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SUMMARY

Due to the sparse structure of ultra-wideband (UWB) multipath channels, there has been a considerable
amount of interest in applying the compressive sensing (CS) theory to UWB channel estimation. The
main consideration of the related studies is to propose different implementations of the CS theory for the
estimation of UWB channels, which are assumed to be sparse. In this study, we investigate the suitability of
standardized UWB channel models to be used with the CS theory. In other words, we question the sparsity
assumption of realistic UWB multipath channels. For that, we particularly investigate the effects of IEEE
802.15.4a UWB channel models and the selection of channel resolution both on channel estimation and
system performances from a practical implementation point of view. In addition, we compare the channel
estimation performance with the Cramer-Rao lower bound for various channel models and number of mea-
surements. The study shows that although UWB channel models for residential environments (e.g., channel
models CM1 and CM2) exhibit a sparse structure yielding a reasonable channel estimation performance,
channel models for industrial environments (e.g., CM8) may not be treated as having a sparse structure due
to multipaths arriving densely. Furthermore, it is shown that the sparsity increased by channel resolution can
improve the channel estimation performance significantly at the expense of increased receiver processing.
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1. INTRODUCTION

There has been a great interest in ultra-wideband (UWB) impulse radio (IR) systems as they can
operate with low transmit power, have low cost simple transceiver structures, and the received
signal is rich in multipath diversity with fine time resolution [1]. As a result of these properties,
UWB-IR systems have been selected as the physical layer structure of the wireless personal area
network (WPAN) standard IEEE 802.15.4a for location and ranging, and low data rate applications
[2]. Specifically, the fine time resolution property of UWB signals at the receiver has made it an
important candidate in angle of arrival estimation and direction finding [3]. In addition to location
and ranging studies, there have been interest in exploiting the UWB system performance [4] and
channel capacity [5]. Although the main interest in these studies is to improve the system perfor-
mance or increase the channel capacity, UWB systems should also exhibit low cost and low power
implementation structures. Accordingly, time reversal and transmitted reference techniques have
been considered to reduce processing at the receiver or to effectively avoid channel estimation at
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the expense of performance loss. In [6], an indoor UWB communication system that applies time
reversal for transmitting UWB pulses is proposed. In [7], transmitted reference pulses are considered
for multiple access. Although transmitted reference techniques do not use user channel information
and perform poorly [7], most other approaches (e.g., [1,3-6]) need accurate channel estimation to
achieve the desired system performances.

For the channel estimation of UWB-IRs, the conventional maximum-likelihood (ML) channel
estimation approach has been widely considered and adopted [8, 9]. The main drawback of the
implementation of an ML estimator is that very high sampling rates are required for accurate channel
estimation due to the extremely wide bandwidth of the UWB-IRs (at least 500 MHz). This con-
tradicts with the low cost and low power implementation purpose of UWB-IRs. Because of the
emerging framework of compressive sensing (CS) [10, 11], there has been a growing interest in
applying the CS theory to sparse channel estimation [12, 13]. As the UWB-IR signals have resolv-
able multipaths with a sparse structure at the receiver, the application of CS theory to UWB channel
estimation has also found wide interest in the UWB community. Recently, the main interest in UWB-
IR system design is to reduce the receiver complexity and implementation cost [14]. Accordingly,
two relatively new research topics have emerged: CS-based UWB transceiver design and CS-based
UWRB channel estimation. For the CS-based transceiver design, the main goal is to detect the UWB
signal with reduced sampling rate and yet with negligible performance degradation [15—17]. For the
CS-based channel estimation, the main goal is to estimate the sparse channel with reduced number
of observations [18-24].

The related CS-based UWB channel estimation studies can be summarized as follows. One of the
first applications of CS theory to UWB channel estimation can be found in [18]. In that study, signal
reconstruction and channel estimation methods based on the matching pursuit (MP) algorithm were
proposed. Although the paper mainly focused on the details of the MP algorithm, the authors pro-
vided only reconstruction error curves and BER curves. However, channel coefficient estimation
errors were not provided, which are important in determining the channel estimation performance.
In [19], the authors combine the ML approach with the CS theory. The simulation based study
shows that the combined CS-ML method can outperform the MP implementation at the expense
of increased complexity. It should be noted that the conventional MP performances provided in the
paper even for the best case (i.e., at 20 dB signal-to-noise ratio (SNR)) were close to unity, which
is quite high for practical MP implementation. In [20], the authors consider pre-modulating the
UWB signal with a spread spectrum sequence followed by random sampling in the Fourier domain.
They compare the SNR of the reconstructed signal with other sampling methods such as random
Fourier sampling and Gaussian measurements. They claim that their proposed method outperforms
other sampling methods in terms of SNR. Despite the claimed advantage in terms of SNR, their
implementation does not account for the exact multipath locations and amplitudes, which are very
important for channel estimation implementation. In [21], a pre-filtering method has been proposed
so as to replace the measurement matrix. The authors claim that their proposed pre-filter can effec-
tively suppress noise. However, the paper lacks clarity in presenting the comparative results as they
do not provide any channel coefficient estimation error plots and only present BER curves with bit
errors in the order 107> at very low SNR values. Although the relative performance results provided
may be correct, the exact performances should be revised for clarity. In [22], the authors update
the measurement matrix adaptively using the information of the energy distribution of the received
pilot signal in each frame and use the method of distributed CS (DCS) to get the channel estimate.
They use this model to modify the orthogonal MP (OMP) algorithm. Although the authors present
improved performance curves over the conventional OMP method, they use linear scale instead of
the log scale; hence, possible gains at higher SNR regions cannot be determined clearly. In [23], MP
and basis pursuit denoising (BPDN) techniques have been considered, and the channel estimates
generated by these algorithms were used in correlation-based CS detectors to compare with trans-
mitted reference system performance results. The authors present the system model of both channel
estimation and data detection in the presence of inter-symbol interference, however, only present
BER curves for comparison. Their results show that BPDN reconstruction outperforms TR and MP
techniques in terms of the BER performance. In [24], the authors consider the frequency domain
equivalent of sparse UWB channels and propose a greedy algorithm named extended OMP (eOMP)
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to reduce false path detection achieved with conventional OMP. Although the proposed method
improves the OMP time-of-arrival estimation by reducing the false path detection probability, the
authors do not present BER performance curves for the estimated channels and compare them with
perfectly known channels. The main goal of the previous studies (i.e., [18-24]) is that they focus on
improving the channel estimation and system performances based on the condition that UWB chan-
nels are sparse. The sparse channel assumption is widely accepted because of the properties of UWB
signaling, which are (i) the transmission of low duty cycle pulses in the order of nanosecond dura-
tion, and (ii) the nanosecond duration pulses coming from different multipaths being individually
resolved at the receiver. However, depending on the environment (e.g., an industrial environment
may have dense multipaths) and the channel resolution (e.g., pulses may be different duration), the
sparsity assumption of UWB channels may not hold. Therefore, this condition should be investi-
gated in detail before CS can be applied to UWB channel estimation. Furthermore, most studies in
the literature do not provide lower bounds for their channel estimation approach. However, this is a
necessary consideration for any channel estimation implementation.

Motivated by these conditions, we investigate? the suitability of standardized UWB channel
models to be used with the CS theory. In other words, we question the sparsity assumption of
realistic UWB multipath channels. For that, we particularly investigate the effects of two factors
on the channel estimation performance from a practical implementation point of view: (i) the IEEE
802.15.4a UWB channel models, which are classified according to the measurement environments
[25], and (ii) the selection of channel resolution, which depends on the transmitted pulse width, T,
and determines the equivalent approximate 7s-spaced channel model [26]. Accordingly, the channel
estimation performance is determined in terms of the mean square error (MSE) of the channel gain
estimates, and the BER performance is investigated with the estimated channel parameters for vari-
ous rake receiver implementations. The MSE and BER performances are discussed considering the
effects of different system parameters. In addition, the channel estimation performance is compared
with the Cramer-Rao lower bound (CRLB) for various channel models and number of measure-
ments. The results of this study are important for the practical implementation of the CS theory to
UWB channel estimation.

The rest of the paper is organized as follows. In Section 2, the CS theory and its application to
channel estimation are presented. In Section 3, modeling the UWB channel according to the IEEE
802.15.4a channel models and the channel resolution are explained. In Section 4, simulation results
for both the channel estimation performance and the system performance are presented. Concluding
remarks are given in Section 5.

2. CS FOR UWB CHANNEL ESTIMATION

Compressive sensing theory introduced in [10, 11] has shown that a sparse signal can be recovered
with high probability from a set of small number of random linear projections. In the following, the
overview of the CS theory, how it can be applied to sparse UWB channel estimation, and the CRLB
for the CS-based UWB channel estimation are presented, respectively.

2.1. Compressive sensing overview

Suppose that y € R is a discrete-time signal that can be represented in an arbitrary basis
¥ € V<N with the weighting coefficients x € Y as

y = ¥x. (D)

Suppose X = [x1,X2,...,xy]" has M nonzero coefficients, where M << N. By projecting y onto
a random measurement matrix ® € RE*V | a set of measurements z € X can be obtained as

z=®VUx 2)

Part of this work was presented at the IEEE International Conference on Ultra Wideband in Bologna, Italy in September
2011.
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where K << N. Instead of using the N-sample y to find the weighting coefficients x, K-sample
measurement vector z can be used. Accordingly, x can be estimated as

X = arg min||x||; subjectto z= ®WUx 3)

1/p
where £ ,-norm is defined as [x||, = (Z,Z,V:l |xn |? ) . Note that, the advantage of estimating x

from the vector z instead of y is that the former having much fewer samples corresponds to a much
lower sampling rate at the receiver. In addition to £;-minimization solution, there exists other greedy
algorithm based solutions [10, 11, 18]. However, we focus our study on only £;-minimization as we
are interested in relative performances for different channel models and resolutions for a selected
CS method. We will now present how the CS theory can be used for UWB channel estimation.

2.2. Application of CS theory to UWB channel estimation

The CS theory explained in (1)—(3) can be applied to UWB channel estimation. Suppose that r € ¥
is the discrete-time representation of the received signal given as

r=Ph+n “)

where P € RV*N is a scalar matrix representing the time-shifted pulses, h = [o, a2, ..., an] T are
the channel gain coefficients, and n are the additive white Gaussian noise terms. Because the UWB
channel structure is sparse, h has only M nonzero coefficients. Similar to (2), the received signal r
can be projected onto a random measurement matrix ® € RE*V 50 as to obtain z € RK as

z = ®Ph + &n
_ )
=Ah+v.
Due to the presence of the noise term v, the channel h can be estimated as [27]
h =arg min|h|, subjectto [|Ah—z|, <e (6)

where the value of the parameter € accounts for the noise power and can be represented as € = ||v||,.
This implies that the solution of (6) requires z — Ah to be within the noise level [27]. Although the
minimization problem in (3) can be modeled as a linear program and solved using generic path-
following primal-dual method, the minimization problem in (6) can be recast as a second-order
cone program and solved® with a generic log-barrier algorithm [28]. Considering (6), the channel
estimation performance depends on the sparsity of h (i.e., the value of M), as well as the number
of observations K. It is therefore necessary to understand the discrete-time equivalent structure of h
by considering the effects of standardized channel models and channel resolution. In Section 3, we
will elaborate on these effects. Next, we present the theoretical lower bounds for CS-based channel
estimation.

2.3. Theoretical lower bounds for CS-based UWB channel estimation

There are many different channel estimation methods to model the communication environment
(i.e., to identify the communication channel). To understand how close the estimation performance
is to the best achievable performance for specified conditions, some lower bounds are defined.
Accordingly, the CRLB can be used for this purpose, where the variance of the channel estima-
tion error is bounded by the inverse of the Fisher information matrix. The CRLB for CS-based
channel estimation can be obtained as in [29],

-1
CRLB = 07 -trace { (A} An) '} (7)
For the implementation of (6), the codes provided by Candes and Romberg publicly available at http://users.ece.gatech.

edu/~justin/l1magic/ are used.
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where o2 is the additive white Gaussian noise variance and Ay; € RNE*M is a submatrix of A
obtained by taking the columns of A corresponding to the indices of the nonzero components of the
sparse channel vector h. This performance indicator assumes that the receiver knows the locations
of multipath components. Because the CS-based channel estimator does not know the multipath
locations, inherently the previous CRLB is expected to be significantly better than the CS-based
estimation performance. The computation of CRLB may not be trivial due to the computation of the
inverse of the MxM matrix given in (7). Hence, we also consider the deterministic lower MSE
(DL-MSE) as given in [30], which assumes to know multipath locations and serves as an
approximation to (7). The deterministic lower MSE can be expressed as

M 1

>
~ K SNR ®)

* 2
E [ —hi3 |

where M is the number of nonzero components in the sparse channel vector h, K is the number
of observations, SNR denotes signal-to-noise ratio, and h* is an oracle estimator that knows the
multipath locations [30]. In Section 4, we will compare the MSE performances of the estimator and
the two MSE lower bounds given in (7) and (8).

3. MODELING THE UWB CHANNEL

In this section, we specifically focus on the UWB channel structure. We initially present the UWB
channel models followed by the channel resolution so as to model the discrete-time channel h. We
finally present the performance criteria to assess the effects of channel estimation performance.

3.1. Channel models

Most of the CS-based UWB channel estimation studies assume that the UWB channels are sparse.
However, this is a vague assumption. To classify a channel as sparse, initially the channel envi-
ronment should be examined. In [25], members of the IEEE 802.15.4a standardization committee
have developed a comprehensive standardized model for UWB propagation channels. Accordingly,
they have considered different environments and have conducted measurement campaigns to model
the UWB channels for each environment. The channel environments that they have parameterized
include indoor residential, indoor office, outdoor, industrial environments, agricultural areas, and
body area networks. The details of the related channel models and their associated parameters can
be found in [25]. We motivate our study with the selection of a variety of environments having either
a line-of-sight (LOS) or a non-LOS (NLOS) transmitter-receiver connection. Accordingly, we select
the CM1 (LOS indoor residential), CM2 (NLOS indoor residential), CM5 (LOS outdoor), and CM8
(NLOS industrial) channel models, which are widely used in UWB research.

Before we elaborate on each channel model, let us present the general channel impulse response
(CIR) model. The continuous-time channel /(#) can be modeled as

Ly
h(t) =" hmb(t = Tm) ©)

m=1

where h,, is the mth multipath gain coefficient, t,, is the delay of the mth multipath component,
8(-) is the Dirac delta function, and L, is the number of resolvable multipaths. More discussions
will be given on L, when we discuss channel resolution in the next subsection. We summarize the
characteristics of channel models CM1, CM2, CMS5, and CMS in Table I.

Using the CIR model in (9) and the parameters for channel models CM1, CM2, CMS5, and CMS8
in [25], a realization for each channel model is plotted in Figure 1.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2014; 27:3383-3398
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Table I. UWB channel models.

Channel model Characteristics

CM1 This is by far the most commonly used channel model to assess the system performance. It
models an LOS connection in an indoor residential environment. It is the most sparse
channel model where few rake fingers can collect considerable amount of signal energy.

CM2 This is a channel model with an NLOS connection in an indoor residential environment. It
complements CM1. It is a sparse channel model but usually contains more multipaths
compared with CM1.

CM5 This is a channel model with an LOS connection in an outdoor environment. Typically, the
multipaths arrive in a few clusters.

CM8 This is a channel model with an NLOS connection in an industrial environment. The

multipaths arrive densely so that the channel does not have a sparse structure.
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Figure 1. Channel realizations for CM1, CM2, CM5, CMS.

It can be observed that the typical channel properties listed in Table I can be observed in the
figure. Next, we present how to obtain the discrete-time equivalent of (9) so as to use in (4)—(6).

3.2. Channel resolution

The continuous-time CIR given in (9) assumes that the multipaths may arrive any time. This is
referred to as the t-spaced channel model [26]. Suppose that two consecutive multipaths with
delays tx and 7 arrive very close to each other. Further suppose that a pulse of duration T
is to be transmitted through this channel. If 75 > |tx4; — 1%, then the pulse at the receiver cannot
be resolved individually for each path, and experiences the combined channel response of the kth
and (k + 1)th paths. Let us define an approximate 7s-spaced channel model that combines mul-
tipaths arriving in the same time bin, [(n — 1)7s,nTy], Vn. Accordingly, for [(n — 1)Ts,nTs], Vn,
the delays {t,,|1,2, ..., L} that arrive in the corresponding quantized time bins can be determined,
and the associated {/,,|1,2, ..., L} gains can be linearly combined to give the new channel coeffi-
cients {a,|1,2,..., N}. Note that some of the {«,,} values may be zero due to no arrival during that

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2014; 27:3383-3398
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time bin, hence, the number of nonzero coefficients M satisfies the condition M < L, < N. The
equivalent T-spaced channel model can be expressed as

N
h(t) =" an8(t —nTy) (10)

n=1

where T, = NTj is the channel length. Using (10), the discrete-time equivalent channel can be
written as

h=[ay,00,...,ay]" (11)

where the channel resolution is 7. The discrete-time equivalent channel vector obtained previously
then can be used in (4)—(6) in the context of CS theory.

The effect of channel resolution (i.e., selection of 7T) on the sparsity of the channel vector can be
explained as follows. Let there be L, nonzero multipath coefficients in the continuous-time channel
h(t) with channel length 7. Let the two discrete-time equivalent channels with a channel resolution
T, have M nonzero terms out of Ny = T/ Ty, coefficients, and with a channel resolution T, have
M nonzero terms out of N» = T/ Ty, coefficients, respectively. If Ty, < Ty, (i.e., Ty, has finer
resolution), then L, = M; = M, and N; > N,. This is illustrated in Figure 2 for the 7, = 30 ns
duration of a channel model CM1 realization. Although there are L, = 12 paths in the t-spaced
channel model, the equivalent discrete-time model with 75 = 0.5 ns has N; = 60 samples of which
M, = 11 of them are nonzero. On the other hand, if T is increased to 2 ns, then the channel has
N, = 15 samples of which M, = 9 of them are nonzero. The remarks (A) and (B) shown on the
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Figure 2. Discrete-time channel models with different channel resolutions.
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Table II. The sparsity ratios for different channel resolutions.

Channel Ts = 1ns Ts =0.5ns Ts = 0.25 ns
model M/N M/N M/N
CM1 0.30 0.17 0.09
CM2 0.34 0.20 0.11
CM5 0.81 0.69 0.52
CM8 1.00 0.99 0.99

figure illustrate how the paths merge if they arrive in the same time bin for a given channel resolu-
tion so as to decrease L,. We can also observe that if the channel resolution is finer, the channel will
be sparser. In addition to these, the received signals are shown on the right hand side of the figure’s
columns when a pulse with T-duration is transmitted over the related channel.

Before explaining the receiver structure, we finally define the sparsity ratio (M/N) as the ratio
of the number of nonzero coefficients (M) to the length of the discrete-time equivalent channel (V)
for the selected resolution. We present in Table II the sparsity ratio, at various channel resolution
values for different channel models obtained by averaging over 100 channel realizations when the
channel length is fixed to 7, = 100 ns.

From the table, it can be deduced that the multipaths for CMS5 and CMS arrive very densely
compared with CM1 and CM2; hence, even at the increased channel resolution (i.e., when Ty is
decreased), the sparsity of these channels does not improve much.

3.3. Performance criteria

In communication systems, the performance of channel estimation is evaluated via MSE of the
channel coefficients, and the overall system performance is assessed on the basis of BER.

3.3.1. Mean square error. Mean square error term is calculated as

N
MSE = (o; —di)? (12)
i=1

where {a;} are the channel coefficients as given in (11), and {¢;} are the channel coefficient
estimates obtained from (6).

3.3.2. Bit-error rate. Assuming binary phase shift keying modulation, the discrete-time received
signal can be represented as

r=dPh+n (13)
where d € £ 1 is the transmitted binary information. The decision statistic is determined by
D=h"P'r (14)

and the data is estimated as

(15)

d= +1, D=0
1 -1, D<O

where h and d are the estimated channel and data, respectively. For data estimation, if an all-rake

receiver is used, h = hyg = [&1,d»,...,an]" will give the best BER performance at the expense
of increased complexity. For practical 1mplementatlons if a partial-rake with L fingers is used,
h= hpLR = [&1,d2,...,4L,0,. 0] and if a selective-rake with L fingers is used, h= hSLR

with the strongest L paths selected and the other coefficients equal to zero.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2014; 27:3383-3398
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Figure 3. The effect of number of observations K on the mean square error (MSE) performance when
T, =100 ns and T = 0.25 ns for channel model CM1.

4. RESULTS

In this section, we investigate the effects of IEEE 802.15.4a channel models and the channel reso-
lution on the channel estimation and system performance. For that, we evaluate the MSE of channel
estimation and the lower bounds, and the BER performance for various number of observations K
and channel resolution values 7 with different channel models. To remove the path loss effect and

to treat each channel model fairly, we normalize the channel coefficients as Zrlzvzl a2 = 1. For the

generation of channels, the standardized IEEE 802.15.4a channel models [25] are used.

Initially, in Figure 3, we investigate the effect of number of observations K on the MSE perfor-
mance when 7, = 100 ns and Ty = 0.25 ns for the most commonly used channel model CM1.
Accordingly, the discrete-time channel length is N = 400. Note that the number of nonzero coef-
ficients M may vary for each channel realization generated by its equivalent probabilistic model.
Here, K/N can be seen as the ratio of the compressed sampling rate to the conventional receiver
sampling rate. As shown in Figure 3, although K = 50 observations are not enough for channel
estimation even at high SNR, K = 200 observations can achieve an MSE ~ 10~2 at SNR = 20 dB
for a fixed Ty, = 0.25 ns.

In addition to the MSE values, CRLB and the deterministic lower MSE curves are plotted. The
first important point for the lower bounds is that if the observations used for CS-based channel
estimation are selected as K = 50, especially for the low SNR region, the CRLB curve does not
provide accurate information. This is mainly due to having insufficient number of observations.
Accordingly, the deterministic lower MSE can be used as an approximation, which provides a more
reliable bound for insufficient number of observations. The second important point for the lower
bounds is that the gap between the MSE and the CRLB curves (and as well as the deterministic
lower MSE) becomes smaller as the number of observations increases. Finally, the DL-MSE can be
used instead of the CRLB as a lower bound with reduced computational complexity as they show
close performances.

In Figure 4, the effect of channel resolution 75 on the MSE performance is investigated when
T. =100 ns and K/N = 50% for channel model CM1. Hence, the discrete-time channel length is
N =T./Ts; = {100,200, 300, 400, 500} for various channel resolution values. It can be observed
that the MSE performance improves with increasing the channel resolution for K/N = 50% fixed.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Commun. Syst. 2014; 27:3383-3398
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Figure 4. The effect of channel resolution 7 on the mean square error performance when 7, = 100 ns and
K/N = 50% for channel model CM1.
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Figure 5. The effect of number of observations K on the mean square error (MSE) performance at
SNR = 20 dB when 7, = 250 ns and Ty = 1 ns for channel models CM1, CM2, CM5, CM8.

It should be noted that for the T = 1 ns resolution, the MSE ~ 10~! even at high SNR. This shows
that the channel model loses its sparse structure for the selected channel resolution.

After considering the most commonly used channel model CM1, let us compare the channel mod-
els for the same set of parameters. In Figures 5 and 6, the effect of number of observations K on
the MSE and the deterministic lower MSE performances at SNR = 20 dB are investigated when the
channel length is 7, = 250 ns for channel models CM1, CM2, CMS5, and CMS.

The channel resolutions in each figure are 7y = 1 ns and Ty = 0.25 ns resulting in N = 250
and N = 1000, respectively. Both figures can be compared with each other fairly based on the
K/N ratio. It can be observed that for the same conditions, the channel estimation is better for
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Figure 6. The effect of number of observations K on the mean square error performance at SNR = 20 dB
when 7, = 250 ns and 7y = 0.25 ns for channel models CM1, CM2, CM5, CMS.

channel models in the order of CM1, CM2, CM5, and CM8 as expected. When the channel reso-
lution is increased from 75 = 1 ns to Ty = 0.25 ns, it can be observed that the MSE performances
of CM1, CM2, and CMS5 are improved, whereas the performance of CM8 does not change. This
can be explained by the dense multipaths arriving almost in each time bin although the resolution is
increased (cf. Table II). This is also true for the deterministic lower MSE as the ratio M/ K is directly
proportional to the sparsity ratio M/ N for fixed K and N values. In addition, we can also observe
that the MSE performances of CM1 and CM2 do not change much for the resolution Ty = 0.25 ns
when 400 < K < 500. Hence, the number of observations can be limited to K &~ 400, that is, a
lower sampling rate can be used for a similar MSE performance.

Before considering the system performance, we finally investigate the effects of number of obser-
vations and channel resolution on the MSE performance for channel model CMS5 in the following
two figures. Channel model CMS5 is selected as the MSE performance of CM2 is similar to that
of CM1, and the MSE performance of CM8 does not change much with the channel resolution. In
Figure 7, the effect of number of observations K on the MSE performance is investigated when
T. = 250 ns and Ty = 0.25 ns. Here, the equivalent discrete-time channel length is N = 1000.
As can be observed, when K = 250 observations are used, the MSE performance is poor (i.e., at
the rate K/N = 0.25). On the other hand, increasing the observations to K = {500, 750} improves
the MSE at the expense of increasing the compressed sampling rate. In Figure 8, the effect of chan-
nel resolution 7 on the MSE performance is investigated when 7, = 250ns and K/N = 50%.
Hence, the discrete-time channel length is N = T,/ Ty = {250,500, 750, 100, 1250} for various
channel resolution values. Similar to the MSE performance for CM1 in Figure 4, the MSE perfor-
mance improves with increasing the channel resolution for K/N = 50% fixed. Hence, the sparsity
condition of the channel is improved with the channel resolution.

The system performance can be assessed by evaluating the BER performances. We are particu-
larly interested in the low to medium SNR region where typical communication takes place. As for
the modulation, binary phase shift keying is used to transmit data. In Figures 9 and 10, the effect
of channel resolution on the BER is investigated in CM1 for an all-rake and a partial-rake receiver
with five fingers when channel length 7, = 100 ns and channel resolutions 75 = {0.25,1} ns
are considered for K/N = 50%. BER performances are compared for both perfectly known and
estimated channels (PKC, EC). For the partial-rake, it is assumed that the locations of the multi-
paths are known, whereas the amplitudes are estimated. In Figure 9, when an all-rake receiver is
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Figure 7. The effect of number of observations K on the mean square error performance when 7. = 250 ns
and Ty = 0.25 ns for channel model CM5.
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Figure 8. The effect of channel resolution 7 on the mean square error performance when 7, = 250 ns and
K /N = 50% for channel model CM5.

used for 75 = 1 ns, BER performance for the EC case is worse than the PKC case about 1-2 dB.
Correlatively, when a partial-rake receiver with five fingers is used, it can be seen that the rela-
tive performance degradation is approximately <1 dB. In Figure 10, it can be observed that with
increasing channel resolution to 0.25 ns, the curves of EC and PKC approach each other (i.e., better
channel estimation performance) and the BER decreases compared with the former case. For this
selected channel resolution, when an all-rake receiver is used, the results for the EC case approach
to the PKC case. It is also important that when practical-rake receivers (less fingers) are used, the
BER performance curves for EC and PKC become very close to each other as the strongest paths
are estimated correctly.
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Figure 10. BER performance when T = 0.25 ns for channel model CM1.

Finally, in Figure 11, we evaluate the BER performance with the estimated and perfectly known
channels for various rake receiver implementations when CM1 and CMS5 are considered for a fixed
channel resolution. For the partial-rake, it is assumed that both the locations and amplitudes of the
multipaths are estimated. The channel length and channel resolution are selected as T, = 250 ns
and Ty = 0.25 ns, respectively, and the sampling ratio, K /N, is fixed to 50%. When an all-rake
receiver is used, it can be observed that the BER performances are worse about 0.5 dB and 1 dB
for CM1 and CMS, respectively. When a selective-rake receiver with five fingers is used for CM1,
the performances for the known and estimated channels are similar as the strongest paths are cor-
rectly determined by the CS-based estimation. However, when a partial-rake with five fingers is
used for CM1, the BER performance for the estimated channel compared with the known channel
has degraded much as the CS-based estimation introduces nonzero components at low SNR, which
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Figure 11. BER performance of various Rake implementations (AR, P5R: partial 5-rake, S5R) for PKC
and EC.

are possibly selected as the fingers of a partial-rake. Finally, it can be observed that for CMS5, five
fingers are not enough to collect significant energy for either known or estimated channels.

Considering the results presented in Figures 3—11 and Table II, CS-based UWB channel estima-
tion can be considered for practical system implementations. For example, for a desired channel
estimation performance, pulse widths and number of measurements can be determined for given
channel environments. Furthermore, for a desired system performance, type of rake receivers and
number of rake fingers can be determined after the CS-based channel estimation. Hence, desired
system performances can be achieved depending on the selection of system parameters.

5. CONCLUSIONS

In this study, we investigated the suitability of standardized UWB channel models to be used with
the CS theory. In other words, we elaborated on the sparsity assumption of realistic UWB multi-
path channels. We particularly investigated the effects of (i) IEEE 802.15.4a UWB channel models,
which are classified according to the measurement environments, and (ii) selection of channel
resolution, which depends on the transmitted pulse width. The channel estimation performance was
determined in terms of the MSE of the channel gain estimates, and the BER performance was eval-
uated with estimated channel parameters for practical rake implementations. Furthermore, CRLB
and the deterministic lower MSE were considered. It was shown that UWB channel models for
residential environments exhibited a sparse structure yielding a reasonable channel estimation per-
formance, whereas the channel models for industrial environments may not be treated as having
a sparse structure due to multipaths arriving densely. Moreover, it was shown that the sparsity
increased by channel resolution can improve the channel estimation performance significantly at
the expense of increased receiver processing. It was also observed that the use of selective-rake
receivers after CS-based sparse channel estimation yields a BER performance very close to the
known channel case. The results of this study are important for the practical implementation of the
CS theory to UWB channel estimation.
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