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Abstract In this paper, we propose a space-alternating generalized expectation maximiza-
tion (SAGE) based joint channel estimation and data detection algorithm in compressive
sensing (CS) framework for orthogonal frequency-division multiplexing (OFDM) systems
in rapidly time-varying sparsemultipath channels. Using dynamic parametric channel model,
the sparse multipath channel is parameterized by a small number of distinct paths, each repre-
sented by the path delays and path gains. In our model, we assume that the path gains rapidly
vary within the OFDM symbol duration while the number of paths and path delays vary sym-
bol by symbol. Since the convergency of the SAGE algorithm needs statistically independent
parameter set of interest to be estimated, we specifically choose the discrete orthonormal
Karhunen–Loeve basis expansion model (DKL-BEM) to provide statistically independent
BEM coefficients within one OFDM symbol duration and use just a few significant BEM
coefficients to represent the rapidly time-varying path gains. The resulting SAGE algorithm
that also incorporates inter-channel interference cancellation updates the data sequences and
the channel parameters serially. The computer simulations show that our proposed algorithm
has better channel estimation and symbol error rate performance than that of the orthogonal
matching pursuit algorithm that is commonly proposed in the CS literature.

Keywords Sparse multipath channel ·OFDM · SAGE ·Matching pursuit ·Basis expansion

1 Introduction

Orthogonal frequency-division multiplexing (OFDM) has been shown to be an effective
method to overcome inter-symbol interference (ISI) caused by frequency-selective fading
with a simple transceiver structure. Due to its high data rate transmission capability, robust-
ness against frequency selective fading channels and flexible spectrum allocation for differ-
ent services, OFDM has been widely used in the current and future wireless communication
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systems, such as the digital audio/video broadcasting (DAB/DVB) systems, the asymmetric
digital subscriber lines (ADSLs), the wireless local area networks (WLANs), the Mobile
Worldwide Interoperability Microwave Systems for Next-Generation Wireless Communi-
cation Systems (WiMAX), and the Third-Generation Partnership Project (3GPP) long-term
evolution (LTE) systems. Channel estimation task is required for coherent detection inOFDM
systems and commonly achieved using pilot symbol transmissions. Channel estimationmeth-
ods can be categorized basically into parametric/non-parametric channelmodel based estima-
tion methods. There exists numerous pilot-aided channel estimation methods in the literature
[1–5]. Most of them are nonparametric methods. Since non-parametric methods do not make
any assumptions about the channel model, the dimension of the estimation problem can be
quite large. However, in parametric channel estimation methods, the wireless radio channel
is modeled with a few significant paths resulting usually in a sparse multipath channel model
[5–8]. Consequently, parametric methods enable to reduce the dimension of the estimation
task and the amount of pilot symbols needed in channel estimation, and therefore, as com-
pared to the non-parametric channel model, the parametric channel model based estimator
can achieve better performance [5]. Parametric channel modeling based channel estimation
methods proposed in [5,9,10] use minimum description length (MDL) to detect the number
of paths and then apply subspace methods such as the estimation of signal parameters using
rotational invariance techniques (ESPRIT) and the multiple signal classification (MUSIC)
to estimate the channel path delays. However, in time-varying channel scenarios the prop-
agation delays, the number of delays and the tap coefficients vary over the time, and the
static parametric channel model does not represent such a dynamic channel environment. A
more realistic multipath channel model that allows the path number and the path delays to
vary over the time is presented in [9]. In this work, we consider such a dynamic parametric
channel model. Because of intensive computational complexity, the conventional subspace
methods (e.g. ESPRIT, MUSIC) are no longer practical in time-varying channel estimation
problem since the channel parameters vary over the time and their estimates need to be
updated frequently.

More recently, compressive sensing (CS) techniques have been applied to sparse channel
estimation [10–17]. The CS-based channel estimators in [11–16] assume that the channel
is sparse in the equivalent discrete-time baseband representation. However, in practice, the
sparsity assumption does not always hold due to the non-integer normalized path delays in the
equivalent discrete-time baseband representation of the channel. Therefore, such an estimated
channel may differ substantially from the original channel. The over-complete dictionaries
with finer delay resolution are used for better modeling of sparse multipath channels while
employing the CS-based channel estimators in [10,17,18]. In these works, as popular com-
pressed sensing techniques, the matching pursuit (MP) and the orthogonal matching pursuit
(OMP) algorithmswere employed to deal with the time-varying sparsemultipath channels for
OFDM systems whereas [10] and [17,18] consider underwater acoustic and wireless channel
environments, respectively. Focusing on works that consider wireless channel scenario, in
[17], the multipath coefficients were assumed to be not changed during an OFDM symbol
duration but they vary from symbol to symbol, and an OMP-like algorithm was proposed
to estimate the path delays using adaptive delay grids to obtain a lower computational com-
plexity. After estimation of the path delays, path gains were estimated using the polynomial
basis expansion model (BEM). The proposed algorithm in [17] has the same performance
with that of OMP algorithm. In [18], OMP algorithm based channel estimator is employed
using so-called super-resolution dictionary matrix. First, ignoring ICI terms, the frequency-
domain channel coefficients at pilot locations were estimated by least-square (LS) estimator
and then unlike the classical OMP algorithm, the estimates of the frequency-domain channel
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coefficients are used instead of the observations in the OMP algorithm while estimating the
channel parameters. As a result, because of being ICI-ignorant, the channel estimator in [18]
has limited performance.

In this paper, we propose a space-alternating generalized expectation maximization
(SAGE) based joint channel estimation and data detection algorithm within the CS frame-
work for OFDM systems in rapidly time-varying sparse multipath channels. Recently in our
works, [19] and [20], the SAGE based channel estimation and data detection algorithms have
been presented for OFDM systems operating over high mobility channels. However in [19]
and [20], time-varying non-sparse multipath channels with known number of paths were
considered. In this work, unlike [19] and [20], we consider a much more challenging time-
varying multipath channel model; the multipath delay positions are sparse, unknown and
randomly varying at non-integer multiples of the sampling duration, moreover, the number
of the paths is unknown and randomly varying as well. Hence, the number of paths and the
multipath delay positions are also the parameters of interest to be estimated. Consequently,
derivation and structure of the proposed SAGE algorithm in this work are completely dif-
ferent from the SAGE algorithm in our earlier works [19,20]. In this paper, we model the
random path delays within the guard interval duration of an OFDM symbol with the delay
grid spaced at baseband sampling rate, and we achieve a substantial performance with a
reasonable finer delay grid resolution. Since the SAGE algorithm needs independent para-
meter set, we specifically choose the discrete orthonormal Karhunen–Loeve basis expansion
model (DKL-BEM) among other BEMs to provide statistically independent BEM coeffi-
cients within the one OFDM symbol duration. After employing DKL-BEM to represent the
rapidly time-varying path gains, we estimate the DKL-BEM coefficients by applying our
proposed SAGE algorithm that provides substantially much better estimation performance
than that of OMP algorithm proposed in [10,17,18].

The remainder of this paper is organized as follows. Section 2 presents the system model
including the observation and the time-varying sparse multipath channel models, and conse-
quently, the basis expansion model of the time-varying channel. In Section 3, the proposed
SAGE algorithm is presented for joint channel estimation and symbol detection. Further-
more, the initialization, the summary and the complexity analysis of the proposed SAGE
algorithm are presented. Section 4 provides the performance results while Section 5 contains
concluding remarks.

2 System Model

2.1 Signal and Channel Model

We consider a zero padded OFDM system with N subcarriers employing actively K subcar-
riers to transmit data symbols, and nothing is transmitted from the remaining N–K carriers
for the purpose of zero-padding. During an OFDM symbol, each active subcarrier is modu-
lated by a data symbol b[k], where k represents the subcarrier index. After taking a K -point
inverse fast Fourier transform (IFFT) of the data sequence and adding a cyclic prefix (CP)
of duration Tcp before transmission to ISI, the transmitted continuous time-domain complex
valued signal can be expressed as

s(t) = 1√
N

K/2−1∑

k=−K/2

b[k] e j 2πk Δ f (t−Tcp) ζ(t), (1)
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where Δ f = 1/T is the OFDM subcarrier spacing, T stands for OFDM symbol duration,
ζ(t) denotes the unit pulse given by

ζ(t) =
{
1, 0 ≤ t ≤ Tsym

0, otherwise
(2)

and Tsym = T + Tcp is the duration of an entire OFDM symbol.
The signal s(t) is transmitted over a wireless multipath channel with time-varying impulse

response given by

g(t, τ ) =
L∑

�=1

h� (t) δ(τ − τ�), (3)

where L is the number of channel paths, h� (t) is the time-varying gain and τ� is the delay
of the �th path. Path gains, {h� (t)}L�=1, are wide-sense stationary uncorrelated scattering
(WSSUS) complex Gaussian process with the Jakes’ power spectrum with the following
autocorrelation function

E{h�(t)h
∗
�

′ (t
′
)} = Ω� J0

(
2π fdopp(t − t

′
)
)
δ(� − �

′
), (4)

where (·)∗ denotes the complex conjugate operator, {Ω�}L�=1, represent the normalized powers

of the channel paths satisfying
∑L

�=1 Ω� = 1. J0(·) is the zero-th order Bessel function of
the first kind, fdopp is the maximum Doppler shift due to the vehicle motion and δ(·) is the
Kronecker delta function. So, the time domain received signal can be obtained as

y(t) = g(t, τ ) 	 s(t) + w(t)

=
L∑

�=1

h�(t) s(t − τ�) + w(t)

= 1√
N

L∑

�=1

K/2−1∑

k=−K/2

h�(t) b[k] e j 2π
T k(t−τ�−Tcp) ζ(t − τ�) + w(t), (5)

where 	 shows the convolution operator and w(t) is zero-mean complex additive white
Gaussian noise (AWGN).

At the receiver, y(t) is converted into the discrete-time signal by means of low-pass
filtering and A/D conversion with the sampling interval Ts = T/N . Assuming that K active
subcarriers arewithin the region of frequency response of both transmitter and receiver filters,
and the number of channel paths and the path delays do not change during an OFDM symbol
duration, it is sufficient to consider the channel estimation only symbol by symbol. Therefore,
the nth time sample within any OFDM symbol after the CP removal can be expressed as

y[n] = y(Tcp + nTs)

= 1√
N

L∑

�=1

K/2−1∑

k=−K/2

h�[n] b[k] e j 2π
N k(n−τ̆�) + w[n], n = 0, 1, . . . , N − 1, (6)

where τ̆� = τ�/Ts is the normalized delay of the �th path and w[n] = w(Tcp + nTs) denotes
the AWGN sample at time n with w[n] ∼ CN (0,N0). It is straightforward that the vector
form of (6) can be expressed as
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y =
L∑

�=1

diag
[
F†(ν(τ̆�) � b

)]
h� + w, (7)

where

y = [
y[0], y[1], . . . , y[N − 1]]T ∈ CN ,

b =
[
b
[ − K

2

]
, b

[ − K

2
+ 1

]
, . . . , b

[K
2

− 1
]]T ∈ CK ,

h� = [
h�[0], h�[1], . . . , h�[N − 1]]T ∈ CN ,

w = [
w[0], w[1], . . . , w[N − 1]]T ∈ CN , (8)

ν(τ̆�) ∈ CK is a column vector with entries e− j 2πN kτ̆� , (·)T denotes the transpose operator
and � stands for the Hadamard product. F is the FFT matrix having orthonormal discrete

basis function 1√
N
e− j 2πN nk .

2.2 Basis Expansion Model of the Channel

In time-varying environments, the number of the unknown path gains, {h�}L�=1 in (8), within
one OFDM symbol is NL . However, the number of the observations in vector y is N . So, the
number of unknown parameters is much larger than the number of the observations, which
makes the estimation of the path gains difficult. To reduce the number of the parameters to
be estimated, the BEM is proposed to model the time variations of multipath channel gains
[20–25]. Employing the BEM, our path gain estimation problem turns into the estimation
problemof theBEMcoefficients. TheseBEMmethods are theDKL-BEM, the discrete prolate
spherical BEM (DPS-BEM), the complex exponential BEM (CE-BEM), the polynomial
BEM (P-BEM), and discrete Legendre polynomial BEM (DLP-BEM). In this work, we
choose DKL–BEM, since the SAGE algorithm needs statistically independent parameter set,
and the BEM methods mentioned above, the DKL-BEM provides statistically independent
BEM coefficients within the one OFDM symbol duration. Applying DKL-BEM, the time
variations of the channel within one OFDM symbol duration are well approximated by a
linear combination of the orthonormal basis functions as follows:

h̃�[n] =
D∑

d=1

c�,d ud [n], n = 0, 1, . . . , N − 1, (9)

where c�,d and ud(n) are the DKL-BEM coefficients and DKL-BEM orthonormal basis
functions, respectively. The vector form of (9) can be obtained easily as follows

h̃� =
D∑

d=1

ud c�,d and c�,d = u†dh�, (10)

where ud = [
ud [0], ud [1], ud [N − 1]]T is the dth DKL-BEM orthonormal base vector and

(·)† denotes the conjugate transpose operator. Substituting (10) into (7), we have

y =
L∑

�=1

D∑

d=1

ad(τ̆�) c�,d + w, (11)

where

ad(τ̆�) = ud �
[
F†[ν(τ̆�) � b

]]
. (12)
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In this work, we aremainly interested in estimation of time-varying sparsemultipath chan-
nels based on the observation (11). The overall continuous-time channel impulse response is
represented by a parametric model in which the �th time-varying distinct path is character-
ized by path delay, τ̆�, and a few significant DKL-BEM coefficients, {c�,d}Dd=1. In practice,
the sparsity assumption does not always hold due to the non-integer normalized path delays
in the equivalent discrete-time baseband representation of the channel. Therefore, such an
estimated channel may differ substantially from the original channel. To achieve a better
channel estimation performance, the A/D conversion at the input of the OFDM receiver is
implemented with a sampling period Ts/ρ, ρ ∈ {1, 2, . . .} leading to a finer delay resolution.
Consequently, the continuous-valued normalized path delays τ̆�, � ∈ {1, 2, . . . , L} can be
discretized as η� = � τ�

Ts/ρ
	 = �ρ τ̆�	 and take values from the set of possible discrete path

delays

η� ∈ {0, 1, . . . , ρLcp − 1}, (13)

where Lcp = �Tcp/Ts	, and �·	 denotes the floor operator. Based on the associated discrete
random channel tap positions {η�}L�=1, the received signal in (11) can be rewritten as

y =
L∑

�=1

D∑

d=1

aη�, d c�, d + w, (14)

where, following (12), the vector aη�,d ∈ CN is defined as

aη�,d = ad(τ̆�)

∣∣∣τ̆�= η�
ρ

= ud �
[
F†[νη�

� b
]]

, (15)

and νη�
= ν(τ̆�)

∣∣∣τ̆�= η�
ρ

∈ CK is the column vector with entries e− j 2π
ρN kη� . Eventually for

d ∈ {1, 2, . . . , D} and η� ∈ {0, 1, . . . , ρLcp − 1}, and defining the mapping (η�, d) 
→ rm
so as to be

rm = η� D + d, (16)

the received signal in (14) can be rewritten as

y =
M∑

m=1

arm cm + w = Ac + w, (17)

where arm ∈ CN is the rm th column vector of the so-called dictionary matrix A = [a1, a2,
. . . , aρDLcp ] ∈ CN×ρDLcp , corresponding to the η�th discrete multipath channel tap delay and
dth Karhunen Loeve base, respectively. Vector c is the sparse BEM coefficient vector with
non-zero elements {cm}Mm=1, where M = LD. Reversely, using (16), for a given random col-
umn index rm ∈ {1, 2, . . . , ρDLcp}, the corresponding discrete tap delay and basis function
indices are obtained as follows

η� =
⌊rm − 1

D

⌋
,

d = (rm − 1)mod (D) + 1. (18)

The estimation problem of non-zero elements of the sparse coefficient vector c in (17)
can be solved by a sparse signal recovery problem. The MP algorithm and its variants are
very popular sparse recovery methods and very commonly used for such type of estimation
problems. In this paper, initial estimates of the channel gains and channel delays are performed
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by the MP algorithm, and they are updated together with data symbols within the proposed
SAGE algorithm iterations to improve their estimation performance.

3 Sparse Channel Estimation and Data Detection with SAGE Algorithm

We now derive the SAGE algorithm regarding the signal model given by (17). The SAGE
algorithm, proposed by Fessler et al. [26], is a two fold generalization of the so-called expecta-
tionmaximization (EM) algorithm that provides updated estimates for an unknown parameter
set θ . First, rather than updating all parameters simultaneously at i th iteration, only a subset
of θS indexed by S = S[i] is updated while keeping the parameters in the complement set
θ S̄ fixed; and second, the concept of the complete data χ is extended to that of the so-called
admissible hidden data χS to which the observed signal y is related by means of a possibly
nondeterministic mapping χS 
→ y(χS). The convergence rate of the SAGE algorithm is
usually higher than that of the EM algorithm, because the conditional Fisher information
matrix given for each set of parameters is likely smaller than that of the complete data, given
for the entire space. At the i th iteration, the expectation-step (E-step) of the SAGE algorithm
is defined as

QS(θS |θ [i]) = E
{
log p

(
χS |θS , θ

[i]
S̄

)∣∣y, θ [i]}. (19)

In the maximization step (M-Step), only θS is updated, i.e.,

θ
[i+1]
S = argmax

θS
QS(θS |θ [i]) (20)

We now give the details of the SAGE algorithm as follows:
The unknown parameter set to be estimated in our problem is

θ = {r, c,bD}, (21)

where r = [r1, r2, . . . , rM]T is the DKL-BEM coefficient index vector having entries
as defined in (16) , c = [c1, c2, . . . , cM ]T is the DKL-BEM coefficient vector, bD =[
b[k1], b[k2], . . . b[kKD ]]T is the non-pilot OFDM data vector where kq ∈ { − K

2 , (− K
2 +

1), . . . , ( K2 − 1)
}
is the qth data location in discrete frequency domain, and KD represents

the number of data symbols in one OFDM symbol. To obtain a receiver architecture that
iterates between soft-data and channel estimation in the SAGE algorithm, we decompose the
unknown parameter set θ into M + KD subsets, representing the parameters, r, c, and bD ,
as follows

– The first M subsets of θ are chosen as θm = {rm, cm},m = 1, 2, . . . , M . For each subset
we define θ̄m = θ \ θm = {r̄m, c̄m,bD}, where r̄m = r \ rm, c̄m = c \ cm , and \ denotes
the set exclusion operator.

– The (M + q)th subset of θ is chosen as by θM+q = b[kq ] , q = 1, 2, . . . , KD, and
θ̄M+q = θ \ θM+q = { r, c, b̄Dq }, where b̄Dq = bD \ b[kq ].
At the i th iteration of the SAGE algorithm, only the parameters in one set are updated,

whereas the other parameters are kept fixed, and this process is repeated until all parameters
are updated. According to the above parameter subset definitions, each iteration of the SAGE
algorithm for our problem has two steps:

1. θm = {rm, cm} ,m = 1, 2, . . . , M is updated with SAGE algorithm while θ̄m =
{r̄m, c̄m,bD} is fixed.
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2. θM+q = b[kq ] , q = 1, 2, . . . , KD is updatedwithSAGEalgorithmwhile θ̄M+q = { r, c,
b̄Dq } is fixed.
Wenowderive theSAGEalgorithmbelowby also specifying the corresponding admissible

hidden data sets.

3.1 Estimation of Channel Parameters, θm = {rm, cm},m = 1, 2, . . . , M

A suitable approach for applying the SAGE algorithm for estimation of θm = {rm, cm} is to
decompose the receive vector in (17) into the sum

y = x(m) + x̄(m), (22)

where

x(m) = arm cm + w and x̄(m) =
M∑

m′=1,m′ �=m

arm′ cm′ . (23)

We define the admissible hidden data as χm = {x(m)}. To perform the E-Step of the SAGE
algorithm, the conditional expectation is taken over χm given the observation y and given
that θ equals its estimate calculated at i th iteration

Qm(θm |θ [i]) = E
{
log p(χm |θm, θ̄

[i]
m )

∣∣y, θ [i]}

= E
{
log p(x(m)|rm, cm, r̄[i]

m , c̄[i]
m ,bD [i]

)
∣∣y, r[i], c[i],bD [i]}

, (24)

where

log p(x(m)|rm, cm, r̄[i]
m , c̄[i]

m ,bD [i]
) ∼ − 1

N0
(x(m) − a[i]

rm cm)†(x(m) − a[i]
rm cm), (25)

and, following (16), a[i]
rm is calculated from (15) for given symbol vector b[i] and the DKL-

BEM coefficient index rm . Inserting (25) into (24) we obtain

Qm(θm |θ [i]) = 1

N0

(
2Re{c∗

ma
[i]
rm

†
̂x(m)

[i]} − ∥∥a[i]
rm

∥∥2 |cm |2), (26)

whereR{·} denotes the real part, ‖·‖ stands for the �2−norm of a vector and̂x(m)
[i]

is defined
as

̂x(m)
[i] = E

{
x(m)|y, r[i], c[i],bD[i]} = y −

M∑

m′=1,m′ �=m

a[i]
r[i]
m′
c[i]
m′ (27)

In theM-Step of the SAGE algorithm, the estimates of θm = {rm, cm} are updated sequen-
tially for m = 1, 2, . . . , M at the (i + 1)st iteration according to following maximization

θ [i+1]
m = argmax

θm
Qm(θm |θ [i]), (28)

where Qm(θm |θ (i)) is given by (26). So, taking the derivative of Qm(θm |θ [i]) with respect
to c∗

m and equating to zero, we find the final SAGE estimates of the mth parameter set,
θm = {rm, cm}, at (i + 1)st iteration as follows:
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r [i+1]
m = argmax

r

∣∣∣a[i]
r

†
̂x(m)

[i]∣∣∣
2

∥∥a[i]
r

∥∥2
, r ∈ {1, 2, . . . , ρDLcp}, r /∈ {r1, r2, . . . , rm−1}

c[i+1]
m =

a[i]
r [i+1]
m

†
̂x(m)

[i]

∥∥a[i]
r [i+1]
m

∥∥2
. (29)

3.2 Detection of Data Symbols, θM+q = b[kq ], q = 1, 2, . . . , KD

In order to obtain the SAGE algorithm for detection of data symbols, using (14), (15), and
(16), we obtain the following alternative form of the observation equation in (17)

y = Φb + w, (30)

where

Φ = √
N

(
F† � H

) ∈ CN×K , (31)

and H ∈ CN×K is the channel matrix with entries H [n, k] representing the frequency
response of the channel at discrete frequency k and time n. So, the channel matrix that
is well approximated by DKL-BEM is obtained as

H̃ = 1√
N

M∑

m=1

Ψ rm cm, (32)

where recalling the demapping rm 
→ (η�, d) in (18), Ψ rm matrix is defined as Ψ rm =
ud νTη�

∈ CN×K . In order to derive the SAGE algorithm for estimation of θM+q = b[kq ], the
receive vector in (30) is decomposed into the sum

y = z(q) + z̄(q), (33)

where

z(q) = ψ[kq ]b[kq ] + w , z̄(q) =
K/2−1∑

k=−K/2, k �=kq

ψ[k]b[k], (34)

and ψ[k] denotes the column vector of the matrix Φ in (30) at discrete frequency k such

that Φ =
[
ψ[− K

2 ],ψ[− K
2 + 1], . . . ,ψ[ K2 − 1]

]
. We define the admissible hidden data

χM+q = {zq} to detect the qth data symbol b[kq ]. Now, let us derive the SAGE algorithm.
To perform the E-Step of the SAGE algorithm, the conditional expectation is taken over
χM+q given the observation y and given that θ equals its estimate calculated at i th iteration

QM+q(θM+q |θ [i]) = E
{
log p(χM+q |θM+q , θ̄

[i]
M+q)

∣∣y, θ [i]}

= E
{
log p(z(q)|b[kq ], b̄Dq [i], r[i], c[i])

∣∣y, r[i], c[i],bD[i]}
, (35)

where

log p(z(q)|b[kq ], b̄Dq [i], r[i], c[i]) ∼ − 1
N0

∥∥z(q) − ψ [i][kq]b[kq]
∥∥2, (36)
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ψ [i][kq ] is the column vector of the matrix Φ[i] at discrete frequency kq , and following
(18) and the definitions between (30) and (33), Φ[i] is easily obtained for given {r[i], c[i]}.
Inserting (36) into (35) we obtain

QM+q(θM+q |θ [i]) = 1

N0

(
2Re

{
b∗[kq ]ψ [i]†[kq ] ẑ(q)

[i]} − ∥∥ψ [i][kq ]
∥∥2 ∣∣b[kq ]

∣∣2
)
, (37)

and ẑ(q)
[i]

is defined as

ẑ(q)
[i] = E

{
z(q)|y, r[i], c[i],bD[i]} = y −

K/2−1∑

k=−K/2 , k �=kq

ψ [i][k]b[i][k]. (38)

In theM-Stepof theSAGEalgorithm, the estimate of θM+q = b[kq ] is updated sequentially
for q = 1, 2, . . . , KD at the (i + 1)st iteration according to following maximization

θ
[i+1]
M+q = arg max

θM+q
QM+q(θM+q |θ [i]), (39)

where QM+q(θM+q |θ [i]) is given by (37). Moreover, it follows from (37) that the qth data
symbol, b[kq ], can be obtained in the continuous domain by maximizing the right-hand side
expression of (37). However, since b[kq ] is discrete, belonging to a signal constellation point,
we must quantize to its nearest constellation point. Consequently, the data update rule of the
SAGE algorithm takes the following form

b[i+1][kq ] = Quant

⎛

⎝ψ [i]†[kq ] ẑ(q)
[i]

∥∥ψ [i][kq ]
∥∥2

⎞

⎠ , (40)

whereQuant(·) denotes the quantization process that quantizes its argument to its nearest data

symbol constellationpoint.Note that, in (40), the quantized termψ [i]†[kq ] ẑ(q)
[i]

/
∥∥ψ [i][kq ]

∥∥2

can be interpreted as a joint channel equalization and ICI cancellation process generated at
the i th iteration step of the SAGE algorithm.

3.3 Initialization of the Algorithm

As the initialization procedure, we can apply one of the MP algorithms to obtain initial
estimate of the DKL-BEM coefficient indices and the correspondingDKL-BEM coefficients,{
r[0], c[0]}, considering the observationmodel in (17). TheMP algorithm sequentially selects
the dominant BEM coefficient index that maximizes the projection of the residual vector onto
the corresponding column vector of the so-called dictionary matrix. While applying the MP
algorithm, in order to obtain the dictionary matrixA(P) using (15), (16), and (17), we use the
pilot symbols in their respective positions and set the unknown data symbols to zero [10]. As
a first step in the MP algorithm, the column in the matrix A(P) = [a(P)

1 , a(P)
2 , . . . , a(P)

ρDLcp
]

which is best aligned with the residue vector, R0 = y, is found and denoted as a(P)

r [0]
1

. Then

the projection of R0 along this direction is removed from R0 and the residualR1 is obtained.
The algorithm proceeds by sequentially choosing the column which is the best matches until
termination criterion is met. At the mth iteration, the index of the vector from A(P) most
closely aligned with the residual vector Rm−1 is obtained as follows

r [0]
m = argmax

r

|a(P)
r

†
Rm−1| 2

‖a(P)
r ‖2

, r = 1, . . . , ρDLcp and r /∈ {r [0]
1 , . . . , r [0]

m−1}, (41)
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and the DKL-BEM coefficient at index r [0]
m is

c[0]
m =

a(P)

r [0]
m

†
Rm−1

‖a(P)

r [0]
m

‖2
. (42)

Subsequently, the new residual vector is computed as follows

Rm = Rm−1 − c[0]
m a(P)

r [0]
m

. (43)

The MP algorithm repeats (41), (42) and (43) until the termination criterion is met. We chose

a termination criterion
∣∣c[0]

M̂

∣∣ < ε

√∑M̂−1
m=1

∣∣c[0]
m

∣∣2 (ε = 0.01, 0.05, etc.). At the end of theMP

algorithm, we obtain c[0], r[0], M̂ , the initial estimates of the coefficient vector, DKL-BEM
coefficient index vector, and the number of the DKL-BEM coefficients, respectively.

3.4 Summary of the SAGE Algorithm

Based on the results in Sections 3.1 and 3.2, {rm, cm}M̂m=1 and {b[kq ]}KD
q=1 can be estimated

and detected sequentially in the first and second stage of the SAGE algorithm, respectively,
incorporating the previous estimation and detection results in the the SAGE algorithm as
follows:

Initial: For i = 0, determine the initial estimates,
{
r [0]
m , c[0]

m
}M̂
m=1 from the MP algorithm as

described in Section 3.3.

Step-1) Update the channel parameters {r [i+1]
m , c[i+1]

m } sequentially for m = 1, 2, . . . , M̂

from (29) computinĝx(m)
[i]

in (27) recursively as

̂x(m)
[i] = ̂x(m−1)

[i] −
(
a[i]
r [i+1]
m−1

c[i+1]
m−1 − a[i]

r [i]
m
c[i]
m

)
, (44)

where x̂(0)
[i] = y −

M̂∑
m′=1

a[i]
r [i]
m′
c[i]
m′ and a[i]

r [i+1]
0

= 0, c[i+1]
0 = 0 for all i . So, it is

straightforward from (43) that x̂(0)
[0] = RM̂ = y −

M̂∑
m′=1

a(P)

r [0]
m′
c[0]
m′ .

Step-2) If m = M̂ go to Step-3.
Step-3) Using the estimates {r [i+1]

m , c[i+1]
m }M̂m=1 obtained in Step-1, update the channelmatrix

Φ[i+1] from (31) and (32).

Step-4) Update b[i+1][kq ] sequentially for q = 1, 2, . . . , KD from (40) computing ẑ(q)
[i]

in
(38) recursively as

ẑ(q)
[i] = ̂z(q−1)

[i] −
(
ψ [i+1][kq−1] b[i+1][kq−1] − ψ [i+1][kq ] b[i][kq ]

)
, (45)

where ẑ(0)
[i] = y−

K/2−1∑
k=−K/2

ψ [i+1][k] b[i][k] and ψ [i+1][k0] = 0, b[i+1][k0] = 0 for

all i .
Step-5) If q = KD go to Step-6
Step-6) Using the data symbols {b[kq ]}KD

q=1 obtained in Step-4, update the dictionary matrix

A[i+1] from (15), (16) and (17).
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Table 1 Computational complexity details

Eq. no. Variable CMs CAs

Initialization

(41), (42) and (43)
{
r [0]
m , c[0]m ,Rm

}M=LD
m=1 ≈ ρLD2Lcp ≈ ρLD2Lcp

SAGE iteration

In the next line of (44) ̂x(0)
[i] ≈ LD ≈ LD

(29) and (44)
{
r [i+1]
m , c[i+1]

m ,̂x(m)
[i]}M=LD

m=1 ≈ ρLD2Lcp ≈ ρLD2Lcp

(31) and (32) Φ[i+1] ≈ NLD ≈ N (LD − 1)

In the next line of (45) ̂z(0)
[i] ≈ N ≈ N

(40) and (45)
{
b[i+1][kq ] ,̂z(q)

[i+1]}KD
q=1 ≈ 2KD ≈ 2KD

(15), (16) and (17) A[i+1] ≈ ρNDLcp ≈ ρNDLcp

Step-7) Take i ← (i + 1) and then continue the SAGE iterations from Step-1 until the
maximum number of the SAGE iterations is reached.

Step-8) END.

3.5 Complexity Analysis

The computational complexity is presented in Table 1 under the assumption that N ≈ K
and M̂ ≈ M = LD for simplicity of the complexity analysis. The initial values,{
r [0]
m , c[0]

m ,Rm
}M
m=1 in (41), (42) and (43), are obtained by the MP algorithm and require

approximately ρLD2Lcp complex multiplications (CMs) and ρLD2Lcp complex additions
(CAs) per OFDM subcarrier as given in Table 1. In each iteration of the SAGE algo-

rithm, x̂(0)
[i]
,
{
r [i+1]
m , c[i+1]

m ,̂x(m)
[i+1]}M

m=1, Φ[i+1], ẑ(0)
[i]
,
{
b[i+1][kq ] , ẑ(q)

[i+1]}KD
q=1 and

A[i+1] are updated, respectively, and the SAGE algorithm needs approximately (ρDLcp +
1)(N + LD) + 2KD CMs and ρNDLcp + (ρDLcp + 1)LD + 2KD CAs per OFDM sub-
carrier in each SAGE iteration. As a result, assuming that the SAGE algorithm converges
in Ii ter iterations and taking ρDLcp � 1 for simplicity, it follows from Table 1 that the
computational complexity per iteration of the proposed SAGE algorithm presented in this
work is approximately (ρDLcp + 1)N + (

ρDLcp(1 + 1
Ii ter

) + 1
)
LD + 2KD CMs and

ρNDLcp + (
ρDLcp(1 + 1

Ii ter
) + 1

)
LD + 2KD CAs per OFDM subcarrier, consequently

it is in the order of O(ρNDLcp) . We compare the computation load of our algorithm with
that of [19] that proposes a SAGE based joint channel estimation and data detection algorithm
for OFDM systems under the assumption of rapidly time-varying non-sparse wireless multi-
path channel having path delay positions at integer multiple of baseband sampling duration.
Thus, taking ρ = 1 for path delay positions at integer multiple of baseband sampling duration
and Lcp = L for non-sparsity, the order of the computational complexity of our algorithm
becomes O(NDL) that is much less than that of [19].

4 Computer Simulations

In this section, we present computer simulations to evaluate the performance of the proposed
joint channel estimation and data detection algorithm. Simulation parameters are summarized
in Table 2.We assume that the channel delays, τ�, � ∈ {1, 2, . . . , L}, are independent with
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Table 2 Simulation parameters
Number of subcarriers (N ) 512

Number of occupied subcarriers (K ) 360

Bandwidth (BW ) 5 MHz

Subcarrier spacing (Δ f ) 15 KHz

Sampling frequency ( fs ) 7.68 MHz

Normalized Doppler frequency ( fdoppT ) 0.02, 0.04

Carrier frequency ( fc) 2.5 GHz

Cyclic prefix length (Tcp) 40 × Ts

Mean of the number of the multipaths (L̄) 5

Modulation formats BPSK, QPSK, 16-QAM

Pilot spacing 8 × Δ f

Delay resolution ( ρ) 1, 2, 4, 8

Number of the BEM coefficients (D) 3

Maximum number of the SAGE iterations 5

respect to each other and uniformly distributed within the interval [0, Tcp]. The number of
paths L obeys a Poisson distribution with mean L̄ having the following probability density
function with random variable ξ

pL (ξ) = (L̄ − 1)(ξ−1) e−(L̄−1)

(ξ − 1)! , ξ ∈ N

+, L̄ ∈ N

+, (46)

whereN

+ denotes the set of positive integer numbers. We chose a multipath wireless channel
having an exponentially decaying power delay profile,Ω� = Ce−τ�/Tcp , whereC is the power
normalization constant such that

∑L
�=1 Ω� = 1.We consider a comb-type pilot structure with

the equally spaced pilot subcarriers.Wemeasure the performance of the system in terms of the
frequency-domain normalized mean squared error (MSE) and the symbol error rate (SER).
We define the frequency-domain normalized MSE metric as follows

MSE = E

⎧
⎨

⎩

∑N−1
n=0

∑K/2−1
k=−K/2

∣∣H(n, k) − Ĥ(n, k)
∣∣2

∑N−1
n=0

∑K/2−1
k=−K/2

∣∣H(n, k)
∣∣2

⎫
⎬

⎭ , (47)

where the expectation is computed by the Monte Carlo method.
In our simulation plots, we compare our proposed SAGE algorithm with the OMP algo-

rithm that is commonly proposed in the CS literature as a very popular signal recovery
method [10–13,17,18]. In Figs. 1 and 2, the MSE and SER performance of our algorithm is
compared with that of the OMP algorithm for two different normalized Doppler frequencies:
fdoppT = 0.02(v = 130 km/h), fdoppT = 0.04(v = 260 km/h), employing the quadrature
phase shift keying (QPSK) signaling format and delay resolution ρ = 4. Also, the perfor-
mance curves corresponding to perfect channel state information (CSI) are included in Fig. 2
for comparison purposes, and exhibit that the performance loss in SER is not significant when
perfect CSI is not available. The performance curves shown in Figs. 1 and 2 indicate that the
SAGE algorithm clearly outperforms the OMP algorithm above the low SNR levels. The per-
formance degradation at low SNR levels is because of the sensitivity of the SAGE algorithm
to initial values of the parameters to be updated within the SAGE iterations. The initial esti-
mates of the BEM coefficients obtained by theMP algorithm cannot be improved sufficiently
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Fig. 1 MSE performance comparisons for normalized Doppler frequencies fdoppT = 0.02 and fdoppT =
0.04 (ρ = 4, QPSK signaling)
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Fig. 2 SER performance comparisons for normalized Doppler frequencies fdoppT = 0.02 and fdoppT =
0.04 (ρ = 4, QPSK signaling)

at low SNR levels, consequently the SAGE algorithm cannot converge to better estimates
of the BEM coefficients. Therefore, the SAGE algorithm exhibits a worse performance than
that of OMP algorithm at low SNR levels.

Figures 3 and 4 show the MSE and SER performance curves of the SAGE algorithm for
binary phase shift keying (BPSK), QPSK, 16 quadrature amplitude modulation (16-QAM)
signaling formats. The SER performance curves for perfect CSI case are also included in
Fig. 4. We conclude from the curves in Figs. 3 and 4 that the SAGE algorithm substantially
outperforms the OMP algorithm for different signaling formats, as well, above the low SNR
levels.
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Fig. 3 MSE performance comparisons for BPSK, QPSK, and 16-QAM signaling schemes ( fdoppT = 0.02,
ρ = 4)
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Fig. 4 SER performance comparisons for BPSK, QPSK, and 16-QAM signaling schemes ( fdoppT = 0.02,
ρ = 4)

In order to investigate the convergency of the SAGE algorithm, the SER performance
curves are plotted for each SAGE iteration in Fig. 5. As shown in Fig. 5, the SAGE algorithm
converges in at most 4 iterations.

In Fig. 6, we also evaluate the SER performance of the SAGE algorithm for higher delay
resolutions (ρ = 1, 2, 4, 8). The SER curves in Fig. 6 clearly exhibit that 4 times the delay
resolution (ρ = 4) is sufficient for better performance of the SAGE algorithm.

5 Conclusions

In this work, a SAGEbased channel estimation and symbol detection algorithm is proposed in
the CS framework for OFDM systems operating over rapidly time-varying sparse multipath
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Fig. 5 SER versus SNR simulation results for each number of SAGE iterations ( fdoppT = 0.02, ρ = 4,
QPSK signaling)
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Fig. 6 SER versus SNR simulation results for each of delay resolution ( fdoppT = 0.02, QPSK signaling)

channels. For better modeling of rapidly time-varying sparse multipath channels, we use the
over-complete dictionary with finer delay resolution to be able to represent sparse multipath
delay positions and employ the DKL-BEM to represent the rapidly time-varying path gains
within one OFDM symbol duration. The initial estimates of the BEM coefficients and the
corresponding coefficient indices are obtained by the MP algorithm and they are updated
together with data symbols within the proposed SAGE algorithm iterations to improve their
estimation performance. The computer simulations have demonstrated that the proposed
algorithmhas substantiallymuchbetter symbol error rate and channel estimation performance
than that of the OMP algorithm that is commonly proposed in the CS literature as a very
popular signal recovery method.
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