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Abstract—In wideband spectrum sensing, compressive sensing

approaches have been used at the receiver side to decrease the

sampling rate, if the wideband signal can be represented as sparse

in a given domain. While most studies consider the reconstruction

of primary user’s signal accurately, it is indeed more important

to analyze the presence or absence of the signal correctly.

Furthermore, these studies do not consider the achievable lower

bounds of reconstruction error and how well the selected method

performs correspondingly. Motivated by these issues, we in-

vestigate in detail the primary user detection performance of

Bayesian compressive sensing (BCS) approach in this paper.

Accordingly, we (i) determine the BCS signal reconstruction

performance in terms of mean-square error (MSE), compression

ratio and signal-to-noise ratio (SNR), and compare it with the

conventionally used basis pursuit approach, (ii) determine how

well BCS performs compared with the Bayesian Cramer-Rao

lower bound (BCRLB) of the signal reconstruction error, and

(iii) assess the probability of detection performance of BCS for

various SNR and compression ratio values. The results of this

study are important for determining the achievable performance

of BCS based spectrum sensing.
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energy efficiency, Bayesian compressive sensing, spectrum sensing,
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I. INTRODUCTION

Energy efficiency is one of the main concerns of wireless
communication systems. One major factor that causes energy
loss in a wireless device is the high rate sampling at the
transceiver side. While communicating with wideband signal-
ing, which in turn can provide higher data rates, the receiver
has to operate at high sampling rates in order to satisfy the
Nyquist sampling theorem. This may result in energy loss and
reduce the battery life of the wireless device. If the device
can operate at a sampling rate lower than the Nyquist rate
without losing any information, then the device will be energy-
efficient in terms of sampling operation. This is possible
through the compressive sensing (CS) theory introduced in [1]
and [2]. According to the CS theory, under certain conditions
it is sufficient to collect only a small number of signal
observations (obtained at sub-Nyquist rate) and still be able
to reconstruct the original signal if the signal admits a sparse
representation in a given basis or domain [3]. This theory
has found great interest also in the area of spectrum sensing,
where the frequency-domain representation is assumed to be
sparse for wideband spectrum sensing [4], [5]. Similarly, in
ultra wideband (UWB) communications, the frequency band
in the order of 500 MHz may be occupied by a few primary
users in different frequency bands. These primary users must
be detected before the wideband or UWB system can start

communicating, where the primary users can be detected using
energy detection in time-domain [6]. On the other hand, the
detection of these systems in frequency-domain would yield a
sparse structure as not all frequency bands of UWB systems
are generally occupied.

Most of the wideband spectrum sensing studies that use the
CS approach have focused on the reconstruction of primary
user’s signal accurately. However, it is more important to
determine the presence or absence of the primary user’s signal
in spectrum sensing. Furthermore, these studies do not consider
the achievable lower bounds of signal reconstruction error
and how well the selected method performs correspondingly
[4], [5]. In [7], the Bayesian compressive sensing (BCS)
approach proposed in [8] was applied to spectrum sensing so
as to compute signal parameter estimation recursively. It was
claimed that the entire signal did not have to be reconstructed
and only the detection of primary user is of interest. However,
presented results included only the mean-square error (MSE)
of signal reconstruction rather than the signal detection. In
addition, a lower bound on the MSE was not provided to assess
how well the BCS performed in spectrum sensing. In [9], the
localization of the primary users was incorporated into the BCS
based spectrum sensing framework of [7]. However, presented
results did not include the effects of compression ratios and
the signal-to-noise ratio (SNR) on the detection performance.

Motivated by applying the Bayesian framework in [8]
to spectrum sensing and by determining the primary user
detection performance limits, which were not addressed in [7]
and [9], we study the primary user detection performance of
BCS based spectrum sensing. Specifically, we (i) determine the
BCS signal reconstruction performance in terms of MSE under
different compression ratios and SNR values, and compare
it with the conventionally used basis pursuit approach [10],
(ii) determine how well BCS performs compared with the
Bayesian Cramer-Rao lower bound (BCRLB) of the signal
reconstruction error, and (iii) assess the probability of detection
performance of BCS for various SNR and compression ratio
values. The results of this study are important for determining
the achievable performance of BCS based spectrum sensing.

The rest of paper is organized as follows. In Section II,
primary user signal model and the BCS theory that can be
applied for spectrum sensing are explained. In Section III,
performance measures of BCS based spectrum sensing are
provided. In Section IV, simulation results are presented for
performance comparison. Concluding remarks are given in
Section V.
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II. BAYESIAN CS FOR PRIMARY USER DETECTION

In this section, initially the primary user signal model will
be presented followed by the application of BCS to estimate
the signal parameters. The received signal sampled below
Nyquist rate can be represented as

r = A
�
wt + nt

�
= AF�1wf +Ant = �wf + n (1)

where A is the N ⇥M random measurement matrix (N <
M ), wt denotes the Nyquist rate sampled time domain signal,
and nt represents the additive white Gaussian noise. The oper-
ation F�1 represents the inverse Fourier transform matrix, wf

is the frequency domain response of the time domain signal,
� = AF�1 defines the transition from frequency domain
signal samples to time domain compressed observations and
n is zero-mean Gaussian noise with variance �2. Note that if
wf exhibits a sparse structure, CS can be applied to estimate
M -sample wf from N -sample observations r.

In Bayesian CS [8], the goal is to estimate the unknown
parameters wf ,� and ↵, where � is an M⇥1 hyperparameter
vector controlling the precision (i.e., inverse variance) of the
samples of wf and ↵ = 1/�2 is a hyperparameter scalar
representing the noise precision. The full posterior distribution
over all unknowns of interest can be written as

p(wf ,�,↵|r) =
p(r|wf ,�,↵)p(wf ,�,↵)

p(r)
. (2)

Unfortunately, the probability of observation vector, p(r),
defined by the following equation

p(r) =

Z Z Z
p(r|wf,�,↵)p(wf,�,↵)dwfd�d↵ (3)

cannot be computed analytically. Hence, the full posterior
distribution can be rewritten as

p(wf ,�,↵|r) = p(wf |r,�,↵)p(�,↵|r). (4)

The noise component, n, can be modeled as an independent
zero-mean Gaussian process whose probability can be defined
as

p(n) =
NY

i=1

N (ni|0,�2
). (5)

Under a noisy environment, the observation vector r consisting
of N observations can be expressed as

p(r|wf ,↵) =

NY

i=1

N (�wf ,�
2
) (6)

= (2⇡�2
)

�N/2
exp

✓
� 1

2�2
||r��wf ||22

◆

where ||·||p represents `p-norm. At this point, a Gaussian prior
on wf can be defined so as to compute each coefficient of wf

yielding less computational time and better estimation perfor-
mance when compared to the `1-norm estimation. Contrary
to `1-norm estimation [10], prior information is used in BCS
based parameter estimation. Defining a Gaussian prior on wf ,

the weight of each coefficient of wf will depend on the prior
information and can be expressed as [8]

p(wf |�) =

MY

i=1

N (wf,i|0,��1
i ) (7)

=

MY

i=1

(2⇡��1
i )

�1/2
exp

 
�
�iw2

f,i

2

!
,

where wf = [wf ,1 ,wf ,2 , . . . ,wf ,M ]

T .

The first term of full posterior distribution given in (4) can
be expressed utilizing Bayes’ rule as

p(wf |r,�,↵) =
p(r|wf,↵)p(wf|�)

p(r|�,↵) . (8)

The posterior distribution given above is Gaussian distributed
with mean µ and variance ⌃, as in [8], where

µ = ↵⌃�T r

⌃ =

�
diag(�) + ↵�T�

��1
. (9)

The second term on the right-hand side of (4) also has to
be calculated to obtain the unknown parameter distribution.
This is possible through the type-II maximum likelihood
procedure by using relevance vector machine (RVM) [11].
Considering the Bayes’ theorem, it can be shown that the
posterior distribution p(�,↵|r) is proportional to p(r|�,↵) for
appropriately selected hyperparameter values [8]. The marginal
likelihood function then can be calculated as

p(r|�,↵) =
Z +1

�1
p(r|wf ,↵)p(wf |�)dwf (10)

where p(r|wf ,↵) and p(wf |�) were defined in (6) and (7),
respectively.

In order to maximize the marginal likelihood function,
log-marginal likelihood can be used for simplicity. The log-
marginal likelihood function can be given as [12]

log p(r|�,↵) = log

Z +1

�1
p(r|wf ,↵)p(wf |�)dwf (11)

=

N

2

log ↵� 1

2

(↵rT r� µT⌃�1µ)

� 1

2

log |⌃|� N

2

log (2⇡) +
1

2

MX

i=1

log �i.

After taking the derivative of log-marginal likelihood function
with respect to � and ↵, and equating it to zero results in the
following expressions

�new
m =

1� �m⌃mm

µ2
m

(12)

↵new
=

M �
PM

m=1(1� �m⌃mm)

||r��µ||22
where ⌃mm is the m-th diagonal element of the covariance
matrix and µm is the m-th posterior mean value. By calculating
the hyperparameters iteratively, ⌃ and µ given in (9) can be
obtained for a convergence criterion, and the unknown signal
can be estimated as

ˆwf = µ. (13)

2014 IEEE International Conference on Ultra-WideBand (ICUWB)

87



III. PERFORMANCE MEASURES

In order to evaluate the performance of BCS based spec-
trum sensing, MSE, a lower bound on the MSE, probability of
detection and convergence rate will be defined as performance
measures in the following.

A. Mean-Square Error and Bayesian Cramer Rao Lower
Bound (BCRLB)

Initially, the mean-square of the signal reconstruction error
can be defined as

MSE = ||wf � ˆwf ||22. (14)

The estimated signal, ˆwf , will be computed iteratively using
(1), (9), (12) and (13) for BCS. For `1-norm1, ˆwf will be
estimated as [10]

ˆwf = arg min ||wf ||1 subject to ||�wf � r||2  ✏ (15)

where ✏ is the noise power and can be represented as ✏ � ||n||2.

By observing only the MSE performance, one cannot
understand whether the performance of the estimator un-
der special conditions is best achieved or not. Therefore, a
lower bound on the estimation error should be considered. A
lower bound on the BCS, Bayesian Cramer Rao lower bound
(BCRLB), was defined in [13] as

E
⇥
||wf � ˆwf ||22

⇤
� K

✓
N� +

1

�2

◆�1

(16)

where K denotes the number of nonzero samples in the
spectrum, N denotes the number of observations and � is the
SNR calculated as � =

wT
f �T�wf

�2 . BCRLB given in (16) will
be assessed in the next section. If the estimation performance is
very close to BCRLB, then it can be inferred that the proposed
estimator performs well.

B. Probability of Detection

Not only parameter estimation, but also signal detection is
important in primary user detection. Assuming that the M -
sample long spectrum can be represented by L orthogonal
bands, the probability of detection of the lth band can be
expressed as

Pd,l = Pr
⇥
ˆwT
f,l ˆwf,l � � | lth band occupied

⇤
(17)

where � is the threshold value and ˆwf,l represents the fre-
quency domain samples estimated in the lth band. This is il-
lustrated in Fig. 1 for the M⇥1 vector ˆwf = [

ˆwf,1, ˆwf,2, . . . ,
ˆwf,32], where only the 2

nd band is occupied with 16 nonzero
samples. In the case of a few active orthogonal primary users,
the spectrum will exhibit a sparse structure. The detection
performance will be assessed in the next section.

1For the implementation of (15), the codes provided by Candes and
Romberg publicly available at http://users.ece.gatech.edu/⇠justin/l1magic/ are
used.
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Fig. 1. Frequency domain sparse signal representation

C. Convergence Rate

While it was shown in [14] that BCS computation time is
significantly shorter than `1-norm computation time under the
same conditions, we will consider the BCS based estimator
and explore the effects of compression ratio and SNR on its
convergence in terms of number iterations. Accordingly, we
will calculate the number of iterations to reach the convergence
value of the inverse variance of the prior. For each nonzero
spectrum coefficient, there is a converged value and it does not
change much in the following iterations. In order to measure
the required number of iterations, a stopping criterion can
be given by considering the difference of the updated prior
values with the previous values. The difference value, �, can
be defined as [12]

� =

MX

i=1

|�n+1
i � �n

i | (18)

where �n+1
i and �n

i represent inverse variance of the prior
belonging to ith hyperparameter at the (n+1)

th and nth iter-
ations, respectively. When the difference value is smaller than
a threshold value, �thresh, (i.e., � < �thresh), iterations will
stop. During the estimation process, � values corresponding to
zero coefficients are pruned as the strength of the prior tends to
go to infinity. Accordingly, it can be said that the variance of
the prior goes to zero, where the coefficients of the spectrum
are zero.

IV. SIMULATION RESULTS

In this section, primary user detection performance of
BCS will be evaluated in terms of signal reconstruction error,
probability of detection, and convergence rate. For the signal
reconstruction error, the MSE performance as given in (14)
will be compared to the BCRLB as given in (16), and to the
performance of `1-norm as given in (15). For the probability
of detection performance, energy values in each frequency
band are compared with threshold values as in (17) for
various SNR values and compression ratios. Throughout the
simulations, it is assumed that the frequency domain signal
representation consists of M = 512 samples, where there
are possibly 32 orthogonal frequency division multiplexing
(OFDM) signals in each 16-sample orthogonal bands. The
sparsity ratio, which is defined as the ratio of the number
of nonzero components K to the length of the spectrum
M is selected as 16/512 = 1/32 (i.e., one frequency band
is occupied at a time). Compression ratios (i.e., N/M ) are
selected as {0.25, 0.375, 0.5, 0.75, 0.875} and the energy of
the frequency domain signal is normalized to unity.
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Fig. 2. Reconstruction error vs. compression ratio

� � �� �� �� �� ��
��í�

��í�

��í�

��í�

���

���

615��G%�

0
6(

&RPSUHVVLRQ�5DWLR� ���������

�

�
%D\HVLDQ�06(
O�íQRUP�06(
%D\HVLDQ�&5/%

� � �� �� �� �� ��
��í�

��í�

��í�

��í�

��í�

���

���

615��G%�

0
6(

&RPSUHVVLRQ�5DWLR� ���������

�

�
%D\HVLDQ�06(
O�íQRUP�06(
%D\HVLDQ�&5/%

� � �� �� �� �� ��
��í�

��í�

��í�

��í�

��í�

���

���

615��G%�
0
6(

&RPSUHVVLRQ�5DWLR� ���������

�

�
%D\HVLDQ�06(
O�íQRUP�06(
%D\HVLDQ�&5/%

Fig. 3. Reconstruction error vs. SNR

In Fig. 2, reconstruction error performances of BCS and
`1-norm based approach are plotted and compared with the
BCRLB for various compression ratios at SNR={0, 10, 20}dB.
It can be observed that BCS performs inferior to the `1-norm
approach in the low SNR region, however, it significantly
outperforms `1-norm in medium- and high-SNR regions. Sim-
ilar observations were made in [14] for BCS based channel
estimation, where the inferior performance was explained with
the uncertainty in the parameter estimation. Furthermore, it can
be observed that the BCRLB is approached at high SNR values
(e.g., SNR = 20dB) and compression ratios (e.g., N/M � 0.5).

Fig. 3 presents the reconstruction error performances of
BCS and `1-norm for various SNR values at compression ratios
N/M = {0.25, 0.5, 0.875}. It can be inferred that sensing
performances improve with increasing compression ratios as
expected, and approach the BCRLB. It is also important to note
that the selection of 50% compression ratio is adequate as BCS
achieves similar performance to that of BCRLB in medium-
and high-SNR regions, and the sensing performances do not
improve much when the compression ratio further increases to
87.5%. Hence, 50% sampling rate can be used to sense the
primary user spectrum yielding energy efficiency.

In Figs. 4 and 5, probability of detection performances
are plotted for various compression ratios and SNR values. It
can be observed that probability of detection improves with
increasing SNR and compression ratios as expected. When
SNR = 20dB, probability of detection is greater than 90%

for the selected threshold values. On the other hand, when the
compression ratio is 0.875, probability of detection is greater
than 90% for threshold values � = {0.5, 0.75}. While lower
threshold values provide better probability of detection, fixing
the threshold to a low value may increase the probability of
false alarm. This trade-off is not well investigated in the CS
based spectrum sensing literature, and is of interest for our
future study.

Finally, the convergence rate is assessed for BCS in terms
of sufficient number of iterations required to converge for
various SNR and compression ratio values. In our simulation
scenario, we assume that there are 16 nonzero coefficients
located in the 17–32 MHz band interval. In order to find the
sufficient number of iterations, the threshold value is selected
as �thresh = 0.01 and compared with (18). The measurements
are averaged over 100 trials. Table I shows the sufficient
number of iterations under specific SNR and compression
ratio values. It can be seen from Table I that the iteration
number decreases with increasing SNR for a fixed compression
ratio, as expected. On the other hand, the iteration number
decreases with increasing compression ratio only for medium-
and high-SNR regions. When SNR = 0dB, the iteration number
increases with increasing compression ratio due to unreliable
communications. This observation is consistent with the results
of Fig. 2 (cf. the leftmost plot). In summary, looking from
convergence rate aspect, the prior strength converges more
quickly with increasing SNR and compression ratio.

2014 IEEE International Conference on Ultra-WideBand (ICUWB)

89



��� ��� ��� ��� ��� ���
í���

�

���

���

���

���

�

&RPSUHVVLRQ�UDWLR

3U
RE
DE
LOLW
\�
RI
�'
HW
HF
WLR
Q

615� ����G%

�

�

7KUHVKROG�����
7KUHVKROG������
7KUHVKROG�����

��� ��� ��� ��� ��� ���
í���

�

���

���

���

���

�

&RPSUHVVLRQ�UDWLR

3U
RE
DE
LOLW
\�
RI
�'
HW
HF
WLR
Q

615� ����G%

�

�

7KUHVKROG�����
7KUHVKROG������
7KUHVKROG�����

��� ��� ��� ��� ��� ���
í���

�

���

���

���

���

�

&RPSUHVVLRQ�UDWLR

3U
RE
DE
LOLW
\�
RI
�'
HW
HF
WLR
Q

615� ���G%

�

�

7KUHVKROG�����
7KUHVKROG������
7KUHVKROG�����

Fig. 4. Probability of detection vs. compression ratio
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Fig. 5. Probability of detection vs. SNR

TABLE I. NUMBER OF ITERATIONS FOR CONVERGENCE

Compression SNR SNR SNR

Ratio 0 dB 10 dB 20 dB

0.25 25 22 6
0.50 42 16 5

0.875 50 9 4

V. CONCLUSION

In this paper, the implementation of BCS was consid-
ered for wideband spectrum sensing. Primary user detection
performance was assessed in terms of signal reconstruction
error and probability of detection, and compared with the `1-
norm approach and the BCRLB. Simulation results show that
BCS outperforms `1-norm approach in medium- and high-
SNR regions with higher compression ratios. Furthermore,
it is observed that the BCRLB can be attained at the high-
SNR region with appropriate selection of compression ratio
values. For successful detection of primary users, parameters
investigated in this study should be carefully considered for
practical implementation of BCS based spectrum sensing.
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