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Abstract. Polyacrylamide (PAAm)-N-isopropylacrylamide (NIPA) copolymers were prepared via free rad-
ical crosslinking copolymerization with different molar of NIPA varying in the range between 0 and 2 M.
The mechanical properties of swollen PAAm-NIPA copolymers were characterized by the compressive test-
ing technique. It is understood that the compressive elastic modulus was found to increase by increasing
NIPA contents, keeping temperature constant at 30 ◦C. The critical exponent of elasticity, y above the
critical NIPA concentration is found to be as 0.74, which is consistent with the suggestions of percolation
for superelastic percolation network (SEPN) and the critical theory for PAAm-NIPA copolymers.

1 Introduction

There has been considerable interest in using percola-
tion theory to model the static elasticity and vibrational
dynamics of random systems over the past years. This is
because of the relatively simple structure of a percolating
network, which makes theoretical prediction and numeri-
cal simulation of the physical behavior feasible. The static
elasticity of random percolating structures is of particu-
lar interest since the various different microscopic elas-
ticity models predict vastly different critical exponents.
A percolation system, being fractal at short systems which
manifest similar behavior [1]. The first experimental sys-
tem in which these predictions were tested consisted of
sintered metal powders. Deptuck et al. performed mea-
surements on beams of sintered, submicron, silver powder
and found that the elasticity critical exponent was signifi-
cantly greater than the conductivity critical exponent [2].
Relation between percolation theory and the elasticity of
gels was performed by P.G. de Gennes theoretically [3].
The macroscopic conductance of a resistor network with a
fraction p of conducting links, and the elastic modulus E of
a gel was obtained by polymerization of z-functional units.
Bond percolation on elastic networks involving nearest
neighbor forces was studied by numerical simulations [4].
With purely central forces, the bulk and shear module go
to zero, with exponent f and at a threshold pcen. Elastic
properties of random percolating systems in the critical
region were studied by Kantor and Webman [5].
Hamiltonian was chosen to represent correctly the elastic
behavior of continuous random composites made up rigid

a e-mail: gulsen.evingur@pirireis.edu.tr

regions and very soft regions near the percolation thresh-
old. This result is relevant to experiments on such sys-
tems. Critical exponent and transitions in swollen polymer
networks and in linear macromolecules were performed
by Erman and Flory [6]. Critical behavior was found for
the single chain and long chain limit. Imperfect duality,
critical Poisson ratios and relations between microscopic
models were described [7]. The connections between the
elasticity and the superelasticity percolation problems
were investigated in the case of the two dimensional gran-
ular model. Two superelastic percolation models were pro-
posed to explain the observed behavior of the viscosity of
gels near the gel point [8]. Critical properties of viscoelas-
ticity of gels and elastic percolation networks were mod-
eled on the Zimm limit. The scaling form for the correction
dependence of viscosity in theta (θ) solvents and deriva-
tion the concentration dependences of the plateau modu-
lus and longest relaxation time were explained by Colby
and Rubinstein [9]. The two length scales depend on con-
centration differently in theta solvents. The viscosity and
the modulus of near critical polyester gels were reported
and modeled by Rouse model [10]. Scaling ideas were used
to predict the modulus of the gels and equilibrium swelling
of near critical gels. Bond and site percolation on two
and three dimensional elastic and superelastic percola-
tion networks with central forces were studied using large
scale Monte Carlo simulations and finite size scaling analy-
sis [11]. The critical exponents of the elastic modulus and
correlation length of the system for the bcc network were
determined. Elastic modulus and equilibrium swelling
of near critical gels were performed theoretically [12].
The concentration dependence of the modulus when the
gel was diluted in a good solvent was also calculated and
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used to predict the maximum swelling. The elastic proper-
ties of random networks of Hooke springs were examined
under a tension supplied by a frame [13]. Although these
networks were nonlinear, a harmonic approximation can
be made that leaded to a very good effective medium the-
ory of the phase boundary. Universality and specificity of
polymer gels viewed by scattering methods were studied
for various types of gels, including physical gels, and com-
posite gels by a reviewer article [14]. The time correlation
function of the scattering intensity entailed a power law
behavior at the sol-gel transition.

The aim of the present study is to understand the
effect of NIPA concentration on the swollen PAAm-NIPA
copolymers elastic behavior and to determine the criti-
cal exponent of elasticity, experimentally. In this study,
copolymer gel systems are produced by the inclusion of
acrylamide and NIPA, which are capable of converting
the system from hydrophilic to hydrophobic state when
the amount of the addition exceeds a critical value known
as the percolation threshold which the copolymer reached
at 1 M NIPA. The observed elasticity is increased by
increasing NIPA content with critical exponent around
y = 0.74 which is indicative of superelastic percolation
network (SEPN). The elastic percolation threshold agrees
with the suggestions of percolation for SEPN and the crit-
ical theory for PAAm-NIPA copolymers.

2 Theory

2.1 Mechanical properties

When a hydrogel is in the rubberlike region, the
mechanical behavior of the gel is dependent mainly on
the architecture of the polymer network. At low enough
temperatures, these gels can lose their rubber elastic
properties and exhibit viscoelastic behavior. General
characteristics of rubber elastic behavior include high
extensibility generated by low mechanical stress, complete
recovery after removal of the deformation and high exten-
sibility and recovery that are driven by entropic rather
than enthalpic changes.

In order to derive relationship between the network
characteristics and the mechanical stress-strain behavior,
classical thermodynamics, statistical thermodynamics and
phenomenological approaches have been used to develop
an equation of state for rubber elasticity. From classical
thermodynamics the equation of state for rubber elasticity
may be expressed as [15]:

f =
(

∂U

∂L

)
T,V

+ T

(
∂f

∂T

)
L,V

, (1)

where f is the refractive force of the elastomer in response
to a tensile force, U is the internal energy, L is the length,
V is the volume and T is the temperature. For ideal rubber
elastic behavior, the first term in equation (1) is zero where
changes in length cause internal energy driven refractive
forces. For elastomeric materials, an increase in length
brings about a decrease in entropy because of changes

in the end-to-end distances of the network chains.
The refractive force and entropy are related through the
following Maxwell equation:

−
(

∂S

∂L

)
T,V

=
(

∂f

∂T

)
L,V

. (2)

Stress-strain analysis of the energetic and entropic contri-
butions to the refractive force, equation (1) indicates that
entropy accounts for more than 90% of the stress. Thus,
the entropic model for rubbery elasticity is a reasonable
approximation.

From statistical thermodynamics, the refractive force
of an ideal elastomer may be expressed as:

f = −
(

∂S

∂L

)
T,V

= −kT

(
∂ ln Ω(r, T )

∂r

)
L,V

, (3)

where k is the Boltzmann constant, r is a certain end-
to-end distance, and Ω(r, T ) is the probability that the
polymer chain with an end-to-end distance r at temper-
ature T will adopt a certain conformation. Equation (3)
assumes that the internal energy contribution to the
refractive force is constant or zero. Only entropy contribu-
tions to the refractive force are considered. After evalua-
tion of equation (3), integration and assuming no volume
change upon deformation, the statistical thermodynamic
equation of state for rubber elasticity is obtained below:

τ =
(

∂A

∂λ

)
T,V

=
ρRT

M c

r20

r2f
λ. (4)

Here τ is the shear stress per unit area, ρ is the density of
the polymer, Mc is the number average molecular weight
between cross-links and λ is the extension/compression
ratio. Extension/compression ratio, λ changes by different

theory [16]. The quantity r2
0

r2
f

is the front factor and is the

ratio of the end-to-end distance in a real network versus
the end-to-end distance of isolated chains. In the absence
of knowledge concerning these values, the front factor is
often approximated as 1. From equation (4), the elastic
stress of a rubber under uniaxial extension/compression is
directly proportional to the number of network chains per
unit volume. This equation assumes that the network is
ideal in that all chains are elastically active and contribute
to the elastic stress. Network imperfections such as cycles,
chain entanglements and chain ends are not taken into
account. To correct for chain ends:

τ =
ρRT

M c

r20

r2f

(
1 − 2Mc

Mn

)
λ, (5)

where Mn is the number average molecular weight of the
linear polymer chains before cross-linking. This correction
becomes negligible when Mn � Mc.

From constitutive relationship, the compressive elastic
modulus S is then:

S =
ρRT

M c

r20

r2f

(
1 − 2Mc

Mn

)
. (6)
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And the force per unit area is:

τ = Sλ, (7)

where λ = Δl
l0

, Δl = l − l0; l, last distance and l0, initial
distance. Note the dependence of the compressive elastic
modulus on Mc. Also, the stress-strain behavior of rub-
bery elastic materials is nonlinear. The equations are less
applicable and invalid at higher elongations (λ > 3) [17].
On the other hand, toughness can be calculated from the
area under the slope of strain and stress.

2.2 Percolation on elastic networks

Consider a percolation network whose bonds represent
elastic springs that can be stretched and/or bent.
The elastic energy of the system is given by [18]:

E =
α1

2

∑
≺ij�

[(ui − uj) Rij ]
2
eij +

α2

2

∑
≺jik�

(δθjik)2eijeik,

(8)
where the first term of the right side represents the
contribution of the stretching or central forces (CFs),
whereas the second term represents the contribution of
angle-changing or bond bending (BB) force. Here ∝1 and
∝2 are the central and BB force constants, respectively,
ui = (uix, uiy, uiz) is the (infinitesimal) displacement of
site i, Rij is a unit vector from i to j, eij is the elas-
tic constant of the (spring) between i and j, and ≺jik�
indicates that the sum is over all triplets in which the
bonds j-i and i-k form an angle whose vertex is at i.
The change of angle δθjik is given by:

see equation (9) at the bottom of this page.

where uij = ui − uj . We can now define the elastic prop-
erties of percolation networks. Suppose that the elastic
constants eij can be chosen from a distribution.

As the model of disordered materials, each bond on
disordered materials represents an elastic element, or a
spring, with an elastic constant, e and the rest have an
elastic constant b which can take on values from a prob-
ability density function H(e). In most cases, the binary
distribution:

H(e) = pδ(e − a) + (1 − p)δ(e − b), (10)

e takes the values a and b with probability p and 1 − p,
respectively. If b = 0 and a is finite, system is called
elastic percolation network (EPN) and defined Se as the
effective elastic module of the network. If a = ∞ and b is
finite, a fraction p of the springs are totally rigid and the
rest are soft, system is called a superelastic percolation

Table 1. Critical exponents for elastic and superelastic per-
colation networks for three dimensions and in the mean field
approximation [18].

x y
d = 3 2.1 0.65
d ≥ 6 3 0

network (SEPN) and defined Ss as the effective elastic
module of a superelastic percolation network. As the per-
colation threshold pc of an EPN is approached from above,
all compressive elastic modulus S of the system vanish.
Near the percolation threshold, pc, the effective elastic
module of the network, Se obeys the following scaling
law [18]:

Se(p) ≈ (p − pc)x, (11)

where x is the critical exponent for EPN. Whereas, in a
SEPN all elastic modulus diverge as pc is approached from
below according to:

Ss(p) ≈ (pc − p)−y, (12)

where y is the critical exponent for SEPN. x and y are
given in Table 1 which includes critical exponents of elastic
and superelastic percolation networks for three dimensions
and in the mean field approximation [18].

3 Experimental

3.1 Preparation of copolymer

Copolymer gel was prepared with various molar percent-
ages of monomers of PAAm and NIPA mixture in distilled
water at room temperature by keeping the total molari-
ties as 2 M. 0.01 g of BIS (N,N′-methylenebisacrylamide,
Merck), 0.008 g of APS (ammonium persulfate, Merck)
and 2 μL of TEMED (tetramethylethylenediamine, Merck)
were dissolved in 5 mL distilled water (pH 6.5). The solu-
tion was stirred (200 rpm) for 15 min to achieve a homoge-
nous solution. All samples were deoxygenated by bubbling
nitrogen for 10 min just before polymerization process
starts [19].

3.2 Mechanical measurements

After gelation, the gels prepared with various monomer
contents were cut into disks with 10 mm in diameter and
4 mm in thickness. Before the compression measurements,
the copolymers were maintained in water at different

δθjik = {(uij × Rij − uik × Rik) · (Rik × Rik) / |Rij × Rik| Rij not parallel to Rik

δθjik = {|(uij + uik) × Rij | Rij parallel to Rik

(9)

11201-p3



The European Physical Journal Applied Physics

(a) (b)

Fig. 1. Compression process of 0.2 M NIPA (a) initial (F =
0.0 N) and (b) final states (F = 5.0 N).

temperatures to achieve swelling equilibrium. A final wash
of all samples was with deionized water for 1 week.
The mechanical experiments of PAAm-NIPA gels were
performed at 30 ◦C. Hounsfield H5K-S model tensile test-
ing machine, settled a crosshead speed of 1.0 cm/min
and a load capacity of 5N was used to perform uniaxial
compression experiments on the samples of each type of
composite gels. Figure 1 shows the behaviors of PAAm-
NIPA copolymers before and after applying the uniax-
ial compression. Figure 1a corresponds to initial state,
i.e., zero loads and, Figure 1b presents the gel under 5N,
respectively. Any loss of water and changing in tempera-
ture during the measurements was not observed because
of the compression period being less than 1 min. There is
no deswelling during the compressive deformation stage:
which means that our experiment corresponds to the case
where we can assume the compressive elastic modulus,
S is uniform, which of each composite was determined
from the slope of the linear portions of compression stress-
strain curves, using equation (7).

4 Results and discussion

Forces (F ) or loads corresponding to compression (mm)
were obtained from the original curves of uniaxial com-
pression experiments. The force, F (N) versus compres-
sion (mm) curves for 0.5 M and 1.5 M NIPA at 30 ◦C are
shown in Figure 2. The repulsive force between monomers
increases rapidly when the bond length is shorten from
the equilibrium position. For low NIPA content gel,
repulsive force increased more rapidly when compression
is increased. The reason can be thermodynamically
explained that a decrease in length brings about an
increase in entropy because of changes in the end-to-end
distances of the network chains of PAAm-NIPA copol-
ymer gels.

Stress (Pa)-strain plots in Figure 3 for low and high
NIPA content gels were drawn by using the data obtained
from the linear region observed in the plots of F (N)
and compression curves for 0.5 M and 1.5 M NIPA in

0

0.5 MNIPA
1.5 MNIPA

0

1

2

2

3

4

Compression (nm)

F
 (

N
)

Fig. 2. The force F (N) and compression (mm) curves for 0.5
and 1.5 M NIPA content at 30 ◦C.

Fig. 3. Stress and strain curves for 0.5 and 1.5 M NIPA content
at 30 ◦C.

the copolymer at 30 ◦C. The stress-strain curves display
a good linear relationship at 30 ◦C, which agrees with
equation (7).

The compressive elastic modulus was obtained by a
least square fit analysis to the linear region observed.
The values of compressive elastic modulus and dimen-
sions of the copolymers were placed in Table 2. For pure
PAAm gels, the value of the compressive elastic modulus
was found 0.0358 MPa at 30 ◦C. The addition of NIPA
has increased the modulus of the copolymer as expected.
In 2 M NIPA, the measured compressive elastic modu-
lus is 0.1154 MPa. Thus, pure NIPA is found to possess
one and half times higher modulus than pure PAAm. It is
seen in Figure 3 that, 0.5 M NIPA copolymer has smaller
initial stress-strain slope than 1.5 M NIPA copolymer.
In this case, it appears that the hydrophobic interactions
between PAAm and NIPA monomers play an important
role for producing the different onset behavior. The stress
of the PAAm-NIPA copolymer increases dramatically
when the strain exceeds about 0.6% strain, where the
NIPA monomers are taking responsibility in the copoly-
mer gel. In Figure 3, the increase in mechanical (parame-
ter the slope of stress and strain curve at higher NIPA
content) can be explained that increasing NIPA forms a
hydrophobic network which significantly improves the
stress relaxation of copolymer.

11201-p4



G.A. Evingür and Ö. Pekcan: Universality of elasticity on PAAM-NIPA copolymer gels

Table 2. Some experimental and calculated parameters of
PAAm-NIPA copolymers at 30 ◦C.

PAAm NIPA R h S
(M) (M) (mm) (mm) (MPa)
2 0 8.06 5.84 0.0358

1.8 0.2 11.6 11.1 0.0457
1.5 0.5 11.5 7.9 0.0567
1.6 0.6 11.0 7.5 0.0758
1 1 11.6 7.2 0.0758

0.8 1.2 11.1 7.3 0.077
0.5 1.5 11.2 6.8 0.0781
0.2 1.8 10.6 7.1 0.0941
0 2 8.0 5.0 0.1154

Figure 4 shows that compressive elastic modulus
depend on the content of NIPA in the copolymer gel,
where compressive elastic modulus increases progressively
by increasing NIPA content, indicating that there is a
change in the copolymer’s structure. This change in
S predicts that the copolymers have reached a super elastic
percolation network. To determine the percolation thresh-
old, the derivative of compressive elastic modulus with
respect to NIPA content was taken by using the Matlab
programme of moving derivative. The percolation thresh-
old was found as 1 M NIPA where the monomers form
hydrophilic and hydrophobic equilibrium, exhibiting a
high degree of NIPA and PAAm monomers interactions
and/or entanglement. The effect of increasing NIPA con-
tent in reducing the swelling and in increasing compres-
sive elastic modulus was an expected result for copolymers
having NIPA.

The reason can be thermodynamically explained by
a decrease in length brings about an increase in entropy
because of changes in the end-to-end distances of the net-
work chains of PAAm-NIPA copolymer gels. Thus, the
entropic model for copolymer elasticity is a reasonable
approximation. In other words, the effect of increasing
NIPA content in increasing the modulus was an expected
result.

The increase in compressive elastic modulus can be
explained by the collapsed phase which has a network
structure with flexible polymer chains just as in swollen
phase. It was identified that whole stress relaxation of
PAAm-NIPA copolymers is composed of three contribu-
tions: relaxation observed commonly for elastomer, break-
down of crosslinks and swelling induced relaxation. On the
other hand, the modulus increases because the swelling
and hence the osmotic (bulk) modulus decreases as NIPA
is added to the copolymer. Another explanation; the
compressive elastic modulus increases as NIPA is added
because the free chain size decreases [20].

Lastly, we believe that the elastic properties of copoly-
mer gel are highly dependent on NIPA content, which
directly influences PAAm-NIPA monomers interactions in
the copolymers. The monomer’s interactions will play a
critical role in load transfer and interfacial bonding that
determines elastic properties of the copolymers. The vari-
ations in the NIPA content in the resultant copolymer
could be the major reason for this phenomenon.

Fig. 4. Compressive elastic modulus dependence on concen-
tration of molar NIPA in the copolymer.

4,9

4,8

4,7

4,6

4,5
-0,6 -0,4 -0,2 0,20

logIp-p
0
I

lo
g 

S y = -0,743

O

O

O

O

Fig. 5. Logarithmic plot of the compressive elastic modulus
versus NIPA contents curves for p < pc. The y exponent (y =
0.743) was determined from the slope of the straight line.

The value of the fitting exponent y in equation 12
was estimated from the slope of the linear relation in
log S − log Ip − pcI at p < pc as shown in Figure 5.
At p > pc, nonuniversal behavior might be explained by
the samples corresponding to different areas of the static
crossover between the mean field and the critical perco-
lation [10]. Elastic percolation occurs at 1 M NIPA (as
shown in Fig. 4) with a critical exponent around y ≈
0.74 which is close to the theoretical prediction of this
value in the 3D percolated system known as a superelastic
percolation network (SEPN). The observed critical expo-
nent, y agrees with literature [10,18]. On the other hand,
the elasticity of the polyacrylamide (PAAm)-kappa car-
rageenan (κC) composite was previously studied by us,
as a function of (w/v-%) kappa carrageenan (κC) con-
tent at 40 ◦C [21]. In PAAm-κC system, the elastic per-
colation threshold occurred at 1.0 (w/v-%) of κC content
in the percolation region with a critical exponent around
y ≈ 0.68 which is in good agreement with superelastic
percolation network (SEPN). Besides PAAm-κC system,
elastic percolation study on the polyacrylamide (PAAm)-
multiwalled carbon nanotubes (MWNTs) composites were
also reported [22], where compressive elastic modulus
increased dramatically up to 1 (wt.%) MWNT by increas-
ing nanotube content, and then decreased presenting a
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critical MWNT value indicating that there is a sudden
change in the material elasticity. The critical exponent,
y of elasticity, below the critical MWNT content, 1 (wt.%)
was found to be 0.58 which is consistent with the sugges-
tions of the model for the superelastic percolation net-
work (SEPN) for PAAm-MWNT composite. When the
results of the work for PAAm-NIPA system, reported in
this article were compared with the results of PAAm-κC
and PAAm-MWNTs composite systems, it is seen that
both results are in good agreement with the superelastic
percolation network (SEPN), and are close to the theoret-
ical prediction of the critical parameters in 3D percolated
system.

5 Conclusions

The mechanical measurement by the compressive testing
machine used to characterize PAAm-NIPA copolymer gel.
The behavior of compressive elastic modulus explained
that a decrease in length brings about an increase in
entropy because of changes in the end-to-end distances of
the network chains of PAAm-NIPA copolymer gel. Thus,
the entropic model for copolymer elasticity is a reasonable
approximation.

The elastic percolation occurs above 1 M NIPA with
the critical exponent of y = 0.74 which is close to the the-
oretical prediction of this value in a 3D percolated system
(y = 0.65) and y = 0.88 in the critical theory [10,18].
The produced critical exponent y is consistent with the
suggestions for the percolation for superelastic percola-
tion network (SEPN) (see Tab. 1) and the critical theory
for PAAm-NIPA copolymers.

We thank Dr. Argun Talat Gökçeören for mechanical
measurements.
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