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Abstract

The use of heterogeneous devices is becoming increasingly widespread. Their main drawback is
their low programmability due to the large amount of details that must be handled. Another
important problem is the reduced code portability, as most of the tools to program them are
vendor or device-specific. The exception to this observation is OpenCL, which largely suffers
from the reduced programmability problem mentioned, particularly in the host side. The
Heterogeneous Programming Library (HPL) is a recent proposal to improve this situation, as
it couples portability with good programmability. While the HPL kernels must be written in a
language embedded in C++, users may prefer to use OpenCL kernels for several reasons such as
their growing availability or a faster development from existing codes. In this paper we extend
HPL to support the execution of native OpenCL kernels and we evaluate the resulting solution
in terms of performance and programmability, achieving very good results.
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1 Introduction

The usage of accelerators has exploded in the past years. A crucial weak point of these systems
is that they require much more programming effort than traditional CPUs, as they have sepa-
rate memories that require additional buffers and memory transfers, special ways to launch code
for execution, and need the specification of details that do not exist in CPUs. Another problem
is that most of the tools to program these systems are specific to a family of devices [1][12][21],
which severely restricts portability and may result in the rapid obsolescence of the applications
built on them. OpenCL [14] is an answer to this latter problem that is gaining growing ac-
ceptance. Unfortunately, it is one of the environments that require more programming effort,
particularly in the host side of the application [20], due to the low level of its API, even if we
work in a object-oriented language such as C++.
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As a result of this situation, there have been several proposals to facilitate the usage of
OpenCL in applications. Some of them are based on skeletons [6][25], so they are restricted to
some computational patterns. Others have taken a more general approach [17][28], but they
still leave users in charge of some tedious tasks or suffer from important restrictions. Another
proposal is the Heterogeneous Programming Library (HPL) [26], which completely automates
and hides all the management associated to OpenCL. HPL requires that the code portions
to run in the accelerators are written in the language embedded in C++4 that it provides.
Nevertheless, users may prefer or even require to write their kernels in native OpenCL C for
many reasons. For example, they may want to develop or prototype their kernels in OpenCL C
so they can later integrate them in another project without adding HPL as another requirement
for the project. Programmers may also want to take advantage of OpenCL C kernels provided
by several projects [2][23]. Also, users may need to use native OpenCL C kernels because they
want to use some of the automatic tuning tools available for them [7]. Finally, porting an
existing application by placing the existing code into an OpenCL C kernel with a few minor
adjustments, such as encapsulating it in a function, and adding some function calls to obtain
the thread identifier, may require less effort than rewriting it with the HPL embedded language.

This paper extends HPL with a very convenient mechanism that allows it to use native
OpenCL C kernels. These kernels can be freely mixed with kernels written in the HPL embedded
language, and they enjoy the same benefits of total automation of the compilation process, buffer
creation, data transfers, synchronizations, etc. The evaluation shows that the overhead of HPL
over OpenClL is negligible, while the programmability improvement is remarkable.

The rest of this paper is organized as follows. Section 2 describes the Heterogeneous Pro-
gramming Library. This is followed by the explanation of the new extensions in Section 3, a
review of related work in Section 4, and our evaluation in Section 5. Finally, our conclusions
are found in Section 6.

2 The Heterogeneous Programming Library

The Heterogeneous Programming Library (HPL) [26], available at http://hpl.des.udc.es,
has a programming model that is very similar to that of CUDA [21] and OpenCL [14]. This
way, the system where the application runs consists of a host with a general-purpose CPU in
which the main application runs, and a series of devices connected to it, each one of them with
its own processor(s) and memory. The processor(s) of each device must run the same code (in
SPMD), and they can only access the device memory.

The portions of the application that run in the devices, called kernels, take the form of
functions that can only operate on their arguments. Kernels are launched to execution specifying
an n-dimensional space called global domain, where 1 < n < 3, which indicates how many
threads must run the kernel in parallel. Optionally, the threads can be grouped in subsets
so that the threads in the same group can synchronize by means of barriers and share a fast
scratchpad memory called local memory. The number of threads in each group is defined by
a space of the same dimensions as the global domain, called local domain. Besides the local
memory, the devices have a global memory that all the threads can access, and where the inputs
and final outputs are stored. There is also a constant memory that the threads can read, but
not modify, as well as a private memory that is exclusive of each thread.

HPL kernels are written in a C-like language embedded in C++ provided by the library with
two characteristics. One is that C control constructs must be written finished by an underscore,
the arguments of for_ being separated by commas instead of semicolons. The second is that
all the variables must have type Array<type, ndim [, memoryFlag/>, which represents an ndim-

111



Improving OpenCL programmability with. . . Vifias, Fraguela, Bozkus and Andrade

1 void mxProduct(Array<float,2> c, Array<float,2> a, Array<float,2> b, Int p)
2 {Int i

3

4 for_(i=0,i<p,it++)

5 clidx][idy] += a[idx][i] + bl[i][idy];

6}

7 ...

8 float cmatrix[M][N];

9 Array<float,2> c¢(M, N, cmatrix), a(M, P), b(P, N);
10
11 eval(mxProduct)(c, a, b, P);

Figure 1: Naive matrix product in HPL

dimensional array of elements of the C++ type type, or a scalar for ndim=0. The optional
memoryFlag allows to specify one of the kinds of memory available in the device (Global,
Local, Constant and Private). The latter is the default for variables declared inside kernels.
Similarly, non-scalars in the list of arguments of the kernel are assumed by default to be located
in the global memory. HPL provides convenient data types to define scalars, characterized by
an initial uppercase letter (Float, Uint, ...). Also, an analogous notation can be used to define
vector types that are useful for SIMD computations (Int8, Float4, ...).

Figure 1 illustrates HPL with a program to perform a naive matrix product c=c+axb.
The HPL predefined variables idx and idy identify each thread in the first and the second
dimensions of the global domain. This way, in the kernel in lines 1-6 thread (idx, idy) computes
c[idx] [idy]. Line 11 illustrates how kernels are invoked in the host code. Namely, the syntax
eval(f) Cargl, arg2, ...) where fis the kernel function, is used. While scalars of the standard
C/C++ types are directly supported as kernel arguments in the host (but not in the kernel
code), array arguments must also be declared in the host code with the Array type. Lines 8-9
show that these host-side Arrays can be built in two ways. In particular, while the constructor
of an Array always requires the size of each one of the dimensions, Arrays defined in the host
allow optionally as final argument a pointer to an allocated memory region that should be large
enough to hold the data represented by the Array. If such pointer is not provided, HPL takes
care of allocating and deallocating the memory needed as the object is built and destroyed,
respectively. As for the number of threads to use, by default the dimensions of the global
domain correspond to the dimensions of the first argument, while the local domain sizes are
chosen by HPL, which suits our example. A number of modifiers to eval are supported, which
allow to adjust these dimensions as well as to choose the device in which the kernel is to be
executed. This way, eval(f).device(d).global(80,60).local(20,30)(a,b) requests the
execution of kernel f in the device d (which is a handle of a type Device, provided by HPL)
on the arguments a and b using a global domain of 80x60 threads divided in groups of 20x30
threads.

HPL must create buffers for the arrays that are not yet allocated in the target device and
transfer the inputs from the host before a kernel can begin its execution. During the generation
of the backend code for each kernel HPL identifies which are its input, output and both input
and output arrays. In addition, the accesses to the Arrays in the host code keep track of whether
they are being read or written. The combination of these mechanisms allow the library to know
where is the current correct version of every array and which are the arrays that need to be
transferred when a kernel execution is requested or an array is accessed in the host, without

112



Improving OpenCL programmability with. . . Vifias, Fraguela, Bozkus and Andrade

any user intervention. The transfers follow a lazy copying policy that minimizes the number
of transfers, so that only when an access to a piece of data that is not available in a memory
(either in the host or in any device) is requested, a transfer from the memory with the current
version is performed.

In some situations higher performance can be achieved if the automatic management is
avoided. Namely, the accesses in the host to Arrays incur in a non-negligible overhead, as the
consistency checks are performed in every single access. In fact these accesses are performed
using parenthesis instead of square brackets! in order to visualize the extra cost incurred in the
indexing of user-defined datatypes [9]. HPL provides a mechanism to avoid these overheads
by means of the data method of its Arrays. This method receives a flag with which the
programmer can specify whether the array is going to be read, written or both, so that the
library can perform its bookkeeping, and it returns a raw pointer to the contents to the Array
that allows to directly access them.

Another useful feature of HPL is that kernel runs are asynchronous with respect to the
host. This way, the host does not wait for the evaluation of a kernel to finish before proceeding
with the execution of the main program. Rather, the host continues running its program in
parallel with the kernel(s) execution(s) until a data dependency forces it to wait for an array
to be generated by a kernel. This happens when an array that is written by the kernel is either
accessed in the host or is part of the list of arguments of a kernel execution in another device.
Nevertheless, if the new kernel execution takes place in the same device, the host simply issues
the kernel execution request to the device, but it does not wait for the previous execution to
finish, as each device runs its kernels in order.

Finally, HPL supports multiple devices [27] and provides other minor advantages such as a
simple and powerful profiling system, or a structured error reporting system based on exceptions
that can be caught and inspected using the standard mechanisms in C++.

3 Support for native OpenCL C kernels

While the semantics of the HPL embedded language are identical to those of C and its syntax
is analogous, users may prefer or need to use native kernels written in OpenCL C for several
reasons, the most important one being that this favors code reuse. We have extended HPL
with a convenient interface that requires minimum effort while providing much flexibility. Our
proposal requires defining a kernel handle that takes the form of a regular C++ function, and
associating it to the native kernel code. After that point, the native kernel can be invoked using
regular eval invocations on the kernel handle function. These invocations have exactly the same
structure and arguments as those of the kernels written in the HPL embedded language, and
they also fully automate the buffer creation, data transfer, kernel compilation, etc. that largely
complicate OpenCL host codes.

A kernel handle is a regular C++ function with return type void (just as all kernels must
be), and only its list of arguments matters. In fact its body will never be executed, so it
is sensible to leave it empty. The arguments of the handle are associated one by one to the
arguments of the kernel that will be associated to it. Namely, each kernel handle function
argument must have the HPL type associated to the corresponding OpenCL C native type.
This way, OpenCL C pointers of type T * will be associated to an Array<T, n> where n should
be the number of dimensions of the underlying array for documentation purposes, although for
correct execution it suffices that its value is 1 or greater. By default HPL arrays are allocated

I The accesses in the kernels use square brackets, as shown in Fig. 1, because kernels are compiled at runtime
into a binary, thus having no overheads during their execution.
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in the global memory of the device, so this suffices for OpenCL C pointers with the modifier
_global. If an input is expected from __local or __constant memory, then Array<T, n,
Local> or Array<T, n, Constant> must be used, respectively. As for scalars of type T, we can
use an Array<T, 0> or the corresponding convenience type provided by HPL (Int, Double,

While following these rules suffices for a correct execution, a kernel function handle defined
with these arguments may incur in large overheads. The reason is that by default HPL assumes
that the non-scalar arguments are both inputs and outputs of the associated kernel. This
guarantees a correct execution, but it results in transfers between the host and the device that
are unnecessary if some of those arguments are only inputs or only outputs. Our extension allows
to label whether an array is an input, an output or both, so that HPL can minimize the number
of transfers and follow exactly the same policies as with the kernels defined with its embedded
language. The labeling consists in using the data types In<Array<...>> Out<Array<...>>
and InOut<Array<...>> in the list of arguments of the kernel handle function, respectively.

Once the kernel handle function has been defined, it must be associated to the native
OpenCL C kernel code. This is achieved by means of a single invocation to the function
nativeHandle(handle, kernelName, kernelCode), whose arguments are the handle, a string
with the name of the kernel it is associated to, and finally a string with the kernel OpenCL C
code. The string may also contain other code such as helper functions, macros, etc. It helps
programmability that HPL stores these strings in a common container, so that if subsequent
kernels need to reuse previously defined items, they need not, and in fact should not, be repeated
in the string of these new kernels. Also, it is very common that OpenCL kernels are stored
in separate files, as it is easier to work on them there than in strings inserted in the host
application and it allows to use them in different programs. The price to pay for this is that the
application must include code to open these files and load the kernels from them, thus increasing
the programmer effort. Our nativeHandle function further improves the programmability of
OpenCL by allowing its third argument to be a file name. This situation is automatically
detected by nativeHandle, which then reads the code from the given file. All the information
related to the function is stored in a HPL internal structure that is indexed by the handle. The
code is only compiled on demand, the first time the user requests its execution. The generated
binary is stored in an internal cache from which it can be reused, so that compilation only takes
place once. Altogether, nativeHandle replaces the IR generation stage explained in [26], being
the compilation stage identical to that of the HPL language kernels. Finally, HPL also offers a
helper macro called TOSTRING that turns its argument into a C-style string, avoiding both the
quotes and per-line string continuation characters otherwise required.

The simple matrix product developed using the HPL embedded language shown in Fig. 1
has been transformed to use a native OpenCL C kernel in Fig. 2. The OpenCL kernel, called
mxmul _simple is stored in a regular C-style string called kernel_code, and it is associated to
the handle function matmul. Notice that since eval requires its arguments to be Arrays, the
kernel arguments are defined with this type in the host. Let us remember that it is possible
to define them so that they use the data of a preexisting data structure, which facilitates the
interface with external code. This strategy has been followed in this example with the Array
¢, which uses in the host the storage of the regular C-style matrix cmatrix.

4 Related work

There has been much research on the improvement of the programmability of heterogeneous
devices. Some proposals identify important functions or patterns of computation, and provide
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const char * const kernel_code = TOSTRING(
_kernel void mxmul_simple(__global float xc, const __global float xa, const __global float *b, int n)
{ ... /* regular OpenCL C code goes here */ } );

void matmul(Array<float, 2> ¢, In<Array<float, 2>> a, In<Array<float, 2>> b, Int n) { }

float cmatrix[M][N];
Array<float,2> c¢(M, N, cmatrix), a(M, P), b(P, N);

nativeHandle(matmul, ”mxmul_simple”, kernel_code);
eval(matmul)(c, a, b, P);

= O © 00 O ULk W N -

=

Figure 2: Matrix product using native OpenCL C kernel with HPL

solutions restricted to them. This is the case of libraries of common operations [23][2], algorith-
mic skeletons [6][25] and languages for the representation of certain parallel patterns [5]. Some
approaches combine several of these features. For example, [3, 16] provide both predefined
functions and tools for the easy execution of custom kernels under strong restrictions, as they
only support one-to-one computations and reductions.

Other works provide a more widely applicable solution by means of compiler direc-
tives [8][4][18][11][22]. This approach requires specific compilers and usually provides users little
or no capability to control the result, which strongly depends on the capabilities of the compiler.
Relatedly, these tools usually lack a clear performance model. These problems are even more
important when we consider accelerators. The reasons are the large number of characteristics
that can be managed, which leads to a much wider variety of potential implementations for a
given algorithm than regular CPUs, and the high sensitivity of the performance of these devices
with respect to the implementation decisions taken.

A proposal that also requires specific compilers but provides better control is [15]. It is
more verbose than HPL because it presents more concepts to be managed by the programmer
(accessors, queues, ... ) and the usage of native OpenCL kernels, which is the focus of this paper,
requires providing them as compiled OpenCL objects. In addition, the only currently publicly
available implementation [13] is a mock-up that supports neither OpenCL nor accelerators.

The other family of proposals that enjoy the widest scope of application are libraries that
improve the usability of the most common APIs, OpenCL in particular. These libraries?
[23][17][28] require the kernels to be written using the native API, focusing on the automa-
tion of the tasks performed in the host code. A notable exception is HPL [26], which provides
an embedded language that is translated into OpenCL at runtime. This latter strategy fa-
cilitates the integration of the kernels with the host application as well as the exploitation of
run-time code generation.

The native OpenCL C kernels support in HPL proposed in this paper has several advantages
and provides a higher-level view with respect to the related proposals we know of. This way,
it is the only one that provides arrays that are seen as a single coherent object across the
system, as the other solutions rely on a host-side representation of the array together with per-
device buffers. While it is possible to avoid the host side representation for the buffers in [23][17]
because they provide random element-wise accesses, each one of such accesses involves a transfer
between the host and the device, and due to the enormous overhead, this is only very seldom

2We found other projects that are unsupported and/or miss academic references and that present the same
characteristics as the ones discussed in this section, so we skip them for space reasons
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Table 1: Benchmarks characteristics.

Benchmark || SLOCs Effort SLOCs Number Number

host host kernels | of kernels | of arrays
FT 641 | 6118988 567 8 8
1S 394 | 2705245 571 11 12
EP 163 469038 238 1 2
ShaWa 186 893085 343 3 6

a reasonable solution. In addition, these buffers are not kept automatically coherent with
their host image or with the buffers that represent the same data structure in other devices.
Rather, they must be explicitly read or written. This makes sense because these proposals
do not provide a mechanism to label which are the inputs and the outputs of each kernel, so
their runtime cannot automate the transfers. For similar reasons, it is impossible for them to
automatically enforce data dependencies between kernels run in different devices, or between
kernel executions and arrays accesses in the host, unless by considering the most conservative,
and therefore suboptimal, assumptions. Regarding devices, [17] only supports a single device,
while [23][28] are based on the idea of selecting a current device, and then operating on it,
including the explicit addition of each program to use to each device. This process is totally
hidden in HPL [27], whose syntax for device selection is nicer and better supports multithreaded
applications, as the current device approach requires critical sections when threads may operate
on different devices. Also, [17] does not allow to define auxiliary functions, but only kernels,
while [23][28] do not support local or constant memory arrays in the arguments.

5 Evaluation

This section measures the impact on productivity and performance of the usage of OpenCL
kernels on top of HPL instead of the native OpenCL API. The evaluation is based on three codes
of the SNU NPB suite [24] (FT, IS and EP) and a shallow water simulator developed in [19].
We ported the codes from C to C++, so that our baselines use the more succinct C++ OpenCL
host API, which exploits all the advantages of this language such as its object orientation. This
way the language characteristics play a neutral role in the comparison. We also encapsulated
the initialization of OpenCL (platform and device selection, creation of context and command
queue, loading and compilation of kernels) in routines that can be used across most applications
and replaced these tasks with invocations to these common routines, so that they are not part
of the evaluation. As a result our baseline corresponds to the bare minimum amount of code
that a user has to write for these applications when using the OpenCL host C++ API.

Table 1 summarizes the most relevant characteristics of the baseline benchmarks with respect
to the productivity evaluation. For each benchmark the number of source lines of code (SLOCs)
excluding comments and empty lines for the host side code, the programming effort [10] of the
host side code, the SLOCs of its kernels, the number of kernels and the number of arrays found
in the arguments of the invocations of those kernels are listed. The programming effort is an
estimation of the cost of the development of a code by means of a reasoned formula that is a
function of the number of unique operands, unique operators, total operands and total operators
found in the code. For this, the metric regards as operands the constants and identifiers, while
the symbols or combinations of symbols that affect the value or ordering of operands constitute
the operators. We think that the programming effort is a fairer measurement of the productivity
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Figure 3: Productivity improvement in ViennaCL Figure 4: Overhead of ViennaCL and HPL
and HPL with respect to the baseline in ShaWa with respect to the baseline

than SLOCs, as we all know that lines of code can widely vary in length and complexity. The
SLOCs of the kernels are only given for informative purposes, as the changes only affect the
host side of the applications. Finally, the number of kernels and related host-side arrays are
relevant to interpret the productivity results, since once the usual initialization tasks required
by OpenCL have been reduced to the minimum expression in the host code, the OpenCL
related activities left basically focus on the creation of buffers, parameterization and execution
of kernels, and the transfers between the device and the host.

In order to better gauge the advantages of HPL our evaluation includes ViennaCL [23]
because it is one of the best alternatives for improving the usability of OpenCL in C++ (see
Section 4) and it is a live and well supported project. We had to make some adjustments in
applications with kernels that required local memory arrays and OpenCL vector types in their
arguments to adapt them to ViennaCL because it does not support these possibilities.

Figure 3 shows the reduction of the SLOCs and the programming effort of the host side of
our baseline applications when they are written with ViennaCL and HPL. The last group of
columns represents the average reduction. Even when our baseline enjoys the C++ OpenCL
APT and the common boilerplate code required by OpenCL has been factored out, ViennaCL
and HPL still provide average noticeable reductions of the programming cost metrics between
20% and 42%. Interestingly, the effort, which is more proportional to the actual programming
cost than SLOCs, is the metric that obtains the largest reductions in all the benchmarks.
Finally, HPL reduces SLOCs and particularly effort stronger than ViennaCL thanks to the
advantages discussed in Section 4. It must be mentioned that the kernels were included in the
host as a string. If they had been loaded from files, the automatic file loading feature of HPL
would have allowed it to further improve programmability with respect to the other alternatives.

We also measured the overhead of ViennaCL and HPL with respect to the OpenCL C++
APT in an NVIDIA Tesla Fermi 2050 with 3GB whose host has a Intel Xeon X5650 (6 cores)
at 2,67GHz and 12GB RAM, and an Intel Xeon Phi with 60 cores at 1.056 GHz and 8GB
with a host with 2 Intel Xeon CPU E5-2660 (8 cores per CPU) at 2.20GHz with 64GB RAM.
The compiler was g++ 4.7.2 with optimization level -03. The ViennaCL and HPL runtimes
use the same strategies and functions as our optimized OpenCL baselines for data and kernel
management, thus any time difference is related to the overheads of these libraries. We run
very small tests, with class S for F'T, IS and EP, and a 100 x 100 mesh for ShaWa to measure
the overhead in the worst conditions, i.e., when the portion of the runtime associated to the
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OpenCL management (not the kernel runs or host computations) is maximal. We also run more
representative tests using FT class B, IS class C, EP class C and ShaWa on a mesh of 500 x 500
cells. The three versions achieved the same performance in both platforms for every benchmark
except ShaWa. The reason is the very large number of kernel runs of this code, 492729 for the
small test and 2517711 for the medium one, which allows to accumulate some overhead, shown
in Fig. 4. As expected the larger automation of HPL generates more overhead than ViennaCL.
However this is still very small, and it only reaches 2.5% on a baseline execution of just 17.86
s. in the GPU. For the more representative 500 x 500 runs this overhead falls to a negligible
0.16% and 0.61% in the GPU and the Xeon Phi, respectively.

6 Conclusions

Accelerators are here to stay, one of their weakest points being the code portability and pro-
grammability. OpenCL solves the portability problem, incurring however in larger programmer
effort than other alternatives, particularly in the host side of applications. In this paper we have
extended HPL to support native OpenCL C kernels in order to reduce this cost. Even when
our baselines were very streamlined codes that used the OpenCL C++ API, our proposal re-
duced the number of lines and the programmer effort by a notable 23% and 42%, respectively,
while imposing a totally negligible overhead on performance. Also, its productivity metrics,
and particularly the programming effort, were consistently better than those of a comparable
powerful approach such as ViennaCL.
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