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Abstract: In this study, the authors investigate the information theoretical limits on the performance of point-to-point single-
carrier acoustic systems over frequency-selective underwater channels with intersymbol interference. Under the assumptions
of sparse and frequency-selective Rician fading channel and non-white correlated Gaussian ambient noise, the authors derive
an expression for channel capacity and demonstrate the dependency on channel parameters such as the number, location and
power delay profile of significant taps, as well as environmental parameters such as distance, temperature, salinity, pressure
and depth. Then, the authors use this expression to determine the optimal carrier frequency, input signalling and bandwidth
for capacity maximisation.
1 Introduction

Demands for underwater communication systems are
increasing because of the on-going expansion of human
activities in underwater environments such as scientific data
collection, maritime archaeology, offshore oil field
exploration/monitoring, port security, environmental
monitoring and pollution control/tracking among others [1–
9]. For example, maritime archaeology [1, 2] studies the
past of human life, behaviours and cultures and their
activities in, on, around and under the sea. Its acceptance
has been a relatively late development because of the
difficulties of accessing and working in underwater sites.
This branch of science can benefit significantly from
effective use of underwater communication systems.
Furthermore, the vast underwater world is extremely rich in
natural resources such as valuable minerals and oil fields
waiting to be explored. Seismic monitoring [3–5] becomes
particularly important in oil extraction from underwater
fields to assess the field performance. In addition,
monitoring the oil rigs can help taking preventive actions
for the disasters such as the rig explosion that took place in
the Gulf of Mexico in 2010 [6, 7]. Tsunami and earthquake
forewarning [3, 8] systems can benefit from seismic
information which is measured from undersea locations and
also such collected information can be used in studies of
the seaquakes. Last, but not least, there are a large number
of underwater military applications [9] which include
surveillance, submarine detection, mine reconnaissance
missions and unmanned operations.
The current typical choice for oceanographic data

acquisition is to deploy underwater sensors which record
data during the monitoring mission and then recover the
information from the storage unit of sensor [3, 5, 6, 8].
Such an off-line approach is not able to deliver real-time
information which can be particularly critical in
surveillance and disaster prevention. There is also an
increasing use of robotics in underwater missions in order
to increase precision and operability [3, 4, 9]. Remotely
operated vehicles (ROVs) and autonomous underwater
vehicles (AUVs) are usually used in such applications and
an important point is how to communicate with the ROV or
AUV. Classically, cabled or fibre-based techniques are
used. Although these approaches provide high-speed and
reliable communication, their use can be challenging in
difficult-access locations and in deep sea as they will limit
the range and manoeuvrability of the ROV.
Such problems with wireline technologies trigger the

demand for reliable high-speed underwater wireless links.
Radio-frequency (RF) signals suffer from large attenuations
in water and long-range RF communication requires the use
of extra low frequencies which necessitate large antennas
and high transmit powers [3]. Optical signals do not suffer
much from attenuation, but absorption, scattering and high
level of ambient light limit the transmission range to a few
metres. Among the alternatives for wireless underwater
communications, acoustic transmission is the most practical
and commonly employed method [2]. The characteristics of
underwater acoustic (UWA) channel, such as multipath
fading, bandwidth limitations and sparsity still pose many
challenges to the development of underwater systems [10].
For efficient UWA communication system design, it is
important to understand the fundamental performance limits
imposed by the underwater channels. From an information
theoretic point of view, the basic performance measure is
the capacity of a channel which determines the maximum
data rate that can be supported with an arbitrarily small
error probability.
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Although capacity calculations for terrestrial wireless RF

channels have been extensively studied, see for example
[11], the literature on the capacity of UWA channels is
sporadic [12–14] with many remaining open questions. To
the best of our knowledge, the capacity of UWA channel
has been first studied by Kwon and Birdsall [15]. However,
they oversimplify the UWA channel model ignoring the
multipath fading effects and use a time-invariant channel
model with additive Gaussian noise that may or may not be
white. The work in [16] assumes a Rayleigh fading model
with additive white Gaussian noise (AWGN). In [17],
achievable rates are derived for an orthogonal frequency
division multiplexing (OFDM) system on highly dispersive
channels assuming no channel state information (CSI) at
transmitter and receiver. Numerical assessments of their
derived expressions using experimental channel data show
that OFDM transmissions at 2–4 bit/s/Hz are achievable at
an average signal-to-noise ratio (SNR) of 15–20 dB.
None of the aforementioned works takes into account the

path loss in signal models; therefore their results do not
reflect the dependence of the capacity on distance. The path
loss effects are further taken into account in [12–14]. These
works, either implicitly [12] or explicitly [14] consider an
OFDM-based multi-carrier architecture and assume
frequency-flat channel for each narrow sub-band. In an
OFDM system, assuming that there are enough parallel
channels, the frequency-selective channel is effectively
disintegrated into a number of frequency-flat channels and
no intersymbol interference (ISI) is observed. Therefore the
fading effect is modelled as a multiplicative coefficient.
On the other hand, single-carrier systems over

frequency-selective channels are subject to ISI which needs
to be taken into account in the performance analysis. In
[13], Choudhuri and Mitra derive capacity bounds for the
UWA relay channels with ISI and investigate optimum
power allocation. They, however, consider some idealistic
assumptions such as Thorp’s formula [18] for the path loss
which depends on only distance and frequency ignoring the
effect of environmental parameters.
In this paper, we readdress the information theoretical

limits of UWA channels with ISI. We assume non-white
Gaussian to model the ambient noise [19] and consider
Francois–Garrison formula [20, 21] to take into account the
effects of environmental parameters such as temperature,
salinity, pressure, depth as well as distance and frequency.
Exploiting the methodology introduced in [22], we develop
an equivalent channel model for UWA channel with ISI and
show that the capacity of the equivalent channel converges
to that of the operating channel in the limit of infinite block
length. Using these results, we first obtain a capacity
expression for the UWA channel under consideration and
demonstrate the dependency on channel parameters such as
the number, location and power delay profile (PDP) of
significant taps, as well as environmental parameters such
as temperature, salinity, pressure and depth. Then, we use
this expression to determine the optimal carrier frequency,
input signalling and bandwidth.
The rest of this paper is summarised as follows: in Section

2, we describe the UWA channel model including path loss,
fading and ambient noise. In Section 3, we introduce our
transmission model. In Section 4, we present the derivations
of instantaneous and average channel capacity. In Section 5,
we investigate the effect of channel parameters on the
average capacity. In Section 6, we present numerical results
to corroborate the analytical derivations. In Section 7, we
discuss the optimal choice of carrier frequency, input
2600
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signalling and bandwidth for performance optimisation. In
Section 8, we finally conclude this paper.

Notation: (.)T, (.)* denote transpose and complex
conjugate-transpose operations, respectively. E(.) denotes
statistical expectation and |.| denotes determinant. * and⊗
denote linear and circular convolutions. [x]+ is equivalent to
max{0, x}. R denotes real numbers and Z0 denotes set of
integers. Bold upper-case and lower-case letters denote
matrices and vectors, respectively. Rx[l ] = E(x[k + l− 1]x
[k]), l∈ {1, 2, …, N} denotes the autocorrelation function
of discrete signal x[k], k ∈ {1, 2, …, N}. x[k] ��F x(fn)
denotes the discrete Fourier transform (DFT) of the discrete
signal x[k] which are the samples of the function x(t). Here,
x(fn) =

∑N
k=1 x[k]e

−j2p(k−1)fnDf , n∈ {1, 2, …, N}, Δf = 1/N
and fn = (n− 1)Δf. F is defined as the DFT matrix with
elements F(k, n) = (1/√N )exp(−j2π(k − 1)(n− 1)/N ) and
∀k, n∈ {1, 2, …, N}.

2 UWA channel model

In this chapter, we describe the large-scale path loss,
small-scale fading and coloured Gaussian noise models of
UWA channels.

2.1 Path loss

The large-scale UWA path loss is given by A( f, d ) = dsa( f )d

where d is the distance between the transmitter and receiver,
1≤ s≤ 2 is the spreading factor and a( f ) is the absorption
coefficient. According to Francois–Garrison formula [20,
21], the absorption coefficient is expressed as

a(f ) = A1B1C1f
2

C2
1 + f 2

+ A2B2C2f
2

C2
2 + f 2

+ A3B3f
2 dB/km (1)

where f is the carrier frequency (in kHz), Ai, i = 1, 2,3 are the
temperature and salinity dependencies, Bi, i = 1, 2, 3 are the
pressure dependencies and Ci, i = 1, 2, 3 are the relaxation
frequencies.

2.2 Ambient noise

There are four main sources of ambient noise (turbulence,
shipping, waves and thermal noise) each of which becomes
dominant in different frequency regions. Considering that
most practical UWA systems operate in the frequency range
of 10–100 kHz, waves’ noise becomes the dominating
factor. Power spectral density (PSD) for waves’ noise (in
dB re 1 μPa/Hz) is given by [19]

10 log Zw(f ) = 50+ 7.5v1/2 + 20 log f − 40 log (f + 0.4)

(2)

where ω is the wind speed. For a tractable mathematical
model, this can be approximated by [23]

10 log Zw(f ) = 50+ 7.5v1/2 − 10 log (f 2 + f 20 ) (3)

which can be rewritten as Zw(f ) = f0s
2/ pf 2 + pf 20
( )

where

s2 = E[z(t)z∗(t)] = (p105+0.75
��
w

√
)/f0 and f0 is the lowest

cut-off frequency. The corresponding autocorrelation
function can be then easily obtained by taking inverse
IET Commun., 2014, Vol. 8, Iss. 15, pp. 2599–2610
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Fourier transform of Zw( f ) and is given by

Rw(t) = s2 exp (− 2pf0|t|), ∀t [ R (4)

2.3 Fading model

The average received power is determined by the path loss,
but instantaneous level of the received power fluctuates as a
result of small-scale fading effects because of multipath
propagation in underwater environments. The resulting
frequency-selective sparse UWA channel can be modelled
as a finite impulse response filter. Let T≅ 1/W denote the
sampling rate of the input symbols where W is the
transmission bandwidth. Assume that Td denotes the delay
spread. The channel length is given by L = ⌈Td/T⌉. The
impulse response of the channel is [24]

h[k, l] =
∑L
i=1

hi[k]d[l − i] (5)

where hi ��F h(fn), i∈ {1, 2, …, L} denote channel tap
coefficients and the corresponding discrete channel
frequency gains.
Although there is not a general consensus within the

research community about the theoretical distribution for
statistical characterisation of tap coefficients in underwater
channels, the small-scale effects are often modelled as
Rayleigh or Rician fading [25]. In this paper, we consider
Rician fading which also includes Rayleigh fading as a
special case. Under Rician fading assumption, hi is
modelled as a complex non-zero mean Gaussian random
process with independent real and imaginary parts having a
mean of μi/√2 and a variance of s2

i . The power of the ith
tap is therefore Vi = E(|hi|2) = m2

i + 2s2
i and the

normalised total power is
∑

i Vi = 1. The channel PDP
vector is defined as Ω = [Ω1, Ω2, …, ΩL] with cardinality
|Ω| = L. Since the UWA channel exhibits sparse
characteristics, we further define vectors Ψ and Γ which,
respectively, denote the PDP and the locations of only
significant channel taps. Their cardinality is |Ψ| = |Γ| =m
where m≪ L is the number of significant taps. Introducing
the Rician factor as ki = m2

i /2s
2
i , each channel tap can be

written as

hi =
�������
Viki
ki + 1

√
1+ j��

2
√

( )
+

�������
Vi

ki + 1

√
ai (6)

where αi is a complex Gaussian random variable with zero
mean and unit variance.

3 Transmission model

Consider a transmission block size of N and let the discrete
source signal be represented by x[k], k = 1, 2, …, N. The
autocorrelation function and the corresponding discrete PSD

of the input signal are Rx[k] ��F P(fn), k∈ {1, 2, …, N− 1}.
The autocorrelation matrix of the input signal is therefore
defined by Rx = E(xx*) where x = (x[1], x[2], …, x[N ]). The
power constraint is given by

1

N

∑N
k=1

E(|x[k]|2) ≤ Pt (7)
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where NPt is the maximum average energy allowed per block
and expectation is with respect to the distributions of x[k], k =
1, 2,…, N, that is, p(x) = ∏N

i=1 p(x[i]|x[i− 1]). The received
signal is given by

y[k] = h[k, l] ∗ g[k] ∗ x[k]+ w[k], k = 1, 2, . . . , N

(8)

where w[k] is the additive non-white Gaussian noise term
with the autocorrelation function and the corresponding
discrete PSD of Rw[k] ��F Zw(fn), k∈ {1, 2, …, N− 1}.
Note that in the limit of N→∞, Zw( fn) converges to Zw( f )
in (2) by definition of DFT. The autocorrelation matrix of
noise signal is defined as Rw = E(ww*) based on the
discrete version of autocorrelation function given by (4). In
(8), g[k] ��F g(fn), k∈ {1, 2, …, N} represents the effect
of large-scale impairments and is the discrete version of
function g(t) whose PSD is given by G( f, d ) = 1/A( f, d )
(compare Section 2.1). In discrete-time domain, it can be
shown that the discretised version of the PSD, that is, G( fn,
d ) is equivalent to |g( fn)|

2. Under the assumption that the
channel remains constant over a transmission block and
replacing (5) in (8), we have

y[k] =
∑L
i=1

hi(g ∗ x)[k − i]+ w[k] (9)

The channel in (9) is referred to as ‘N-block discrete-time
Gaussian channel (N-DTGC)’ in [22]. In the following, we
exploit a technique introduced in [22] which develops an
‘equivalent hypothetical’ circular channel model for the
N-DTGC channel. This is named as ‘N-block circular
Gaussian channel (N-CGC)’ and shown to have the same
capacity with that of N-DTGC in the limit of infinite block
length. In this equivalent model, the received signal is
given by

�y[k] =
∑L
i=1

∑N
j=1

hig[j]x[(k − i− j)N ]+ �w[k]

= h[k, l]⊗ g[k]⊗ x[k]+ �w[k]

(10)

where the operator (.)N is defined as

(k)N = k − N
k

N

⌊ ⌋
, if k = lN , l [ Z0

N , if k = lN , l [ Z0

⎧⎨
⎩ (11)

In (10), �w[k] is additive non-white Gaussian noise term with
periodic autocorrelation function [26] given by R�w[k] =
E(�w[k]�w[j]) = Rw[k − j]+ Rw[k − j + N ]+ Rw[k − j − N ]
and R�w[k] ��F Z�w(fn), k, j∈ {1, 2, …, N}. Noting that it is a
periodic repetition of Rw and noise samples from different
blocks are independent, we have R�w[k] = Rw[k] and
Z�w(fn) = Zw(fn) for ∀n∈ {1, 2, …, N}.
The output sequence in vector form is given by

�y = CHx+ �w (12)

where �y = (�y[1], �y[2], . . . , �y[N ]) and �w = (�w[1], �w[2],
. . . , �w[N ]). In (12), C and H are circulant matrices with
elements [H]i,j = h( j−i+1)N and [C]i,j = g[( j− i + 1)N]. Note
that circulant matrices can be diagonalised by DFT matrix
2601
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F. Let us define �Y = F�y, then we have

�Y = GDX + �W (13)

where G =FCF*, D =FHF*, X = Fx and �W = F�w. Note
that G and D are diagonal matrices with diagonal elements
Gnn =

∑N
k=1 g[k]e

−j2p(k−1)(n−1)/NDf and Dnn =
∑L

i=1

hie
−j2p(i−1)(n−1)/NDf or, equivalently, Gnn = g( fn) and Dnn =

h( fn).

4 Capacity analysis

In this section, we first present the derivation of instantaneous
channel capacity for a given realisation of the fading channel.
Then, by performing an expectation over the fading
distribution, we obtain average channel capacity.

4.1 Derivation of instantaneous channel capacity

The equivalent channel model N-CGC decomposes the
multipath channel into a set of N parallel Gaussian channels
via DFT decomposition. Considering the input–output
relation in (13) and noting that the linear DFT operation
does not affect the information rate of the channel, the
capacity of N-CGC is given by

Cc
N = sup

p(x)

1

N
I (X ; �Y ) (14)

The capacity of the N-DTGC under consideration can then be
found by letting N→∞, that is

C = lim
N�1

Cc
N = lim

N�1
sup
p(x)

1

N
I(X ; �Y ) (15)

where the maximisation is taken over the input distribution.
The mutual information is given by

I(X ; �Y ) = H(�Y )−H(�Y |X ) (16)

where H(.) is differential entropy. Replacing (13) in (16), we
have

I (X ; �Y ) = H(GDX + �W )−H( �W )

≤ 1

2
log 2pe GDKXD

∗G∗ + K �W

∣∣ ∣∣− 1

2
log 2pe K �W

∣∣ ∣∣
(17)

where KX = E(XX*) =FRxF* and K �W = E �W �W
∗( ) =

FR�wF
∗ are, respectively, the DFT of input and noise

autocorrelation matrices. Owing to the periodic property of
autocorrelation function R�w[k], the autocorrelation matrix
R�w is circulant. Hence, R�w can be diagonalised by the DFT
which results in the diagonality of K �W . The inequality
comes from the fact that Gaussian distribution of input
maximises the entropy.
Hadamard’s inequality [27] implies that diagonal KX

maximises the mutual information. Therefore (16) is further
upper bounded by

I(X ; �Y ) ≤ 1

2

∑N
n=1

log 1+ |Gnn|2|Dnn|2KXnn

K �Wnn

( )
(18)
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where KXnn =
∑N

k=1 Rx[k]e
−j2p(k−1)(n−1)/NDf and K �Wnn =∑N

k=1 R�w[k]e
−j2p(k−1)(n−1)/NDf are the diagonal components

of KX and K �W which correspond to the discrete values of
input signal PSD and noise PSD, that is, KXnn = P( fn),
K �Wnn = Zw(fn). In (18), we replace |Gnn|

2 and |Dnn|
2 with G

( fn, d ) and |h( fn)|
2, respectively. We can therefore rewrite

the capacity as

C = lim
N�1

max
P(fn)

1

2N

∑N
n=1

log 1+ G(fn, d)|h(fn)|2P(fn)
Zw(fn)

( )

subject to
1

N

∑N
n=1

P(fn) ≤ Pt (19)

As the number of sub-bands N grows, the frequency width,
that is, Δf, goes to zero in the limit of N→∞, and they
represent a finer sampling of the continuous spectrum. Then
(19) converges to

C = max
P(f )

1

2

∫1/2
−1/2

log 1+ G(f , d)|h(f )|2P(f )
Zw(f )

( )
df bit/s/Hz

subject to

∫1/2
−1/2

P(f ) df ≤ Pt (20)

Considering a specific bandwidth W, the capacity (in bit/s)
can be found with the same procedure by replacing Δf =W/
N in the definition of DFT. Capacity in bit/s is therefore
obtained as

C = max
P(f )

1

2

∫
W
log (1+ SNR(f )) df

subject to
1

W

∫
W
P(f ) df ≤ Pt

(21)

Here, the integration is over the operating band and the
narrowband SNR is defined as SNR( f ) =G( f,d )|h( f )|2P( f )/
Zw( f ). It is worth mentioning that the above capacity
expression also includes Gaussian channel with no ISI, that
is, |h( f )|2 = 1, and frequency-flat Rician fading channel, that
is, |h( f )|2 = |h1|

2, as special cases.

4.2 Derivation of average channel capacity

The expression in (21) is provided for a given realisation of
the channel. To find the average capacity, one needs to take
expectation of (21) with respect to distribution of |h( f )|2.
h( f ) is the Fourier transform of the discrete channel taps,
that is, h(f ) = ∑L

i=1 hie
−j2pf (i−1) where hi’s are complex

Gaussian random processes with independent real and
imaginary parts having a mean of μi/√2 and a variance of
s2
i (compare Section 2.3). Since h( f ) is a linear summation

of independent complex Gaussian random processes, it is
also a complex Gaussian random process with mean
m(f ) = ∑L

i=1 E(hi)e
−j2pf (i−1) and variance s2

h =
∑L

i=1 2s
2
i .

Considering that
∑

i m
2
i + 2s2

i

( ) = 1 (compare Section 2.3),
it is easy to show that |h( f )|2 follows the exponential pdf [28]

p(|h(f )|2) = 1

1+ l
exp − |h(f )|2

1+ l

( )
(22)
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where l is defined as

l = 2
∑L
i=1

∑L
j=i+1

mimj cos (2pf (j − i)) (23)

Under the assumption that CSI is only available at the receiver
side, the source allocates equal power across the sub-bands as
it has no knowledge of the channel at the transmitter side.
Setting P( f ) = Pt in (21), we need to calculate

�C = E|h(f )|2
1

2

∫
W

log 1+ G(f , d)Pt

Zw(f )
|h(f )|2

( )
df

( )
(24)

Assuming ρ = |h( f )|2/(1 + l), (24) can be written as

�C = 1

2

∫
W

∫1
0
log 1+ (1+ l)G(f ,d)Pt

Zw(f )
r

( )
exp (−r) dr df

(25)

Using the results of [28], we can rewrite (25) as (see (26))

where G(a, z) = �1
z ta−1e−t dt denotes the ‘incomplementary

gamma function’. Using the first series expansion of Γ(0, z)
[28, 29] and substituting it in (26) we have (see (27))

where γ is the Euler constant (γ = 0.577215665). At high SNR
values (27) can be approximated as (see (28))
5 Effect of channel parameters on the
average capacity

In this section, we investigate the effect of location of
significant channel taps and PDP on the average capacity.
5.1 Location of significant taps

Note that the term l defined in (23) contains all the
information about PDP and location of significant taps. It
can be readily verified that we will have l = 0 for a
frequency-flat channel. Considering the average capacity
expression in (27), we observe that the term 1 + l is
multiplied to the transmit power, meaning that PDP and
taps’ location will affect the received power through this
term. Therefore in order to quantify the effect of PDP and
taps’ location on the capacity, we investigate the behaviour
of the term 1 + l.
Recall from Section 2.3 that Γ = [Γ1, Γ2, …, Γm] defines

the location vector of significant taps. Therefore we can
�C = log2 (e)

2

∫
W

exp
Zw(f )

(1+ l)G(f ,d)

(

�C = log2 e( )
2

∫
W

exp
Zw f
( )

1+ l( )G f , d
( )

Pt

( )
−g+ ln

1+(
(⎡

⎣

�C ≃ log2 (e)

2

∫
W
exp

Zw(f )

(1+ l)G(f ,d)Pt

( )
−g+ ln

[
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rewrite (23) as

1+ l = 1+ 2
∑m
i=1

∑m
j=i+1

mGi
mGj

cos (2pf (Gj − Gi)) (29)

After some mathematical manipulations, we obtain

1+ l = 1

1+ k
+

∑m
i=1

mGi
cos (2pGif )

( )2

+
∑m
i=1

mGi
sin (2pGif )

( )2
(30)

where k is the Rician factor. Using Cauchy–Schwarz
inequality, we can find bounds on 1 + l as

1

1+ k
≤ 1+ l ≤ 1+ mk

1+ k
(31)

In the rest of this section, we assume uniform PDP (i.e.Ωi = 1/
m). Consequently we can write

mi =
����������

k

m(1+ k)

√
, for ∀i (32)

Under the assumption that difference between the locations of
two consequence channel taps is constant and equal to r (i.e.
Γi + 1− Γi = r, for ∀i), we can rewrite (30) as

1+ l = 1

k + 1
+ k

m(k + 1)

( )
1− cos (m2prf )

1− cos (2prf )
(33)

The minimum and maximum values of (33) are found as

min {1+ l} = 1

k + 1
(34)

max{1+ l} = 1

k + 1
+ k

m(k + 1)

( )
max

1− cos (m2prf )

1− cos (2prf )

{ }
︸�������������︷︷�������������︸

m2

(35)

The maximum value takes place when 1− cos(2πrf) = 0. For
0≤ f≤ 1, the solution is f = i/r, i = 0, 1, 2, …, r and the
number of peaks is equal to r + 1. As r increases, the
number of peaks in 1 + l increases, therefore the capacity
increases. As a conclusion, we can state that, under the
assumption of uniform PDP, as the spacing between
significant taps increases, capacity increases and becomes
closer to the capacity of frequency-flat channel.
Pt

)
G 0,

Zw(f )

(1+ l)G(f ,d)Pt

( )
df (26)

l)G f , d
( )

Pt

Zw f
( )

)
−
∑1
k=1

1

kk!

−Zw f
( )

1+ l( )G f , d
( )

Pt

( )k
⎤
⎦df (27)

(1+ l)G(f ,d)Pt

Zw(f )

( )
+ Zw(f )

(1+ l)G(f ,d)Pt

]
df (28)
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5.2 Effect of PDP

The PDP vector of significant taps Ψ = [Ψ1, Ψ2, …, Ψm] is
related to 1 + l by

mGi
=

������
kCi

k + 1

√
(36)

Replacing this in (30), we have

1+ l = 1

1+ k
+ k

1+ k

∑m
i=1

���
Ci

√
cos (2pGif )

( )2

+ k

1+ k

∑m
i=1

���
Ci

√
sin (2pGif )

( )2

(37)

It can be argued that, in most cases, the power of earlier taps
are stronger than the later ones since later taps experience
more delay and more attenuation (i.e.
C1 ≥ C2 ≥ · · · ≥ Cm). Therefore we can use Chebyshev’s
inequality and write

∑m
i=1

���
Ci

√
cos(2pGif )

( )2

≥
∑m
i=1

���
Ci

√( )2 ∑m
i=1

cos(2pGif )

( )2

(38)

∑m
i=1

���
Ci

√
sin(2pGif )

( )2

≥
∑m
i=1

���
Ci

√( )2 ∑m
i=1

sin(2pGif )

( )2

(39)

This lets us write a lower bound on (37) as

1+ l ≥ 1

1+ k
+ k

1+ k

∑m
i=1

���
Ci

√( )2

×
∑m
i=1

cos (2pGif )

( )2

+
∑m
i=1

sin (2pGif )

( )2
⎡
⎣

⎤
⎦ (40)

Furthermore, since 0≤Ψi≤ 1 for ∀i, we have

∑m
i=1

���
Ci

√( )2

≥
∑m
i=1

���
Ci

√( )2
= 1 (41)

and (40) is further lower bounded as

1+ l ≥ 1

1+ k
+ k

1+ k

×
∑m
i=1

cos (2pGif )

( )2

+
∑m
i=1

sin (2pGif )

( )2
⎡
⎣

⎤
⎦ (42)

where the equality holds if C1 = C2 = · · · = Cm = 1/m
(i.e. uniform PDP).
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Assuming that taps are located at equal distances of r, the
right-hand side of above inequality can be written as

1+ l ≥ 1

k + 1
+ k

m(k + 1)

( )
1− cos (m2prf )

1− cos (2prf )
(43)

which yields the formula in (33) obtained under the
assumption of uniform PDP in the previous section.
Our results indicate that uniform PDP results in the lowest

capacity among different PDP types. Furthermore, it is
observed from (37) that when more power is localised at a
small number of taps, capacity increases and becomes
closer to the capacity of frequency-flat channel where all of
the power is localised at only one tap.
6 Numerical results

In this section, we present numerical results for the derived
capacity expressions. Unless otherwise noted, we have the
following assumptions: We consider a carrier frequency of
30 kHz and a transmission distance of d = 1 km. We assume
temperature T = 22°C, depth D = 50 m, acidity of 8 pH,
salinity S = 35 ppt, wind speed ω = 0 m/s and spreading
factor s = 1.5. We assume that the UWA channel
experiences a multipath delay spread of 13 ms and has the
order of L = 130. The number of significant delay taps is
m = 10 and located at equal distances from each other with
a uniform PDP, that is, the power of each significant tap is
1/m. The Rician k factor for the significant taps is 2 dB.
Accuracy of derived expression and effect of ISI and

distance: In Fig. 1, we present the capacity as a function of
SNR for different link distances. As benchmarks, the
capacity of AWGN and frequency-flat Rician fading
channel are also depicted in this figure. In an effort to
demonstrate the accuracy of derived expression for average
channel capacity, we further plot the derived expression in
(27) and compare it with the numerical evaluation of (21).
In the calculation of (27), first hundred terms of the series
are considered. It is observed from Fig. 1 that the derived
expression coincides perfectly with numerical results.
Comparison with frequency-flat case under the

assumptions of same coloured noise and path loss reveals
that the presence of ISI reduces the capacity. Specifically,
at SNR = 20 dB, a capacity of 3.19 bit/s/Hz is achieved for
d = 1 km over frequency-flat Rician fading channel. This
reduces to 2.78 bit/s/Hz over frequency-selective channel
for the same link distance. It is further observed that an
increase in distance would result in a decrease in capacity
as expected. Specifically, at SNR = 20 dB, a capacity
of 2.78 bit/s/Hz is achieved for d = 1 km. This reduces to
2.45 bit/s/Hz for d = 2 km. It further reduces to 2.07 and
1.75 bit/s/Hz, respectively, for d = 3 and 4 km.
Effect of taps’ locations: In Fig. 2, we investigate the effect

of significant channel taps’ locations on the capacity. We
assume ten significant taps (i.e. m = 10) with uniform PDP
and consider the following Γ vectors to indicate the
location of significant taps:

† Γ1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] (i.e. the locations of
significant taps are consecutive).
† Γ2 = [1, 2, 3, 4, 5, 6, 7, 8, 11, 20].
† Γ3 = [1, 2, 3, 4, 5, 6, 11, 20, 47, 128].
† Γ4 = [1, 15, 29, 43, 57, 71, 85, 99, 113, 127], (i.e. equally
spaced taps).
IET Commun., 2014, Vol. 8, Iss. 15, pp. 2599–2610
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Fig. 1 Capacity as a function of SNR for different link distances
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It is observed from Fig. 2 that as the spacing between
significant taps increases, capacity becomes closer to the
capacity of frequency-flat channel. For example, in a
channel with Γ1, a capacity of 1.27 bit/s/Hz is achieved at
SNR = 10 dB. This climbs up to 1.49 bit/s/Hz for a channel
with Γ3, where the spacing between the significant taps is
more. This further increases to 1.54 bit/s/Hz for Γ4 which
corresponds to the case of equal spacing. These
observations further confirm the concluding remarks of
Section 5.1 which states that capacity increases as the
spacing between significant taps (r) increases. Specifically,
in a channel with Γ1 with r = 1, the lowest capacity is
achieved. On the other hand, for the case of Γ4 with r = 14,
the capacity increases and becomes closer to the capacity of
frequency-flat channel.
Effect of PDP: In Fig. 3, we study the effect of significant

channel taps’ PDP on the capacity. Assuming m = 10, we
consider the following PDPs:

† Ψ1 = [1] (i.e. frequency-flat Rician fading channel).
Fig. 2 Capacity against SNR for different locations of significant taps (
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† Ψ2 = [0.7, 0.1, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025,
0.025, 0.025].
† Ψ3 = [0.5, 0.1, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05,
0.05].
† Ψ4 = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] (i.e.
uniform PDP).

Our results demonstrate that uniform PDP results in the
lowest capacity among the considered PDPs. This confirms
our observations in Section 5.2 which states that under the
assumption of equally spaced taps, uniform PDP results in
lowest capacity as Ψ4 does in Fig. 3. It is also observed that
when more power is localised at a small number of taps
(compare Ψ3, Ψ2) capacity increases and becomes closer to
the capacity of frequency-flat channel (i.e. Ψ1) as discussed
in Section 5.2.
Effect of the number of significant channel taps: In Fig. 4,

we examine the effect of the number of significant channel
taps on the capacity. We consider m = 2, 4, 6, 8, 10 and 20
and assume that significant taps are located at equal
d = 1 km)
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Fig. 3 Effect of PDP of significant taps on the capacity (d = 1 km)

Fig. 4 Capacity against SNR for different numbers of significant taps (d = 1 km)
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distances from each other with a uniform PDP. As limiting
cases, we also include the case of m = 1 (i.e. frequency-flat
channel) and m = L = 130 (i.e. non-sparse channel). It is
observed that as the number of significant taps increases
and the total power is spread over many taps, capacity
decreases. This is expected as discussed in Section
5. Particularly, it can be checked from (33) that when m
increases, the term 1 + l decreases and, consequently, the
capacity also decreases.
Effect of wind speed: In Fig. 5, we examine the capacity for

wind speeds of 0, 1 and 2 m/s. The highest capacity among
these three cases is achieved when the wind speed is zero.
Specifically, a capacity of 2.77 bit/s/Hz is achieved for ω =
0 m/s and d = 1 km. This reduces to 1.76 bit/s/Hz for ω = 1
m/s and further reduces to 1.37 bit/s/Hz for ω = 2.

7 Capacity optimisation

In this section, we aim to determine carrier frequency, input
signal PSD and bandwidth as to optimise the capacity.
fopt �
����������������������������������

3

S/35(1+ (T/43)) exp (− (D/6)

√
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7.1 Choice of optimal frequency

Maximisation of the channel capacity in (21) with respect to
carrier frequency is equivalent to maximising G( f, d )/Zw( f ).
Recalling the definition of the path gain and differentiating
the resulting expression with respect to f and setting it to
zero, we have

d
∂a(f )dB

∂f
+ ∂Zw(f )dB

∂f
= 0 (44)

After some mathematical manipulations (see Appendix), we
find the optimal frequency as (see (45))

where S, D and T represent the salinity, depth and
temperature, respectively.
The optimal frequency as a function of transmission

distance is illustrated in Fig. 6 for different values of
temperature, depth and salinity. It is also observed that
direct numerical solution of (44) and the derived
approximate closed-form solution in (45) provide a perfect
���������������������������������������
67.5

− (T/17))d − 0.28 exp (− 2T/17)
(45)
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Fig. 5 Capacity against distance for different wind speeds (SNR = 20 dB)
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match. Assuming temperature of 22°C, depth of 50 m and
salinity of 35 ppt, the optimal frequencies are found to be
55, 30, 21.37 and 17.17 kHz, respectively, for distances of
d = 350 m, 1 km, 2 km and 3 km. This indicates that the
optimal frequency decreases with increasing transmission
distance.
Furthermore, we consider four cases to demonstrate the

effect of temperature, depth and salinity on the optimal
frequency. It is observed from Fig. 6 that an increase in
temperature and/or depth results in an increase in optimal
frequency, whereas an increase in salinity results in a
decrease in optimal frequency. For example, at 22°C,
depth of 50 m and salinity of 35 ppt, the optimal frequency
is 30 kHz for d = 1 km. Keeping temperature and salinity
fixed and changing the depth from 50 m to 2 km, the
optimal frequency increases from 30 to 37 kHz. Keeping
temperature and depth fixed and changing the salinity
from 30 to 35 ppt, the optimal frequency reduces from 40
to 37 kHz. On the other hand, keeping depth and salinity
fixed and changing the temperature from 15 to 22°C, the
optimal frequency increases from 25 to 30 kHz.
Fig. 6 Optimal carrier frequency fopt in terms of environmental parame

Solid lines indicate the approximation formula given by (45)
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7.2 Optimal power allocation

If the CSI is present at both transmitter and receiver side, we
can maximise the capacity with respect to the PSD of input
signal. A direct maximisation of (20) appears to be
intractable to compute. By equivalency of (19) and (20), we
reconsider the power allocation problem in the continuous
frequency domain via a finite dimension domain. We then
take the limit as N→∞ to obtain the desired result. Let Cn

be the capacity for one realisation of the channel and
assume that n belongs to time interval [0, T ]. For each
sub-channel, we define βn( fi) = Zw( fi)/(G( fi,d )|hn( fi)|

2). We
first maximise Cn with respect to input PSD Pn( fi), then we
average over all realisations of fading states [30]. The
objective function Cn is given by

Cn = lim
N�1

1

2N

∑N
i=1

log 1+ Pn(fi)

bn(fi)

( )
(46)

The solution involves a combination of water-filling over
ters
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Fig. 7 Capacity against distance for optimal and equal power allocation of input PSD (SNR = 10 dB)
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frequency and time, that is

Pn, opt(fi) = [vn − bn(fi)]
+ (47)

In the limit of N→∞, as the number of sub-bands N grows,
the width of sub-bands goes to zero and the optimal power
allocation converges to

Pn, opt(f ) = [vn − bn(f )]
+ (48)

where vn is the power price chosen to satisfy the power
constraint for the nth realisation of the channel. Considering
a bandwidth W, we can write

1

W

∫
W
[vn − bn(f )]

+ df = Pt (49)

Fig. 7 depicts results for equal and optimal power allocation.
For d = 1.5 km, a capacity of 0.77 bit/s/Hz is achieved for
equal power allocation. This increases to 0.84 bit/s/Hz for
optimal power allocation.
7.3 Optimal bandwidth

It is possible to further optimise the capacity in (21) with
respect to bandwidth. To compare the capacities with
different bandwidths in a fair way, neither a pre-specified
SNR nor a fixed transmit power is applicable in our case.
Since, in UWA communication under consideration, SNR is
dependent on the operating frequency band (because of
frequency dependency of ambient noise and path loss), and
therefore to achieve a fixed SNR, either an increase in
bandwidth or an increase in transmission power is needed.
In both cases, this results in an increase of the total energy
of the signal. Similarly, a fixed transmission power Pt is not
fair since the larger bandwidths will result in larger capacity
as the total energy of the signal (i.e. PtW ) increases. Here,
we make our comparisons under the assumption of fixed
total energy of the signal, that is, Es = PtW and find the
optimal bandwidth.
To optimise the capacity with respect to bandwidth, we can

adopt two different approaches:
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† finding the optimal bandwidth for each realisation of the
channel and
† finding a single optimal bandwidth for the average
capacity.

Here, we investigate the second approach which is also of
more practical values since most communication systems
typically work in a predefined bandwidth region.
The capacity of the Gaussian channel is a concave function

of Pt [31], therefore under the assumption of fixed value for
Es, it is also a concave function of W. The optimum value
of W, that is, Wopt, can be found by iterative methods. The
optimised Cn can be then written as

Cn =
1

2

∫
Wopt

log 1+ [vn − bn(f )]
+

bn(f )

( )
df (50)

The optimal input PSD has a water-filling type structure over
both frequency and time and shows a ‘floating’ effect since it
changes with respect to time. To capture the effect of fading,
we need to average Cn over time interval [0, T ] which is given
by (1/T )

∑T
n=1 Cn. As T→∞ this quantity converges to the

expectation by the law of large numbers and can be
expressed as

C = E|h(f )|2
1

2

∫
Wopt

log 1+ [v− b(f )]+

b(f )

( )
df

[ ]
(51)

In the following, we assume d = 350 m, T = 22°C, D = 50 m,
S = 35 ppt and use the corresponding optimal carrier
frequency (i.e. fopt = 55 kHz). In Table 1, the optimal
bandwidth Wopt is presented for optimal and equal power
allocation.
In Fig. 8, the capacity in bit/s against different bandwidths

is depicted assuming Es = 50, 55 and 60 dB. As we expect
from Table 1, the optimised capacity (with respect to
bandwidth) takes place at Wopt = 32, 43 and 55 kHz,
respectively, for Es = 50, 55 and 60 dB under the
assumption of equal power allocation. This is readily
confirmed from Fig. 8. The corresponding capacity values
are 2.65, 6.85 and 16.21 kbit/s.
Optimum power allocation along with optimised

bandwidth will further increase the capacity. From Fig. 8,
IET Commun., 2014, Vol. 8, Iss. 15, pp. 2599–2610
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Table 1 Optimal bandwidths obtained for different values of Es

Es (dB) 10 15 20 25 30 35 40 45 50 55 60 65 70

Wopt, kHz optimal power allocation (CSI) 7 10 13 17 22 28 35 44 52 60 68 78 88
equal power allocation (no. CSI) 2 3 4 5 8 12 17 23 32 43 55 69 82

Fig. 8 Capacity against different values of bandwidth (d = 350 m)
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we observe that the capacity climbs up to 5.76, 11.47 and
22.11 kbit/s, respectively, for Es = 50, 55 and 60 dB in the
case of optimal power allocation. It should be noted that
optimal power allocation does not help for the bandwidths
larger than the optimal bandwidth. In these cases, capacity
remains approximately constant in comparison with the
capacity obtained under optimal bandwidth. Since
water-filling prevents the use of excessive bandwidth,
increasing the bandwidth is useless. In equal power
allocation, when the bandwidth is larger than the optimal
bandwidth, capacity is much reduced in comparison to the
capacity obtained under optimal bandwidth. The reason is
that we allocate the power all over the available bandwidth
and energy is now wasted in parts of the channel that should
have been turned off because of the low channel quality.
8 Conclusions

We have investigated the information theoretical performance
analysis and optimisation of point-to-point UWA systems.
We have assumed a single-carrier communication
architecture and sparse Rician frequency-selective UWA
channel with ISI. We have considered non-white Gaussian
distribution to model the ambient noise and taken into
account the effects of environmental parameters such as
temperature, salinity, pressure as well as distance and
frequency. We have developed an equivalent channel model
for UWA channel with ISI under consideration and shown
that the capacity of the equivalent channel converges to that
of the operating channel in the limit of infinite block length.
Using these results, we have first obtained a capacity
expression for the UWA channel and demonstrated the
dependency of capacity on channel parameters (e.g. the
number, location and PDP of significant taps) and
environmental parameters (e.g. temperature, salinity and
IET Commun., 2014, Vol. 8, Iss. 15, pp. 2599–2610
doi: 10.1049/iet-com.2014.0083
pressure). Then, we have used this expression to determine
the optimal carrier frequency, input signalling and bandwidth.

9 Acknowledgments

This work was supported by the Turkish Scientific and
Research Council (TUBITAK) under grant 110E092. This
paper was presented in part at the IEEE EUROCON
Conference, Zagreb, Croatia, July 2013.

10 References

1 Vasilescu, I., Kotay, K., Rus, D., Corke, P., Dunbabin, M.: ‘Data
collection, storage and retrieval with an underwater optical and
acoustical sensor network’. Proc. Sensys, ACM, 2005, pp. 154–165

2 Stojanovic, M.: ‘Underwater wireless communications: current
achievements and research challenges’. IEEE Oceanic Engineering
Society Newsletter, Spring, 2006

3 Akyildiz, I.F., Pompili, D., Melodia, T.: ‘State of the art in protocol
research for underwater acoustic sensor networks’. ACM Mobile
Computing and Communication Review, ACM, October 2007

4 Smith, R.N., Chao, Y., Li, P.P., Caron, D.A., Jones, B.H., Sukhatme, G.
S.: ‘Planning and implementing trajectories for autonomous underwater
vehicles to track evolving ocean processes based on predictions from a
regional ocean model’, Int. J. Robot. Res., 2010, 29, (12),
pp. 1475–1497

5 Chen, K., Ma, M., Cheng, E., Yuan, F., Su, W.: ‘A survey on MAC
protocols for underwater wireless sensor networks’, IEEE Commun.
Surv. Tutor., 2014, 16, (3), pp. 1433–1447

6 Erol-Kantarci, M., Mouftah, H.T., Oktug, S.: ‘A survey of architectures
and localization techniques for underwater acoustic sensor networks’,
IEEE Commun. Surv. Tutor., 2011, 13, (3), pp. 487–502

7 Hollinger, G., Yerramalli, S., Singh, S., Mitra, U., Sukhatme, G.S.:
‘Distributed coordination and data fusion for underwater search’. Proc.
IEEE Conf. Robotics and Automation, 2011, pp. 349–355

8 Gkikopouli, A., Nikolakopoulos, G., Manesis, S.: ‘A survey on
underwater wireless sensor networks and applications’. 20th
Mediterranean Conf. Control & Automation (MED), Barcelona, Spain,
July 2012, pp. 1147–1154

9 Headrick, R., Freitag, L.: ‘Growth of underwater communication
technology in the US Navy’, IEEE Commun. Mag., 2009, 47, (1),
pp. 80–82
2609
& The Institution of Engineering and Technology 2014



www.ietdl.org

10 Stojanovic, M., Preisig, J.: ‘Underwater acoustic communication

channels: propagation models and statistical characterization’, IEEE
Commun. Mag., 2009, 47, (1), pp. 84–89

11 Tse, D.: Capacity of wireless channels in Viswanath, P. (Ed.):
‘Fundamentals of wireless communication’ (Cambridge University
Press, New York, NY, 2005), pp. 166–227

12 Stojanovic, M.: ‘On the relationship between capacity and distance in an
underwater acoustic communication channel’, ACM SIGMOBILE Mob.
Comput. Commun. Rev., 2007, 11, (4), pp. 34–43

13 Choudhuri, C., Mitra, U.: ‘Capacity bounds and power allocation for
underwater acoustic relay channels with ISI’. Proc. Fourth ACM Int.
Workshop on UnderWater Networks, ACM, November 2009, p. 6

14 Polprasert, C., Ritcey, J.A., Stojanovic, M.: ‘Capacity of OFDM systems
over fading underwater acoustic channels’, IEEE J. Ocean. Eng., 2011,
36, (4), pp. 514–524

15 Kwon, H., Birdsall, T.: ‘Channel capacity in bits per joule’, IEEE
J. Ocean. Eng., 1986, 11, (1), pp. 97–99

16 Leinhos, H.A.: ‘Capacity calculations for rapidly fading communications
channels’, IEEE J. Ocean. Eng., 1996, 21, (2), pp. 137–142

17 Socheleau, F.X., Stojanovic, M., Laot, C., Passerieux, J.M.:
‘Information-theoretic analysis of underwater acoustic OFDM systems
in highly dispersive channels’, J. Electr. Comput. Eng., 2012, doi:
10.1155/2012/716720

18 Brekhovskikh, L.M., Lysanov, I.P.: ‘Fundamentals of ocean acoustics’
(Springer, New York, 2003)

19 Coates, R.F.: ‘Underwater acoustic systems’ (J. Wiley, 1989)
20 Francois, R.E., Garrison, G.R.: ‘Sound absorption based on ocean

measurements. Part I: pure water and magnesium sulfate
contributions’, J. Acoust. Soc. Am., 1982, 72, p. 896

21 Francois, R.E., Garrison, G.R.: ‘Sound absorption based on ocean
measurements. Part II: boric acid contribution and equation for total
absorption’, J. Acoust. Soc. Am., 1982, 72, (6), pp. 1879–1890

22 Hirt, W., Massey, J.L.: ‘Capacity of the discrete-time Gaussian channel
with intersymbol interference’, IEEE Trans. Inf. Theory, 1988, 34, (3),
pp. 38–38

23 Al-Dharrab, S., Uysal, M.: ‘Information theoretic performance of
cooperative underwater acoustic communications’. 2011 IEEE 22nd
Int. Symp. Personal Indoor and Mobile Radio Communications
(PIMRC), September 2011, pp. 1562–1566

24 Proakis, J.G.: ‘Digital communications’ (McGraw-Hill, 1995)
25 Radosevic, A., Proakis, J.G., Stojanovic, M.: ‘Statistical characterization

and capacity of shallow water acoustic channels’. Proc. IEEE OCEANS
2009-EUROPE, May 2009

26 Goldsmith, A.J., Effros, M.: ‘The capacity region of broadcast channels
with intersymbol interference and colored Gaussian noise’, IEEE Trans.
Inf. Theory, 2001, 47, (1), pp. 219–240

27 Cover, T.M., Thomas, J.A.: ‘Elements of information theory’ (John
Wiley & Sons, 2012)

28 Simon, M.K., Alouini, M.S.: ‘Digital communication over fading
channels’ (Wiley.com, 2005), vol. 95

29 Lee, W.C.: ‘Estimate of channel capacity in Rayleigh fading
environment’, IEEE Trans. Veh. Technol., 1990, 39, (3), pp. 187–189

30 Gallager, R.G.: ‘An inequality on the capacity region of multiaccess
multipath channels’ (Springer US, 1994), pp. 129–139
f �
�����������������������������������

36

S/35(1+ (T/43)) exp (− (D/6)−

√

2610
& The Institution of Engineering and Technology 2014
31 Chen, H.W., Yanagi, K.: ‘The convex-concave characteristics of
Gaussian channel capacity functions’, IEEE Trans. Inf. Theory, 2006,
52, (5), pp. 2167–2172

32 Ainslie, M.A., McColm, J.G.: ‘A simplified formula for viscous and
chemical absorption in sea water’, J. Acoust. Soc. Am., 1998, 103, (3),
pp. 1671–1672

11 Appendix

11.1 Derivation of optimal carrier frequency

To derive the optimal frequency, we begin with (44). For
10≤ f≤ 100 kHz, we can approximate ∂Zw( f )dB/∂f by

∂Zw(f )dB
∂f

� −20

ln (10)

1

f
(52)

Recall that a( f )dB is given by (1). Let us define
M1 = (A1B1C1f

2)/ C2
1 + f 2

( )
, M2 = (A2B2C2f

2)/ C2
2 + f 2

( )
and M3 = A3B3f

2. In the frequency range under
consideration, we can safely assume M1≅ 0, M3≅ 0, since
M2 (involving MgSO4 contributions) dominates the others
[20]. Therefore we have

∂a(f )dB
∂f

� 2A2B2C
3
2 f

C2
2 + f 2

( )4 (53)

Replacing (52) and (53) in (44) and defining α = 10/d ln(10),
we obtain

af 4 + 2aC2
2 − A2B2C

3
2

( )
f 2 + aC4

2 = 0 (54)

which is a quadratic equation. Within 10≤ f≤ 100 kHz and
under the assumptions of − 2°≤ T≤ 22°, S = 30–35 ppt and
D≤ 3.5 km [20], we have C4

2 ≫ f 4. Therefore we can
approximate (54) by 2aC2

2 − A2B2C
3
2

( )
f 2 + aC4

2 = 0 where
the approximated solution is given by

f = C2

���������������
a

A2B2C2 − 2a

√
(55)

Noting A2B2 = 0.52(1 + T/43)(S/35)e
−D/6 and C2 = f2 = 42e

(T/17)

[32], the optimal frequency can be found as (see (56))
��������������������������������������
7.5

(T/17))d − 0.28 exp (− 2T/17)
(56)
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