its
execution. The HPL runtime then uses the best copy mechanism as a function of the
device involved in the communication.

The assignment operator a=Db to copy data between arrays enjoys many optimiza-
tions. Its data transfer is performed in a smart way so that the data from b is copied
to the image of a that holds its most recent version (no matter it is in a device or
in the host), as it is expected that subsequent uses of a will take place in the same
place. If there are multiple updated copies of a, the host copy is updated, and it is later
transferred to the devices under demand when needed. Also, the copy is automatically
performed by means of a kernel when the source and the destination are in the same
device.

The synchronization mechanism was also updated. If a kernel execution Y in a
device requires an array written by another kernel execution X in another device,
Y must be delayed until X finishes to gather the correct results. This is in contrast
with [23], which never had to delay a kernel execution, as they were all run sequentially
in the only device available.

Finally, we must stress that the complexity of the extended environment is totally
hidden by our runtime so that users are not concerned by the existence of the multiple
copies and they do not even need to specify when to perform any transfers or updates,
all the analysis of dependencies and other details being automatically managed by
HPL. This way programmers are just given the simple and intuitive semantics that an
Array data are (sequentially) consistent across all their usages in the host and the
multiple devices available.

4 Evaluation

This section evaluates the programmability and performance of our proposal. Since
HPL seeks to provide wide portability, using OpenCL as backend for this purpose,
this is the standard tool with which it is fairer to compare our library. We have chosen
the C++ OpenCL API for the comparisons, as this is the language in which HPL and
the benchmarks using it have been developed, and this way both approaches enjoy the
same base language.

The evaluation is based on six benchmarks described in Table 1 in terms of the
number of source lines of code excluding comments and empty lines (SLOCs) of
their OpenCL C++ implementation, the number of kernels involved in unique (only
once) invocations and in repetitive invocations (i.e. inside a loop, so that each ker-
nel is invoked several times) and finally the pattern of communication between sub-
tasks when they are split among several devices. These baselines do not contain the
cumbersome initialization of OpenCL (device selection, creation of context and com-
mand queue, loading and compilation of kernels, etc.), which we have encapsulated
in routines that are invoked from the baselines. This way these baselines contain the
minimum amount of code that users need to write using the OpenCL host C++ APL
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Table 1 Benchmarks

_ Benchmark SLOCs Unique Repetitive ~ Data
characteristics

OpenCL  invocation  invocation  exchanges

EP 440 1 kernel

FT 2,450 3 kernels 7 kernels All to all
MatmulRow 243 1 kernel

Summa 320 1 kernel

ShaWa 961 3 kernels Stencil
N-body 209 1 kernel All to all

The EP and FT benchmarks come from the SNU NPB suite [19], an optimized
implementation of the NAS Parallel Benchmarks in OpenCL. EP is an embarrassingly
parallel application that is easy to distribute among several devices. FT is a more
complex benchmark that uses three kernels for its initialization before entering an
iterative process that invokes 7 kernels in each iteration, all of them parallelizable
among all the devices available. This benchmark computes the Fourier transform of
a 3-D array along its three dimensions. Since the array is partitioned along one of its
dimensions to split the work among the devices, when the Fourier transform is to be
computed along that dimension, the array has to be permuted or rotated so that the
array becomes partitioned by other of its dimensions, and the originally distributed
dimension fits locally in each device, enabling the local computation. This leads to an
all-to-all pattern of communication between the devices.

MatmulRow is the matrix multiplication distributed by rows used as example in
Fig. 2. Summa implements the Summa algorithm for matrix multiplication [6], which
divides the three matrices in tiles and interleaves stages of local multiplication in
each device with stages of communications consisting of broadcasts across columns
and across rows of tiles of the two input arrays. The efficient implementation of
these broadcasts in our case does not involve copies between devices, but transfers of
different portions of the input arrays from the host to each device in each step. This
way this benchmark stresses the communications between the host and each device.

Benchmark ShaWa is a shallow water simulator with transport of contaminants
developed in [16]. This application divides a surface into square volumes that interact
with their neighbor volumes through their four edges, having a pattern of computation
in stencil. This way, its kernels are parallelized using the well-known approach of
ghost or shadow regions [9] that replicate a portion of the data in another processor.
These regions need to be refreshed in each new time step as the original data are
modified. Our baseline exchanges the data between devices by means of device to
host, and then host to device, transfers, as they were the best method for our GPUs
in Sect. 3.1. Finally, N-body is a simulation of a dynamical system of particles that
presents an all-to-all communication pattern because in each time step of the algorithm
each particle influences the behavior of all the other particles. Its data exchanges are
implemented using c1EnqueueCopyBuffer, as it is the natural way to make data
copies in OpenCL programs.

Figure 5 measures the programmability improvement provided by HPL with respect
to the OpenCL C++ baseline in terms of the reduction of programming effort metrics
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Fig.5 Reduction in the number of SLOCs and programming effort of the host side of the application when
using HPL with respect to the OpenCL C++ baseline (color figure online)

Table 2 The hardware platform details

System#0 System#1 System#2
CPU
Processor Intel Xeon X5650 2x Intel 2x Intel E5-2660
E5-2660
Frequency (GHz) 2.67 2.20 2.20
#Cores 6 (12 HT) 8 (16 HT) 8 (16 HT)
Memory capacity (GB) 12 64 64
Peak memory 32 51.2 51.2
bandwidth (GB/s)
GPU
Processor Nvidia S2050 Nvidia Intel Xeon
(2x Nvidia K20m PHI 5110P
M2050)
Frequency 1.55 0.705 1.053
(GHz)
#Cores 448 2496 60 (240 HT)
Memory capacity 3 5 8
(GB)
Peak memory bandwidth 148 208 320
(GB/s)

measured in the code of the host side of the application. The kernels have not been
included in the measurement because their code is very similar both between OpenCL
and HPL and between single-device and multi-device versions of the applications; thus
the extensions described in this paper play a small role in them. The first metric is the
well-known SLOC. The second one is the programming effort [10], which considers
also the complexity of these lines taking into account in a reasoned formula the number
of unique operands, unique operators, total operands and total operators found in the
code. We can see that the effort is consistently much smaller in HPL, particularly if
we take into account the relative complexity of each line of code. On average, HPL
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reduces the SLOCs and the programming effort of the baseline by 27.1 and 43.1 %,
respectively, even when the baseline is a streamlined version with minimal code for
the initialization, as we have explained.

The performance evaluation relies on three systems that are described in Table 2:
a system with a NVIDIA Tesla Fermi S2050, another one with 3 Nvidia Tesla Kepler
K20m, and one with two Intel Xeon Phi 5110P. The compiler was g++ 4.7.2 with
optimization level 03.

Figures 6, 7 and 8 show the speedup of our baseline and HPL versions when using
all the devices with respect to an OpenCL single-device implementation using a single

Fig. 6 Speedups with S2050
(color figure online)
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Fig. 7 Speedups with K20 3.5
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Fig. 8 Speedups with Xeon Phi 3.5
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Fig. 9 Speedup of HPL over 2
OpenCL for different problem
sizes of FT (color figure online)
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device in each one of the systems just described. This implies using 2 GPUs and 2
Xeon Phis in Figs. 6 and 8, respectively. The SNU NPB, just as the original NPB,
requires a number of devices that is a power of two; thus EP and FT only use two
K20 in Fig. 7, while the other benchmarks use three. EP and FT were run for classes
D and B, respectively. The matrix products used matrices of 6,000 x 6,000 double-
precision floating point elements. Finally, ShaWa was run with a 1,000 x 1,000 mesh
representing an actual stuary and N-body worked on 192K particles.

As we can see, HPL matches or outperforms OpenCL in most applications, some-
times experiencing some degradation introduced by its runtime. In ShaWa there is
an additional overhead derived from the unavailability of mechanisms in the current
version of HPL to select a portion of an array for a copy or as argument for a kernel
execution. For this reason, HPL. ShaWa must make more work to copy the rows that
must be exchanged between the devices to and from separate buffers that are used for
the exchanges and it is the benchmark with the largest overhead, reaching a maximum
of 9 % in the Xeon Phi. In FT, however, HPL is noticeably faster than OpenCL in all
the systems (up to 59 % in the K20 system) for two reasons. One is that in the trans-
fers between GPUs the HPL runtime uses the two-transfer mechanism described in
Sect. 3.1, instead of the slower cl1EnqueueCopyBuf fer found in the SNU NPB.
The second reason is that some of the FT array copies take place between arrays that
are actually located in the same device. While the SNU NPB implementation always
uses the same c1EnqueueCopyBuf fer mechanism, the HPL runtime detects this
situation and avoids any transfer, just making a copy inside the device by means of
a kernel. The impact of these optimizations is large because FT requires many array
transfers, making HPL the winner in terms of average speedup in every device for
this benchmark. Something similar happens with N-body, whose data exchanges are
an important part of its runtime and are much faster under the policy applied by the
adaptive HPL in the GPUs. As a result, HPL is on average 21.4, 25.7 and 2.1 % faster
than the OpenCL baseline across the applications tested in the S2050, K20 and Xeon
Phi systems, respectively.

Figures 9, 10 and 11 show the speedup of HPL with respect to OpenCL for dif-
ferent problem sizes of FT, ShaWa and N-Body, respectively, as they are the three
algorithms that exchange data between devices. Since FT and N-body are based on
clEnqueueCopyBuffer, which offers bad performance in GPUs but is the best
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option in the Phi, HPL clearly outperforms OpenCL in the GPUs for all the sizes. It
also outperforms OpenCL FT in the Xeon Phi because of the second advantage men-
tioned in the previous paragraph: HPL detects that some copies that the SNU NPB
FT code always blindly performs by means of c1EnqueueCopyBuf fer have their
source and destionation in the same device, so HPL performs them by a faster copy
inside a kernel. The N-body baseline only copies between devices the data that are
strictly needed, so HPL and OpenCL get exactly the same performance on the Xeon
Phi. Finally, the baseline OpenCL ShaWa is optimal in the GPUs because it uses the
two transfers mechanism, so HPL performs worse due to the library overheads and the
additional copies that its restriction to operate on whole arrays imply in this algorithm
that only exchanges one row between neighboring devices. In fact, since the amount
of data exchanged is small, the adaptive nature of HPL, which allows it to use in the
Xeon Phi the faster c1EnqueueCopyBuffer alternative (see Sect. 3.1), does not
help it to reach the baseline performance in this accelerator. We see, however, that as
the problem size grows, these overheads become a smaller and smaller portion of the
runtime, thus reducing the overhead of HPL. In FT and N-body, however, HPL advan-
tage remains basically constant across problem sizes because the whole arrays used
in the problem are exchanged. The only exception is FT in the K20, where when the
problem size grows from W to A we get a HPL relative speed bump, probably because
W is a small problem size with many kernels and the K20 is a powerful accelerator,
so the overheads of HPL do not allow it to reach its maximum advantage for a small
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size. Overall, HPL was 28% faster than OpenCL across this set of experiments, clearly
showing its advantage in applications that exchange data between devices.

5 Related work

Many works have focused on the exploitation of clusters of heterogeneous nodes.
They allow a thread of execution running in a host to allocate buffers and submit
tasks to all the devices in the cluster, avoiding the use of communication APIs such
as MPI. While some of these approaches [3] are based on CUDA, many [2,8,11,13]
have been built closely following the OpenCL API and concepts, thus requiring a
much lower level management than HPL. Only [2,8] abstract away some low-level
details of OpenCL. However, the API layer of [2], which supports unmodified OpenCL
applications, involves compiler directives that must indicate the inputs and outputs of
each task and synchronize them, or an object-oriented API that in addition to these
specifications also explicitly uses contexts and buffers. Similarly, libWater [8] still
relies on explicit kernel creation processes, buffers associated with devices that are
explicitly read and written and synchronizations based on OpenCL-like events. HPL
is currently restricted to the exploitation of the devices found in a single node, but it
offers programmers a much higher level view based on n-dimensional arrays rather
than buffers in a given memory or device. Also, it automates all the kernel compilation,
task synchronizations, buffer allocations, data transfers and coherency management.

The fact that HPL tasks synchronizations and scheduling are defined by their data
dependencies expressed through their arguments relates it to the task superscalar par-
adigm, which has been proposed to manage heterogeneous computations through the
OmpSs programming model [4]. This requires a compiler and the user must explicitly
annotate the tasks inputs and outputs, contrary to the library-based and fully automated
extraction the dependencies of HPL. OmpSs does not provide either convenient array
classes. Similar to HPL, DepSpawn [7] provides such classes and also automatically
extracts the data dependencies of the parallel tasks it allows to define, but it has no
support for heterogeneous systems.

The exploitation of heterogeneous parallelism across the devices existing in a node
by combining OpenMP and OpenACC, or ad-hoc directives has been explored in [26]
and in [5], respectively. The result and the differences with respect to HPL are similar
to those of OmpSs, with the addition that these solutions do not automatically schedule
and synchronize the tasks based on their data dependencies.

Finally, skeleton libraries [1,20] are another approach to use multiple heteroge-
neous devices with reduced programming effort. The Heterogeneous Programming
Library has a wider scope of application than these tools, as they only allow to exploit
parallelism in computations whose structure conforms to one of their skeletons.

6 Conclusions
In this paper we have extended HPL with an automated and optimized coherency

system for arrays that can be used across multiple accelerators as well as the host
of a computing node. The extension is also adaptive, as it chooses the most efficient
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mechanism to perform the copies and it avoids transfers when it detects the source
and the destination are in the same device. The resulting tool reduces on average the
programming cost metrics of SLOCs and programming effort of multi-device OpenCL
C++ baselines by 27 and 43 %, respectively. As for performance, while HPL can
present large overheads for small applications that require features not yet implemented
such as the copy of a subarray, its overheads are quite small for medium and large
applications, where they peak at 9 %. Furthermore, its adaptive nature allows to obtain
noticeable speedups with respect to hand-coded OpenCL in applications that exchange
data between devices, achieving an average and a maximum speedup on a series of
tests for this kind of applications using different problem sizes of 28 and 106 %,
respectively. We plan to extend HPL to heterogeneous clusters and to further enhance
programmability by allowing to define subarrays that can be used both in the data
transfers and the kernels.
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