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Spatial Modulation (SM) has been proposed recently for multiple-input multiple-output (MIMO) systems 
to cope with the interchannel interference and to reduce the detection complexity as compared to the 
conventional MIMO systems. In SM system, the data symbols are transmitted by a randomly selected 
active antenna of a MIMO transmitter to the receiver through a wireless channel. The information is 
carried both by the data symbol from any signal constellation such as M-ary phase shift keying (M-PSK) 
or M-ary quadrature amplitude modulation (M-QAM), by the index of the selected antenna. The channel 
estimation is a critical process at the receiver during the coherent detection of the transmitted symbol 
and the antenna index, randomly selected. Recently, the channel estimation of channel for SM systems 
has been investigated by the recursive least square (RLS) algorithm for only quasi-static fading channels. 
In this paper, a novel channel estimation is proposed for SM systems in the presence of rapidly time-
varying channels. The Bayesian mean square error (MSE) bound has been derived as a benchmark 
and the performance of the proposed approaches is studied in terms of MSE and bit-error rate (BER). 
Computer simulation results have confirmed that the proposed iterative channel estimation technique 
has significant BER/MSE performance advantages compared with existing channel estimation algorithm 
proposed earlier in the literature.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Conventional multiple-input multiple-output (MIMO) systems 
use all transmit antennas to transmit multiple data streams. There-
fore, its performance depends on some important parameters such 
as the distance between receiver and transmitter antennas [1,2], 
inter-channel interference (ICI) at the receiver and inter-antenna 
synchronization (IAS) at the transmitter [3,4]. For example, it 
was shown that uncorrect IAS causes performance degradation for 
MIMO systems [3,4].

Spatial modulation (SM) is a promising MIMO transmission 
technique that has been recently proposed [5–7]. The basic princi-
ple of the SM is to use the indices of multiple antennas to convey 
information in addition to the conventional two-dimensional sig-
nal constellations such as M-ary phase shift keying (M-PSK) and 
M-ary quadrature amplitude modulation (M-QAM), where M is 
the constellation size. Optimal SM decoder at the receiver searches 
jointly for all M-ary constellation points and transmit antennas 
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to decide on both the transmitted symbol and the index of the 
transmitted antenna over which the symbol is transmitted. Conse-
quently, it is an effective way to remove the intercarrier interfer-
ence (ICI) completely between the transmitter antennas of a MIMO 
link. Furthermore, SM does not require IAS of the MIMO link and 
only one radio frequency chain (RF) is needed at the transmitter.

The SM technique is different from the transmit antenna se-
lection (TAS) since TAS is a closed-loop mechanism and provides 
spatial-multiplexing while the SM is open-loop with transmit-
diversity [8]. SM technique adds a third dimension to the two-
dimensional signal space which is the spatial dimension and it 
maps multiple information bits into one symbol and the corre-
sponding antenna index. Therefore, the number of total transmit-
ted information bits depends on the constellation diagram and the 
total number of transmitter antennas [9]. Consequently, the spa-
tial modulation has a very flexible mechanism that provides high 
spectral efficiency with low complexity [10].

The receiver has to detect both the transmitted symbol and 
the active antenna index since the desired information carried by 
the modulated signal and the transmit antenna index, chosen at 
random. In the literature, the antenna index and symbol detec-
tion are realized by means of optimal and non-optimal detection 
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methods [5,11]. It has been shown in [11] and [9] that SM can 
achieve better error performance than V-BLAST (Vertical-Bell Lab 
Layered Space–Time) in some cases under the assumption that per-
fect channel information (CSI) is available at the receiver. However, 
in practice, we hardly have a perfect CSI at the receiver and thus 
a channel estimator is employed to provide unknown channel pa-
rameters. Recently, the effect of imperfect channel estimation on 
the SM-MIMO systems has been investigated [12,13]. In [12], the 
least square (LS) estimation technique is employed for MIMO sys-
tems operating over quasi-static Rayleigh flat fading channels and 
its mean-square error (MSE) performance is investigated. In [13], 
a joint channel estimation with data detection is proposed while 
assuming the channel correlation matrix is available at the re-
ceiver.

Pilot symbol assisted modulation (PSAM) has been generally 
employed to achieve coherent detection performance in wireless 
environments [14]. Based on this approach, in [15] the channel 
estimation for SM systems has been investigated by means of a 
pilot-based recursive least square (RLS) method while assuming 
the wireless channel is quasi-static for a duration of at least one 
frame length. The RLS algorithm is known to possess fast conver-
gence, but also to yield high channel estimation errors on fast fad-
ing channels mainly because it solely depends on the pilot symbols 
and does not take the mobility into account [16]. In communica-
tion systems, pilot symbols, known to the receiver, can be inserted 
periodically, usually in the beginning of each frame consisting of 
several transmitted symbols. However, when the channel varies 
rapidly, pilot symbol sequence cannot be effective to implement 
the channel estimation efficiently.

In this work, the pilots are sent out through only one trans-
mit antenna at each time instant. Hence, using pilot-based channel 
estimation, only the CSI of the active transmit antenna can be ob-
tained at the receiver. This leads to a challenging task for the chan-
nel estimation in SM systems over fast time-varying channels. In 
[17], performance bounds for training and superimposed training-
based channel estimation for time-varying flat-fading channels 
have been discussed. It was shown that the regular periodic place-
ments (RPPs) perform better at high SNR and for slowly varying 
channels, whereas the superimposed scheme is superior for rel-
atively fast time-varying channels. However, in MIMO systems it 
is required that the pilot sequences transmitted from each trans-
mit antenna should be orthogonal to each other to prevent inter-
antenna interference. This a challenging design problem in general. 
On the other hand, this problem can be easily handled in spatial 
modulated MIMO systems since the pilot sequences transmitted 
from each transmit antenna are surely orthogonal each other due 
to the fact that they are mutually disjoint at all the time.

Channel coefficients in a real mobile environment change 
smoothly in time. This smoothness helps us to employ well de-
signed curve fitting methods in order to further improve the chan-
nel estimation accuracy [18]. In [19], the rectangular-windowed 
recursive least squares algorithm where each tap of the frequency 
selective fading channel modeled as a polynomial in time is pro-
posed. On the other hand, all channels could not be observed 
within the duration of a symbol transmission since only one an-
tenna is active at the given signaling interval. This also motivates 
us to use curve fitting methods to interpolate unknown channel 
durations [20]. It is clear that to track the channel coefficients for 
data duration we need to employ a decision directed channel esti-
mation scheme. Different methods based on decision directed are 
also proposed to enhance the tracking capability of the RLS algo-
rithm in [21] for MIMO systems. In [21], optimizing the involved 
window size and forgetting factor and the initialization of the au-
tocorrelation matrix of RLS are also investigated.

To the best of our knowledge, there is not any efficient and 
computationally feasible channel estimation algorithm, in the pres-
ence of a rapidly varying channel, exists for the SM-MIMO systems 
in the literature. Motivated by the existing correspondences be-
tween the RLS, the decision directed channel estimation and the 
polynomial fitting, in this paper a novel channel estimation tech-
nique and an iterative receiver design are proposed based on the 
curve fitting and the detected symbols employed in a decision-
directed mode that ensure excellent tracking for SM-MIMO sys-
tems. We insert periodic pilot blocks to cope with the errors, in-
troduced in decision-directed channel estimation mode, due to the 
accumulate over bits. The data block length between adjacent pi-
lot blocks can be adjusted based on the channel mobility in our 
proposed scheme. This results in minimum overhead for pilot sym-
bols. It is known that the iterative receivers provide significant 
advantages [22–24] over conventional receivers and shown that 
the SM receiver employing the proposed channel estimator has su-
perior performance as compared to the conventional RLS channel 
estimation-based receivers. Moreover, we derived analytically an 
overall Bayesian MSE lower bound for the channel estimator pro-
posed in this work to serve as a benchmark. We performed new 
computer simulations to determine how the MSE performance of 
our channel estimation algorithm can approach this lower bound.

Notation: Throughout the paper, the following notations and 
assumptions are used. Bold and capital letters ‘A’ denote matrices. 
Bold and small letters ‘a’ denote vectors. diag{a} is a diagonal ma-
trix with a on its main diagonal. Ex,y[.] is the expectation over x
and y. The notations, (.)∗ , (.)T , (.)†, (.)+ , (.)−1 and ‖.‖F denote 
conjugate, transpose, Hermitian, pseudoinverse, inverse and Frobe-
nius norm, of a matrix or a vector respectively.

2. System model

An SM-MIMO system with Nt transmit antennas and Nr receive 
antennas is considered. In general, the total number of bits that is 
transmitted by a M-ary SM-MIMO system is

k = log2(Nt) + log2(M) (1)

where M represents the total number of bits per transmitted sym-
bol. At the nth symbol interval the SM mapper takes a random 
sequence of k bits and maps them into an Nt -dimensional signal 
vector as

x(n) = [
x1(n), x2(n), · · · , xNt (n)

]T
. (2)

Only one of x j(n) that is active in x(n) is nonzero. Then, at the 
nth symbol interval, the output of the SM-MIMO system at the 
transmitter can be expressed as

x j(n) �
[
0 · · · xq(n)︸ ︷︷ ︸

j. transmitted antenna

· · · 0
]T

(3)

where j is the active antenna index and xq(n) is the qth symbol 
from the M-ary constellation diagram. The other antennas remain 
silent over this symbol duration. The symbol xq(n) is transmitted 
from antenna j over an Nr × Nt MIMO channel. The observation 
model at receiver can be expressed as

⎡
⎢⎢⎢⎢⎢⎢⎣

y1(n)
...

yr(n)
...

y (n)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

h1,1(n) h1,2(n) · · · · · · h1,Nt (n)

h2,1(n) h2,2(n) · · · · · · h2,Nt (n)
...

...
. . .

...
...

...
. . .

...

h (n) h (n) · · · · · · h (n)

⎤
⎥⎥⎥⎥⎥⎥⎦
Nr Nr ,1 Nr ,2 Nr ,Nt
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×

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...

xq(n)
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

w1(n)
...

wr(n)
...

w Nr (n)

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

where hr, j(n) is the channel coefficient between jth transmitter 
antenna and rth receiver antenna, wr(n) is complex-valued, zero-
mean white Gaussian noise (AWGN) with variance σ 2

w .
In the SM-MIMO system, the time-varying, frequency non-

selective fading channel coefficients, hr, j(n), introduce a random 
amplitude and phase shift to the transmitted signal. We assume 
they are modeled as wide-sense stationary (WSS) process narrow-
band complex Gaussian random variables with means μhr, j and 
variances σ 2

hr, j
(Rician channel model), having Jakes’ model with 

the autocorrelation function of the channel [25] given by

Rh(m,n) � E
{

hr, j(m)h∗
r, j(n)

} = σ 2
hr, j

J0
(
2π fd(m − n)Ts

)
, (5)

where Ts stands for the symbol period, fd is the Doppler frequency 
in Hertz and J0(·) is the zeroth order Bessel function of the first 
kind. There is a dominant component in the Rician fading, distinct 
from the Rayleigh fading channels. The Rician factor, R , is defined 
as the ratio of the power in the Line-of-sight (LOS) component 
to the power of the non-line-of-sight (non-LOS) multipath compo-
nents. Rayleigh fading is a special case of the Rician fading when 
R = 0. Also R =∝ describes a channel having only a LOS compo-
nent.

Observation model (4) can be written in matrix form as follows:

y(n) = H(n)x j(n) + w(n), n = 1,2, · · · , N. (6)

3. Optimal detection

Antenna index detection is a crucial step of the SM scheme 
since only one transmit antenna is active among the set of transmit 
antennas and both the data symbol, transmitted by this antenna, 
and the antenna index should be decided at the receiver. Optimal 
detector based on the maximum likelihood (ML) principle can be 
stated as follows, [11]:

[
ĵML(n), q̂ML(n)

] = arg max
j,q

pY
(
y(n) | x j(n),H(n)

)
(7)

where x j(n) varies for different q and j as indicated in (3). From 
(6), the probability density function (pdf) of y(n), conditioned on 
x j(n) and H(n), can be written as:

pY
(
y(n) | x j(n),H(n)

) = π−Nr exp
(∥∥−y(n) − h j(n)xq(n)

∥∥2
F

)
(8)

where h j(n) = [h1, j(n), h2, j(n), · · · , hNt , j(n)]T is jth column vector 
of the matrix H(n). Using (8), optimal detector in (7) can be ex-
pressed as

[
ĵML(n), q̂ML(n)

]= arg max
j,q

∥∥g jq(n)
∥∥2

F − 2�e
{

y†(n)g jq(n)
}

(9)

where g jq(n) is:

g jq(n) = h j(n)xq(n), 1 ≤ j ≤ Nt, 1 ≤ q ≤ M. (10)

If the receiver detects both ĵML(n) and q̂ML(n) correctly, they 
can be easily de-mapped and combined to get back to the trans-
mitted bits. However, it is clear that the receiver needs to know 
the full CSI, H where

H = [
H(1),H(2), · · · ,H(n), · · · H(N)

]
. (11)
4. Channel estimation

In the SM-MIMO system, the CSI is needed at the receiver in 
order to detect the modulated signal transmitted for the selected 
transmit antenna as well as the index of the antenna selected. In 
this work we propose a new iterative channel estimation technique 
which yields a superior error performance for the SM-based re-
ceivers. The RLS algorithm is employed only for the initialization 
of the proposed iterative algorithm.

4.1. Initialization

We now summarize the RLS algorithm which will be employed 
to initialize our iterative channel estimation algorithm by means of 
the pilot symbols denoted by x(p)(n). The RLS algorithm works for 
j = 1, · · · , Nt , r = 1, · · · , Nr . The pilot symbols are first transmitted 
sequentially from transmit antennas and the channel coefficients 
between the selected transmit antenna and the receive antennas 
are individually estimated by the RLS algorithm within each pilot 
symbol duration as shown in Fig. 1. Let y(p)

r (n), r = 1, 2, · · · , Nr , 
be the received signal corresponding to the pilot symbols. At the 
receiver, the received signal samples are processed sequentially 
and the channel estimates are updated as the new samples arrive. 
This section explains briefly how the least squares estimates of the 
channel are computed recursively. Given the set of pilot symbols, 
x(p) = [x(p)(1), x(p)(2), · · · , x(p)(Np)]T where Np is the total num-
ber pilot symbols for each active antenna, and the corresponding 
desired responses y(p)

r (n) = [y(p)
r (1), y(p)

r (2), · · · , y(p)
r (Np)]T , the 

outputs of the set of linear filters are determined according to

Ωr, j(n) = ĥRLS
r, j (n)x(p)(n), n = 1, · · · , Np (12)

The channel coefficients ĥRLS
r, j (n) between jth transmit and rth

receive antennas are estimated recursively in the time-domain to 
minimize the sum of the squared errors as

ε(n) =
n∑

i=1

λ(n−i)(y(p)
r (i) − ĥRLS

r, j (i)x(p)(i)
)2

, n = 1, · · · , Np (13)

where the forgetting or weighting factor, λ, 0 < λ ≤ 1 reduces the 
influence of the old data. The basic steps of the RLS parameter
estimation algorithm can be found easily in the open literature and 
thus will not be given here, [15,26].

4.2. The iterative receiver

Receivers with iterative decision-directed channel estimation 
(DD-CE) are very attractive since they yield superior error per-
formance [27], especially when operating in the presence of fast 
time-varying channels and they need less pilot symbols as com-
pared to the non-iterative channel estimators [28]. Moreover, it 
was also shown that the computational complexity of the receiver 
[29] can be reduced substantially.

As mentioned in Section 4.1, a pilot-aided RLS algorithm is em-
ployed to find the initial channel estimates. Unlike multi-stream 
MIMO schemes, the SM requires a longer time to transmit pilots 
as shown in Fig. 1 and the channels for different transmit anten-
nas are individually estimated by the corresponding pilot symbols. 
The main problem is that we have only one active antenna dur-
ing transmission so that the other channels could not be known at 
that time. Therefore, the data symbols transmitted from randomly 
selected antennas are detected first by means of the initial channel 
estimates using pilot symbols. As shown in Fig. 2, the channel co-
efficients, associated with the detected symbols, are then updated. 
The unknown channel coefficients that cannot be estimated by the 
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Fig. 1. Channel estimation based on pilot and data durations.
Fig. 2. Proposed iterative receiver structure.

detected symbols are determined by a curve fitting technique. Con-
sequently, the channel estimation algorithm has also the capability 
of tracking the time-varying channel at the receiver.

If jth transmitter antenna is assumed to be active (τ = j) 
and transmits the data symbol xq(tk) at discrete times tk , k =
1, 2, · · · , K within an observation frame of length N (N � K ), the 
received signal at the rth receiver antenna can be written as:

yr(tk) = hr, j(tk)xq(tk) + wr(tk) (14)

In this case, the DD channel estimates at discrete times 
t1, t2, · · · , tK can be determined as:

ĥDD
r,τ= j(tk) = yr(tk)/̂xq(tk), tk ∈ {1,2, · · · N} (15)

where x̂q(tk) represents the detected symbol at the tkth symbol 
duration. Note that there are approximately K = N/Nt symbols 
detected for each channel if we assume that the transmitted an-
tennas are selected with equal probabilities. The detected symbols 
are then updated iteratively, employing the last updated channel 
estimates for the next iteration, as shown in Fig. 2.

4.3. Curve fitting

By means of a polynomial curve fitting at discrete times 
t1, t2, · · · , tK , the estimated channel coefficients, ĥDD

r,τ (tk), τ = j be-
tween τ th transmit and jth receive antennas can be modeled as a 
(L − 1)th degree polynomial

ĥDD
r,τ (tk) = θr,τ (1) + θr,τ (2)tk + · · · + θr,τ (L)tL−1 + ur,τ (tk) (16)
k
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where ur,τ (tk) is a random modeling error assumed to be zero-
mean Gaussian with variance σ 2

u , conditioned on the scalar vari-
able tk . Then we have the following usual linear model:

ĥDD
r,τ = Tθ r,τ + ur,τ (17)

where,

ĥDD
r,τ = [

ĥDD
r,τ (t1), ĥDD

r,τ (t2), · · · , ĥDD
r,τ (tK )

]T

ur,τ = [
ur,τ (t1), ur,τ (t2), · · · , ur,τ (tK )

]T

θ r,τ = [
θr,τ (1), θr,τ (2), · · · , θr,τ (L)

]T

T =

⎡
⎢⎢⎢⎢⎣

1 t1 · · · tL−1
1

1 t2 · · · tL−1
2

...
...

. . .
...

1 tK · · · tL−1
K

⎤
⎥⎥⎥⎥⎦

where K is the total number of samples for curve fitting and the 
observation matrix T has the form of a Vandermonde matrix. The 
minimum variance unbias (MVU) estimator for θ r,τ is [30]

θ̂ r,τ = (
TT T

)−1
TT ĥDD

r,τ . (18)

Then the resulting curve fitting for all discrete times n = 1, 2, · · · , N
is

ĥCF
r,τ (n) =

L∑
i=1

θ̂r,τ (i)ti−1
n . (19)

The time-varying channel can be estimated using (19) over the 
duration of one frame. After the channel estimation step, the data 
symbols are detected as shown in Fig. 2. Note that the wrong/poor 
symbol and antenna index detections made by the SM-MIMO re-
ceiver may cause some error accumulation that could affect the 
mean-square error performance of the channel estimation algo-
rithm. However, our extensive computer simulations as well as the 
work in [12] show that wrongly detected antenna indices rarely 
occur and the polynomial fitting, employed in the channel estima-
tion algorithm, reduces this effect by means of the other correct 
detected antenna indexes. Periodic pilot blocks are also inserted in 
the decision-directed estimation mode to reduce further the error 
propagation effect.

5. Performance limits of the channel estimation algorithm

To serve as a benchmark, we now derive an overall Bayesian 
MSE bound for the channel estimator proposed in this paper [31]. 
The overall MSE for the channel impulse response vector can be 
expressed as the sum of the truncation MSE and estimation MSE:

MSEall = MSEtrun + MSEest. (20)

We assume that all the channel coefficients of the spatial 
modulated MIMO system, between transmit and receive antennas, 
{hr,τ (n)}, r = 1, 2, · · · , Nr , τ = 1, 2, · · · , Nt , are fast-time varying, 
frequency non-selective Rayleigh fading and independent of each 
other. Consequently, the performance bounds obtained below are 
independent of the label of the transmit antenna, τ , selected from 
the set of the transmit antennas randomly with equal probability. 
Therefore, we will drop the subscript τ for notational simplicity. 
The truncation MSE, MSEtrun, can be evaluated as follow:

MSEtrun = 1

Nr N

Nr∑
Eh′

r ,h
opt
r

{(
h′

r − hopt
r

)†(
h′

r − hopt
r

)}
(21)
r=1
where, h′
r = [hr(1), hr(2), · · · , hr(N)]T and hopt

r is the optimal poly-
nomial in (19) which is the least-squares fitted to h′

r and its opti-
mal coefficient vector θ̂ r = [θ̂r(1), ̂θr(2), · · · , ̂θr(L)]T is given by [32]

hopt
r = T̃θ̂ r and θ̂ r = (

T̃T T̃
)−1

T̃T h′
r, (22)

where T̃ is N × L matrix. From (22) it follows that

hopt
r = Υ h′

r (23)

where Υ � T̃(T̃T T̃)−1T̃T . Than it can be easily show from (21) that

MSEtrun = 1

N
tr

{(
IN − Υ †)Chr (IN − Υ )

}
, (24)

where Chr represents the covariance matrix of the channels be-
tween any transmit and receive antennas whose (m, n)th element 
is given by (5).

We now evaluate the Bayesian mean-square estimation error, 
MSEest in (20) as follows. Received signal given in (6) model, can 
be expressed at discrete times t1, t2, · · · , tK , between any transmit 
antenna and the rth receive antenna as

yr = Xqhr + wr, r = 1,2, · · · , Nr (25)

where

yr = [
yr(t1), yr(t2), · · · , yr(tK )

]T
,

hr = [
hr(t1),hr(t2), · · · ,hr(tK )

]T
,

Xq = diag
[
xq(t1), xq(t2), · · · , xq(tK )

]
,

wr = [
wr(t1), wr(t2), · · · , wr(tK )

]T
.

Note that hr(tk) is independent of hr′ (tk) for r 
= r′ . Using the 
relation hr = Tθ r + ur in (19), we have

yr = Ψ qθ r + vr, r = 1,2, · · · , Nr (26)

where θ r = [θ1, θ2, · · · , θL]T , Ψ q � XqT and vr = wr + ur . Since we 
assume that the polynomial fitting error vector ur is zero-mean 
Gaussian with covariance matrix σ 2

u IK , it is clear that the overall 
additive noise vector vr is also Gaussian having the covariance ma-
trix σ 2IK with σ 2 � σ 2

w +σ 2
u . Then the Bayesian MSE error for the 

estimator of θ r is defined as

MSEθ̂ r
= 1

LNr

Nr∑
r=1

Eθ r ,θ̂ r

{
(θ r − θ̂ r)

†(θ r − θ̂ r)
}
, (27)

where θ̂ r = [θ̂r(1), ̂θr(2), · · · , ̂θr(L)]T is given by (18). The left hand 
side of (27) can be lower bounded as

Eθ r ,θ̂ r

{
(θ r − θ̂ r)

†(θ r − θ̂ r)
} = tr

{
Eθ r ,θ̂ r

{
(θ r − θ̂ r)(θ r − θ̂ r)

†}}
≥ (Jθr + Cθr )

−1 (28)

where Jθr is the Fisher information matrix (FIM) and Cθr is the 
covariance matrix of the prior probability distribution of θ r and it 
can be determined from (22) as

Cθr = (
T TT )−1

TT Chr T
(
TTT )−1

(29)

where Chr is the autocorrelation matrix of hr with elements given 
by (5). On the other hand, for the linear observation model in (26), 
the FIM of θ r is given by [30]

Jθr = EXq {(Ψ †
qΨ q)

−1}
σ 2

(30)

The expectation in (30) can be taken easily in the case of con-
stant envelope data symbols. Otherwise, it can be evaluated by 
using a tight lower bound E{X} ≥ 1/E{X} resulting
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Table 1
Complexity analysis.

Equation number RLS-CE Iterative-CE

× + × +
12Np 4N p 12Np 4N p

(15) – – K –
(18) – – L2 K + LK + O (L2) + L2 L2 K + LK − 2L
(19) – – (L − 1)N (L − 1)N
Total 12Np 4N p K (L2 + L + 1) + N(L − 1) + 12N p + O (L2) + L2 K (L2 + L) + N(L − 1) + 4N p − 2L
Jθr ≥ Es

σ 2

(
T†T

)−1
(31)

where Es � E{|xq(tk)|2} and Jθr achieves the lower bound when 
constant envelope symbols are employed.

Consequently, the mean-square estimation error MSEest for the 
channel vector from any transmit antenna to the rth receive an-
tenna for r = 1, 2, · · · , Nr is defined as

MSEest = 1

K Nr

Nr∑
r=1

Ehr ,ĥr

{
(hr − ĥr)

†(hr − ĥr)
}

(32)

where ignoring the truncation error, ĥr = Tθ̂ r and hr = Tθ r . Using 
(28) in (32) and after some algebra we have

MSEest ≥ 1

K
tr

{
T
(
Jθr + C−1

θr

)−1
TT }

. (33)

Finally, the overall Bayesian MSE lower bound of the proposed 
channel estimator can be expressed from (20), (24), (31) and (32)
as follows:

MSEall ≥ 1

N
tr

{(
IN − Υ †)Chr (IN − Υ )

}

+ Es

Kσ 2
tr

{
T
((

TT T
)−1 + Cθr

)−1
TT }

. (34)

6. Computational complexity

Computational complexity of the iterative receiver proposed in 
this work is determined by the parameters Np , K , N and L. Com-
putational load to implement the RLS and the iterative channel 
estimation algorithms are summarized in Table 1.

The RLS-based initial channel estimates (RLS-CE) are deter-
mined by the associated pilot symbols transmitted through the 
active antennas. Therefore, the whole algorithm requires 12N p

complex multiplications (CMs) and 4Np complex additions (CAs) 
per channel [15].

On the other hand, the computational load to implement the 
iterative-CE scheme is based on Eqs. (15), (18) and (19) as well 
as on the RLS-CE algorithm for initialization. We need K CMs to 
calculate the channel by the detected symbols in (15). According to 
(18), computation of TT T requires1 L2 K real multiplications (RMs) 
and L2(K − 1) real additions (RAs) where T is K × L matrix. The 
computational complexity to evaluate (TT T)−1 is2 O (L2) [33]. The 
product of TT with ĥDD

r,τ requires LK CMs and L(K − 1) CAs. Then 
to evaluate the term (TT T)−1TT ĥDD

r,τ , on the right hand side of (18)
requires L2 CMs and L2 − L CAs. Consequently, to compute Eq. (18)
overall L2 K + LK + O (L2) + L2 multiplications and L2 K + LK − 2L
additions are required. According to (19), we need (L − 1)N CMs 
and (L − 1)N CAs.

1 The total real multiplications (RMs) and real additions (RAs) to evaluate the 
multiplication of L × K matrix with K × N matrix are LK N and L(K − 1)N respec-
tively.

2 The computational complexity of an L × L Vandermonde matrix inversion is 
O (L2).
Finally, total complexity of the curve fitting is equal to K (L2 +
L + 1) + N(L − 1) + 12Np + O (L2) + L2 multiplications and K (L2 +
L) + N(L − 1) + 4Np − 2L additions for per channel. Note that it-
erations will require recalculations of (15), (18), (19). In [19], the 
channel estimation with a polynomial time-varying channel model 
was investigated and a polynomial order (L) selection probability 
was given. Similarly, in this work, it is concluded that the de-
gree of polynomial takes small values within the acceptable range 
of Doppler frequencies in practice to track the channel variations. 
Therefore, the computational complexity of the iterative-CE is quite 
feasible for real applications.

7. Simulation results

In this section, performance of an Nt × Nr SM-MIMO system is 
investigated based on the proposed channel estimation for various 
velocities of mobile users in the presence of Rician channels having 
different Rician factors.

Two benchmarks are considered in our computer simulations 
for comparison: i) the conventional RLS channel estimation, which 
is denoted as “RLS-CE” in the sequel; ii) perfect channel state in-
formation (P-CSI). Main parameters chosen for the simulations are 
as follows:

• RLS parameters are selected as μ = 0.0005 and λ = 1.
• Four receiver antennas are considered in all cases. SM map-

pings are shown for 2 × 4 and 4 × 4 in Fig. 3 and Fig. 4
respectively.

• The symbol duration and the carrier frequency are selected as 
1μ sn and 1.8 GHz respectively.

• We have the same signal-to-noise ratio (SNR) value at each 
receiver antenna.

• The SNR is defined as Es
σ 2 where Es is energy per symbol and 

σ 2 is noise power.
• In all simulations except Figs. 7, 9 and 10, one iteration is em-

ployed for the proposed receiver.
• The channel between transmitter and receiver is modeled as 

rapidly time-varying Rician fading channel where Doppler ef-
fect is taken into consideration.

7.1. Application scenario-1: 2 × 4 SM-MIMO system

Bit error rate (BER) performance of the SM-MIMO system with 
two transmit antennas and four receiver antennas are investigated 
using 4-QAM signaling. Total number of pilot and data symbols are 
selected as Np = 12 and N = 216 respectively. In Fig. 5, the BER 
performance of the proposed iterative-CE is compared with the 
RLS-CE scheme assuming P-CSI and V = 150 km/h ( fd = 250 Hz) 
over Rician fading channel having R = 7. The initial channel coeffi-
cients are determined first by the RLS-CE technique using the pilot 
symbols [15]. The iterative-CE is then implemented to obtain the 
enhanced channel estimates as described in Fig. 2.

Computer simulation results in Fig. 5 show that the BER perfor-
mance of the iterative-CE is better than that of the RLS-CE while 
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Fig. 3. Spatial modulation mapping: 3-bits transmission using 4-QAM, two transmit 
antennas and four receiver antennas.

Fig. 4. Spatial modulation mapping: 3-bits transmission using BPSK, four transmit 
antennas and four receiver antennas.

it achieves the BER performance of that of the P-CSI. In particular, 
it is observed that about 2 dB gain is achieved at BER = 10−6, as 
compared with the RLS-based receiver.

The effect of the Rician channel factor, R , on the BER perfor-
mance is investigated in Fig. 6. It is shown that as R increases 
from 0 to 10, the BER increases and difference in BER performance 
between the RLS-CE and the iterative-CE increases for small values 
of R . In other words, the RLS-CE with R = 0 and the iterative-CE 
with R = 2 have the same performances at SNR = 16 dB. Therefore, 
the iterative-CE has about 2 dB Rician factor gain at BER = 10−5, 
as compared with the RLS-CE.

7.2. Application scenario-2: 4 × 4 SM-MIMO system

In order to show the potential advantages of iterative-CE, V =
150 km/h with Rayleigh fading channel is considered in Fig. 7. It is 
shown that the RLS-CE exhibits an error floor at high velocity and 
high SNRs while iterative-CE has similar BER performance to the 
P-CSI case. In Fig. 7, it shown that additional iterations may help 
to improve the performance of the iterative-CE, and that increas-
ing the number of iterations enable the algorithm to approach the 
performance of the P-CSI case. As indicated in Fig. 7 that four iter-
ations would be sufficient for the proposed iterative-CE scheme to 
converge.

The main objective of this paper is to propose a robust and ef-
ficient channel estimation to support permanent accessibility and 
high data rates for users employing the SM-MIMO systems in a 
highly mobile environment. Therefore, finally, the effect of veloc-
ity on the BER performance is also investigated and the computer 
simulation results are presented in Fig. 8. As can be seen, mobility 
Fig. 5. BER comparison of the RLS estimator and proposed iterative based channel 
estimator for V = 150 km/s, R = 7, Nt = 2.

Fig. 6. Behavior of the BER with respect to the Rician factors for V = 150 km/s, 
SNR = 16 dB, Nt = 2.

Fig. 7. BER comparison of 4 × 4 SM-MIMO system for Rayleigh fading channel with 
V = 150 km/h, R = 7, Nt = 4.

has a substantial impact on the performance of the RLS-CE tech-
nique while the proposed iterative-CE is more robust.

In mobile wireless channels the bandwidth efficiency is at abso-
lute premium, therefore higher modulations such as 16-QAM and 
64-QAM are also considered for 4 × 4 SM-MIMO system in Fig. 9. 
The severe amplitude and phase fluctuations caused by wireless 
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Fig. 8. BER comparison of channel estimators for different mobile speeds with 4 × 4
SM-MIMO system, R = 7, SNR = 20 dB.

Fig. 9. BER comparison of channel estimators for higher modulations with 4 × 4
SM-MIMO system, V = 150 km/h, R = 0.

channels significantly degrade the BER performance of M-QAM. 
In [34], it was shown that the QAM is very sensitive to chan-
nel estimation errors and the performance degradation of higher 
order QAM is more serious than that of lower order QAM for 
V = 150 km/h and R = 0. This figure indicates that an error floor 
occurs for higher order modulations because the iterative channel 
estimation depends on detected symbols. However, it is concluded 
that proposed algorithm is robust up to BER = 10−5 for 16-QAM 
modulation. Moreover, it is shown that the proposed channel esti-
mation significantly outperforms the RLS channel estimation for 
higher modulations. We conclude from Fig. 10 that much more 
iterations are needed for 16-QAM and 64-QAM to achieve perfor-
mance close to the perfect CSI case.

7.3. Mean square error (MSE) performance

The SM-MIMO system with four transmit antennas with a 
BPSK, 16-QAM and 64-QAM modulations are considered for V =
150 km/h and R = 0. Total number of pilot and data symbols are 
selected as Np = 12 and N = 216 respectively. The proposed it-
erative channel estimator is compared with previously reported 
RLS channel estimator, in terms of average MSE for a wide range 
of signal to noise ratio (Es/N0) levels. A MSE lower bound is of 
particular interest to serve as a bench mark when we compare 
the channel estimation algorithms. The overall Bayesian MSE lower 
bound for the channel estimator, obtained analytically in Section 5, 
Fig. 10. Iterations 4 × 4 SM-MIMO system, V = 150 km/h, R = 0.

Fig. 11. MSE comparison of channel estimators for time-varying channel with 4 × 4
SM-MIMO systems, V = 150 km/h, R = 0.

is evaluated as a function of SNR in Fig. 11. It can be observed that 
the MSE performance of the iterative-CE channel estimator is fairly 
close to the BMSE lower bound depending on the signaling format 
employed. However, the MSE performance of the RLS-based chan-
nel estimation algorithm has substantially lower than that of the 
iterative-CE algorithm and experiences a large error floor at higher 
SNRs mainly due to the effect of the rapidly varying channel.

8. Conclusions

In this paper, it was shown that proposed iterative CE algorithm 
technique employed in SM-MIMO systems has superior BER and 
MSE performances in the presence of rapidly varying Rician fading 
channel over the conventional RLS based methods. It was demon-
strated by computer simulations that the RLS-based channel esti-
mator has yielded irreducible error floors at higher mobilities and 
the mobility effect was more devastating effect for channels with 
lower Rician factor. Based on the extensive computer simulations 
as well as on the analytical MSE analysis, we concluded that the 
proposed decision-feedback SM-MIMO receiver structure in which 
a curve fitting technique is employed to track the channel varia-
tions in the case of high mobility provided excellent performance 
with manageable computational complexity for different SM-MIMO 
systems such as 2 × 4 4-QAM, 4 × 4 BPSK. A comparison with 
other previously known RLS-CE algorithm was also made and it 
was demonstrated that the iterative-CE provides performance that 
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is close to that of the perfect CSI for realistic fading conditions and 
that the BER performance is more robust against channel variations 
than that of the RLS-CE technique.
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