J. Parallel Distrib. Comput. 73 (2013) 1627-1638

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

Exploiting heterogeneous parallelism with the Heterogeneous

Programming Library”

Moisés Viiias **, Zeki Bozkus P, Basilio B. Fraguela®

2 Depto. de Electrénica e Sistemas, Universidade da Coruiia, Spain
b Department of Computer Engineering, Kadir Has Universitesi, Turkey

@ CrossMark

HIGHLIGHTS

A library to improve the programmability and portability of heterogeneous systems.

Computations are expressed with a language embedded in C++ it provides.

Our library automates data transfers, task synchronization, etc.

[]
[]
e Run-time code generation (RTCG) advantages and its control with C++ are discussed.
[]
[]

Performance is very similar to OpenCL while programmability largely improves.

ARTICLE INFO ABSTRACT

Article history:

Received 15 October 2012
Received in revised form

25 April 2013

Accepted 19 July 2013

Available online 14 August 2013

While recognition of the advantages of heterogeneous computing is steadily growing, the issues of
programmability and portability hinder its exploitation. The introduction of the OpenCL standard was
a major step forward in that it provides code portability, but its interface is even more complex than
that of other approaches. In this paper, we present the Heterogeneous Programming Library (HPL), which
permits the development of heterogeneous applications addressing both portability and programmability

while not sacrificing high performance. This is achieved by means of an embedded language and data

Keywords:
Programmability
Heterogeneity
Parallelism
Portability
Libraries

Code generation
OpenCL

types provided by the library with which generic computations to be run in heterogeneous devices can
be expressed. A comparison in terms of programmability and performance with OpenCL shows that both
approaches offer very similar performance, while outlining the programmability advantages of HPL.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The usage of heterogeneous computing resources that coop-
erate in the execution of an application has become increasingly
popular as a result of improvements in runtime and power con-
sumption achieved with respect to traditional approaches solely
based on general-purpose CPUs [19]. Still, these advantages do
come at a sizable cost in terms of programmer productivity and,
often, code portability. The reason for this is that current hard-
ware accelerators cannot be simply programmed using the se-
quential languages and semantics with which programmers are

* This article is an extended version of Bozkus and Fraguela (2012) [6].
* Corresponding author.
E-mail addresses: insmvb00@gmail.com, moises.vinas@udc.es (M. Vifias),
zeki.bozkus@khas.edu.tr (Z. Bozkus), basilio.fraguela@udc.es (B.B. Fraguela).

0743-7315/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.07.013

familiar. Nowadays, the most widely utilized approach to take
advantage of these systems is the usage of extended versions of
well-known languages [9,10,2,29] that reflect and allow for the
management of the particular semantics, characteristics and lim-
itations that these accelerators pose for programmers. Portability
problems arise from the fact that the vast majority of these pro-
gramming environments, in fact all of them with the exception of
OpenCL[29], are vendor-specific, and sometimes even accelerator-
specific. This situation has led to extensive research on ways to
improve the programmability of heterogeneous systems. In light
of this, researchers have proposed a rich set of libraries [13,35,4,
8,22,20], each with different strengths and weaknesses, and com-
piler directives [23,16,30], whose performance strongly depends
on compiler technology.

In this paper, we present the Heterogeneous Programming Li-
brary (HPL), a new alternative to address the problems of pro-
grammability and portability described above. Our approach relies

http://dx.doi.org/10.1016/j.jpdc.2013.07.013
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2013.07.013&domain=pdf
mailto:insmvb00@gmail.com
mailto:moises.vinas@udc.es
mailto:zeki.bozkus@khas.edu.tr
mailto:basilio.fraguela@udc.es
http://dx.doi.org/10.1016/j.jpdc.2013.07.013

1628 M. Viiias et al. /]. Parallel Distrib. Comput. 73 (2013) 1627-1638

Device 0
Host | Memory H Processors
CPU J
[]
[]
Device N-1
— | Memory H Processors

Fig. 1. Heterogeneous Programming Library hardware model.

on expressing the kernels that exploit heterogeneous parallelism
in a language embedded in C++. This allows the library to capture
at run-time the computations and variables required for the execu-
tion of those kernels. With this information the HPL performs run-
time code generation (RTCG) in order to run those kernels on the
requested device. This is currently achieved on top of OpenCL in or-
der to maximize the portability of applications, although nothing
precludes the usage of other backends in the future. Our experi-
ence with HPL indicates that it provides performance on par with
OpenCL, while providing major programmability advantages.

This article is organized as follows: we begin with an overview
of the hardware and programming model supported by HPL, fol-
lowed by a description of the interface and implementation of
our library. An evaluation in terms of programmability and per-
formance in Section 4 is followed by a discussion on related work.
The last section discusses our conclusions and future work.

2. Supported programming model

The Heterogeneous Programming Library (HPL) hardware and
programming models are similar to those provided by CUDA [10]
and OpenCL [29] and they are so general that they can be applied to
any computing system and application. The HPL hardware model,
depicted in Fig. 1, is comprised of a host with a standard CPU and
memory, to which is attached a number of computing devices. The
sequential portions of the application run in this host and can only
access its memory. The parallel parts, which will be written using
the embedded language provided by the library, run in the attached
devices at the request of the host program. Each device has one
or more processors, which can only operate on data found within
the memory of the associated device, and which must all execute
the same code in SPMD. Processors in different devices, however,
can execute different pieces of code. Also, in some devices the
processors are organized in groups with two properties. First,
the processors in a group can synchronize using barriers, while
processors in different groups cannot be synchronized. Second,
each group of processors may share a small and fast scratchpad
memory.

As regards the memory model of the HPL, while no special dis-
tinction is made in the host, three kinds of memory can be identi-
fied in the devices. First, we have the global memory of the device,
which is the largest one, and which can be both read and written by
any processor in the device. Second, the scratchpad memory which
is local and restricted to a single group of processors is called local
memory. Finally, a device may have a constant memory, which is
read-only memory for its processors, but which can be set up by
the host.

As this description of the hardware indicates, HPL applications
run their serial portions in the host while their parallel regions
run in SPMD mode in the attached devices. While the processors
in the same device must all run the same code at a given time,
different devices can run different codes. Thus, both data and task
parallelism are supported. The parallel tasks are called kernels
and they are expressed as functions written in the HPL embedded

language. Since the device and host memories are separate, the
inputs of a kernel are transferred to its device by the host, and
they are provided to the kernel by means of some of its arguments.
Similarly, kernels output their results through some of their
arguments, which will be transferred to the host when required.

Since multiple threads in a device run the same kernel in
SPMD style, an identifier is needed to univocally distinguish each
thread. For this purpose, when a kernel is launched to execution
in a device, it is associated to a domain of non-negative integers
with between one and three dimensions called global domain. An
instance of the kernel is run for each point in this domain. In this
way, this point is the unique identifier (global id) of the thread, and
the domain size gives the number of threads used.

Kernel executions can also be optionally associated to another
domain, called local domain, whose purpose is to define groups of
threads that run together in a group of device processors able to
synchronize and share local memory. The local domain must have
the same dimensionality as the global domain, and its size in ev-
ery dimension must be a divisor of the size of that dimension in
the global domain. The global domain can thus be evenly divided
in regions of the size of the local domain, so that each region
corresponds to a separate thread group whose threads can co-
operate thanks to the barriers and the exploitation of the local
memory. Each group has a unique identifier based on its position
in the global domain (group id). Each thread also has a local id
that corresponds to the relative position of its global id within the
group’s local domain.

As we will see as we develop the description of HPL, in com-
parison with OpenCL, its backend, HPL avoids the concepts of the
context, command queues and commands submitted to the de-
vices. There is no correspondence either for the OpenCL program
and memory objects and thus for their management (explicit load
and compilation, data transfers, buffer allocation, etc.). Kernel ob-
jects are not needed to refer to kernels, just their function name,
as in C or C++. There are also issues that OpenCL forces to man-
age, while HPL can either totally hide or let the user just provide
hints for optimization purposes, such as the synchronization be-
tween the devices and the host. HPL also brings generic program-
ming capabilities to portable heterogeneous programming, as its
kernels and data types support templates. Another interesting fea-
ture is that HPL supports multidimensional arrays in the kernel ar-
guments even if their sizes are determined at runtime, giving place
to a much more natural notation than the array linearization forced
by the usage of raw pointers in OpenCL. Finally, HPL provides run-
time code generation (RTCG) tools that can simplify the generation
and selection of code versions at runtime.

3. The heterogeneous programming library

Our library supports the model described in the preceding sec-
tion, providing three main components to users. First, it provides a
template class Array that allows for the definition of both the vari-
ables that need to be communicated between the host and the de-
vices, and the variables that are local to the kernels. Second, these
kernels, as mentioned in the previous section, are functions written
using the HPL embedded language, which is an API in C++ consist-
ing of data types, functions, macros and predefined variables. This
API allows our library to capture the computations requested, so
that it can build a binary for them that can run in the requested
accelerator. Finally HPL provides an API for the host code in order
to inspect the available devices and request the execution of ker-
nels. The entire HPL interface is made available by the inclusion of
the single header file HPL . h and it is encapsulated inside the HPL
namespace in order to avoid collisions with other program objects.
At this point, we will turn to a discussion of the library components.

M. Viiias et al. /]. Parallel Distrib. Comput. 73 (2013) 1627-1638 1629

1 HPL_DEFINE_STRUCT(mystruct._t,
2 {int i;

3 float f;

4 1)

5

6 Array<mystruct_t, 2> matrix(100, 100);

Fig. 2. Declaring a struct type to HPL in order to use it in Arrays.
3.1. The Array data type

Like any function, HPL kernels have parameters and private
variables. Both kinds of variables must have type Array<type,
ndim[, memoryFlag]>, which represents an ndim-dimensional
array of elements of the C++ type type, or a scalar for ndim = 0. The
optional memoryFlag either specifies one of the kinds of memory
supported (Global, Local and Constant, in the order used
in Section 2) or is Private, which specifies that the variable is
private to the kernel and which is the default for variables defined
inside kernels. The type of the elements can be any of the usual
C++ arithmetic types or a struct. In this latter case, the struct
definition must be made known to HPL using the syntax shown
in Fig. 2, where mystruct_t is the name we want to give to the
struct.

When the host code invokes a kernel, it provides the arguments
for its execution, which must also be Arrays. In this way Arrays
must be declared in the host space as global variables or inside
functions that run in the host, in order to specify the inputs
and outputs of the kernels. These variables, which we call host
Arrays, are initially stored only in the host memory. When they
are used as kernel arguments, our library transparently builds a
buffer for each one of them in the required device if no such
buffer exists yet. The library also automatically performs the
appropriate transfers between host and device memory, again
only if needed. When a host array or kernel argument declaration
specifies no memoryFlag, Global is assumed. Variables defined
inside kernels do not allow the Global and Constant flags. By
default they follow the standard behavior of data items defined
inside functions, being thus private to each thread in its kernel
instantiation. The exceptions are Arrays with the Local flag,
which are shared by all the threads in a group even if they are
defined inside a kernel.

While scalars can be defined using the Array template class
with ndim = 0, there are convenience types (Int, Uint,
Float,...) that simplify the definition of scalars of the obvious cor-
responding C++ type. Vector types are also supported both in the
kernels (e.g. Int2,Float4,...)and the host code (correspondingly
int2, float4, ...). These vectors can be indexed to access their
components and manipulated with several functions, including the
standard operators. Computations can be performed between vec-
tors as well as between vectors and scalars.

An important characteristic both of Arrays and HPL vector
types is that while they are indexed with the usual square brackets
in kernels, their indexing in host code is made with parenthesis.
This difference visually emphasizes the fact that while Array
accesses in the host code experience the usual overheads found
in the indexing of user-defined data types [14], this is not the
case in the kernels. The reason is that HPL kernels are dynamically
captured and compiled into native binary code by our library, so
that the array accesses have no added overheads.

One reason for the extra cost of the Array accesses in the
host code is that they track the status of the array in order to
maintain a consistent state for the computations. In this way an
array that has been modified by a kernel in a device is refreshed in
the host when an access detects the host copy is non-consistent.
If the array is written, it is marked as obsolete in the devices.

Table 1

Predefined HPL variables.
Meaning First Second Third

dimension dimension dimension

Global id idx idy idz
Local id lidx lidy lidz
Group id gidx gidy gidz
Global domain size SZX szy SZZ
Local domain size lszx lszy lszz
Number of groups ngroupsx ngroupsy ngroupsz

The other crucial point for the maintenance of the consistency is
at kernel launch. Input arrays are updated in the device only if
there have been most recent writes to them in the host or another
device. Also, output arrays are marked as modified by the device,
but they are not actively refreshed in the host after the execution.
Rather, as explained above, an access in the host will trigger this
process. Overall this leads to a lazy copying policy that minimizes
the number of transfers.

While this automated management is the default, it can be
avoided in order to improve the performance. For example, the
user may get the raw pointer to the array data in the host through
the Array method data and perform the accesses through the
pointer. This method has as an optional argument a flag to indicate
whether the array will be read, written or both through the pointer;
if not provided, both kinds of accesses are assumed. With this
information the host data is updated if necessary, and the status
of the array is correctly tracked. Fig. 3 illustrates both possibilities.
In the case of Fig. 3(a) HPL automatically tracks the state of the
arrays and makes the required updates, but the check is performed
in every access. In Fig. 3(b), however, the user explicitly indicates in
lines 3 and 4 that Array a will be overwritten in the host, while b
should be brought from the device with the newest version, unless
such version is of course the one in the host. Data are then accessed
through pointers in line 7, incurring no overhead.

3.2. Computational kernels

The second requirement for writing HPL kernels, after the usage
of the HPL data types, is to express control flow structures using
HPL keywords. The constructs are the same as in C++, with the
differences that an underscore finishes their name (if_, for_,...)
and that the arguments to for_ are separated by commas instead
of semicolons.!

Given the SPMD nature of the execution of kernels, an API to
obtain the global, local and group ids as well as the sizes of the
domains and numbers of groups described in Section 2 is critical.
This is achieved by means of the predefined variables displayed in
Table 1.

Kernels are written as regular C++ functions that use these
elements and whose parameters are passed by value if they
are scalars, and by reference otherwise. For example, the SAXPY
(Single-precision real Alpha X Plus Y) vector BLAS routine, which
computes Y = aX + Y, can be parallelized with a kernel in which
each thread idx computes y[idx]. This results in the code in
Fig. 4.

The kernel functions can be instantiations of function tem-
plates, i.e., C++ functions that depend on template parameters. This
is a very useful feature, as it facilitates generic programming and
code reuse with the corresponding boost in productivity. In fact,
templates are one of the most missed features by OpenCL devel-
opers, who can finally exploit them on top of OpenCL, the current

1 The initial version of HPL presented in [6] required that the end of a block
was explicitly marked either with the keyword end_, or with a structure-specific
keyword (endif _, endfor_,...). This is no longer needed.

1630 M. Viiias et al. /]. Parallel Distrib. Comput. 73 (2013) 1627-1638

1 Array<float, 1> a(N), b(N);

2 ..
3 for(inti=0;i<N;i++)
4 a(i) =b();

(a) Automated management.

1 Array<float, 1> a(N), b(N);

3 float «pa = a.data(HPL_WRITE);
4 float +pb = b.data(HPL_READ);

6 for(inti=0;i<N;i++)

pali] = pblil;

(b) Manual management.

Fig. 3. Usage of Arrays in host code.

1 void saxpy(Array<float,1> y, Array<float,1> x, Float a) {
2 ylidx] = a = x[idx] + y[idx];
3

Fig. 4. SAXPY kernel in HPL.

1 template<typename T>

2 void addmatrices(Array<T,2> c, Array<T,2> a, Array<T,2> b) {
3 c[idx][idy] = a[idx][idy] + b[idx][idy];

4}

Fig. 5. Generic HPL kernel to add bidimensional arrays of any type.

backend for our library, thanks to HPL. A small kernel to add two
2-D arrays a and b into a destination array c, all of them with ele-
ments of a generic type T, is shown in Fig. 5. The kernel will be exe-
cuted with a global domain of the size of the arrays, and the thread
with the global id given by the combination of idx and idy takes
care of the addition of the corresponding elements of the arrays.
HPL provides several functions very useful for the development
of kernels. For example, barrier performs a barrier synchroniza-
tion among all the threads in a group. It accepts an argument to
specify whether the local memory (argument LOCAL), the global
memory (argument GLOBAL) or both (LOCAL|GLOBAL) must pro-
vide a coherent view for all those threads after the barrier. Fig. 6(a)
illustrates its usage in a kernel used in the computation of the dot
product between two vectors v1 and v2. An instance of the kernel,
which is run using groups (local domain size) of M threads, is exe-
cuted for each one of the elements of the vectors so that thread idx
multiplies v1 [idx] by v2[idx]. The reduction of these values is
achieved in two stages. First, a shared vector vec of M elements
located in the local memory stores the partial result computed by

1 #define M 64

2
3 void dotp(Array<float,1> v1,
4 Array<float,1> v2,
5 Array<float, 1> pSum) {
6 Inti;
7 Array<float, 1, Local> vec(M);
8
9 vec[lidx] = v1[idx] * v2[idx];
10
11 barrier(LOCAL);
12
13 if (lidx==0){
14 for_(i=0,i<M,i++){
15 pSum[gidx] += vecli];
16 }
17}

18}

(a) Basic manual reduction.

each thread in the group. Once the barrier ensures all the values
have been stored, the thread with the local id 0 reduces them. There
are more efficient algorithms to perform this reduction, but our
priority here is clarity. The result is stored in the element of the
output vector pSum associated to this group, which is selected with
the group id gidx. In a second stage, when the kernel finishes, the
host reduces the contents of pSum into a single value.

Another example of useful HPL function is call, used for
invoking functions within kernels. For example, call (f) (a,b)
calls function £ with the arguments a and b. Of course the routine
must also be written using the HPL data types and syntax. HPL will
internally generate code for a routine and compile it only the first
time it is used; subsequent calls will simply invoke it. It should be
mentioned that routines that do not include a return_ statement
can also be called with the usual f (a,b) syntax. The difference is
that they will be completely inlined inside the code of the calling
function.

This behavior of call raises the issue of how HPL kernels
are transformed into a binary suitable to run on a given device.
This is a two-step process that is hidden from the user. In the
first stage, called instantiation, the kernel is run as a regular C++
code compiled in the host application. The fact that this code is
written using the embedded language provided by HPL allows the
library to capture all the data definitions, computations, control
flow structures, etc. involved in the code, and build a suitable
internal representation (IR) that can be compiled, as a second step,
into a binary for the desired device. Our current implementation
relies on OpenCL C [29] as IR because, as the open standard for
the programming of heterogeneous systems, it provides the HPL
programs with portability across the wide range of platforms
that already support it. There are not, however, any restrictions
that preclude the usage of other IRs and platforms as backend.

#define M 64

Array<float,1> v2,

1

2

3 void dotp(Array<float,1> v1,

4

5 Array<float, 1> pSum) {

6

7 reduce(pSum|gidx],

8 v1[idx] = v2[idx],

9 ”+”).groupSize(M).inTree();
10 }

(b) Using reduce and binary tree reduction.

Fig. 6. Dot product kernels in HPL.

M. Viiias et al. /]. Parallel Distrib. Comput. 73 (2013) 1627-1638 1631

In fact efforts were made in the development of the library to
facilitate this possibility, for example by placing most OpenCL-
dependent code in a separate module. The aim is for heterogeneous
applications written in HPL to have the potential both to preserve
the effort spent in their development even in environments where
OpenCL is not available and to exploit more efficient backends
where possible.

Since the kernel is run as a regular C++ routine during the
instantiation, variables of standard C++ types can appear in the
kernel. These variables will not appear in the kernel IR; rather, they
will be replaced by a constant with their value at the points of the
kernel in which they interact with the HPL embedded language
elements. By taking advance of this property, the macro M used in
lines 7 and 14 of Fig. 6(a) and defined as a constant in line 1, could
have been instead defined as an external integer variable. The best
value for the group size could have been chosen at runtime and
stored in this variable before the kernel was instantiated, which
happens when it is invoked for the first time. At that point, any
reference to M in the kernel would be replaced by its actual value
in the IR.

For the reasons explained above, standard C++ code, such
as computations and control flow keywords, can also appear in
kernels. Just as the variables of a type other than Array, they will
not appear in the IR. In their case, they will simply be executed
during the instantiation. In this way, they can be used to compute
at runtime values that can become constants in the kernel, to
choose among different HPL code versions to include in the kernel
or to simplify the generation of repetitive codes. This is illustrated
in Fig. 7, where r, a and b are 2-D Arrays ofm x n,m x m and
m X n elements, respectively, and in which m and n are C++ integers
whose value is only known at runtime, but remains fixed once
computed, and the matrix a is known to be upper triangular. The
code computes r = a x b avoiding computations on the zeros of
the lower triangle of a. HPL first helps by allowing the direct usage
of mand n in the kernel without having to pass them as arguments.
If the number of iterations of the innermost loop is above some
threshold C, the matrix product is computed using HPL loops
whose optimization is left to the backend compiler. Otherwise the
code runs the loops in C++ so that they get completely unrolled
during the instantiation, which should enhance the performance
in GPUs given the properties of these devices. This gives place to
(m x (m + 1) x n)/2 lines of code with the shape of line 11 in
the figure, each one with a combination of the values of i, j and
k. In CUDA or OpenCL the compiler may have trouble applying this
optimization due to the triangular loop, the variable nature of mand
n or both, so the programmer would have to perform this tedious
and error-prone process by hand. Nevertheless, the HPL user can
write the code in Fig. 7, knowing that the loops will only run during
the instantiation, generating the required versions of line 11 with
the appropriate frozen values of i, j and k. These lines will be part
of the kernel IR due to the use of the variables of type Array.

As can be seen, regular C++ embedded inside HPL kernels acts as
a metaprogramming language that controls the code generated for
the kernels. This provides HPL with advanced run-time code gener-
ation (RTCG) abilities that simplify the creation of versions of a ker-
nel optimized for different situations as well as the application of
several optimizations. This property is particularly valuable for HPL
given the diversity of heterogeneous devices on which the kernels
could be run and the high dependence of their performance on the
exact codification chosen. This metaprogramming approach, also
called generative metaprogramming [11,17], is much more power-
ful than other well-known metaprogramming techniques such as
those based on C++ templates [36,1]. For example, templates are
very restricted by the requirement to perform their transforma-
tions only with the information available at compile-time. Another
problem is their somewhat cumbersome notation (specializations

1 if((mxm+1))/2)+*n>C){
2 Inti,j, k;
3 for (i=0,i<m,i++)

4 for (j=0,j<n,j++)

5 for (k=1,k <m, k++)

6 r[il[j] += alil(k] = b[KI[j];
7 }else{

8 for(inti=0;i<m;i++)

9 for(intj =0;j <n;j++)

10 for(intk =i; k <m; k++)
11 rlillj] += alil[k] = bIK][j];

12

Fig. 7. Using regular C++ in a kernel to generate an unrolled matrix product.

of functions or classes are used to choose between different ver-
sions of code, recursion rather than iteration is used for repet-
itive structures, etc.), which complicates their application. This
contrasts with our approach, which takes place at run-time and
uses the familiar control structs of C++. Template metaprogram-
ming has been widely used though in the internal implementation
of HPL in order to optimize the HPL code capture and the back-
end code generation, moving computations to compile time when-
ever possible. Still, most of the process is performed at runtime,
although its cost is negligible, as we will see in Section 4.

The advantages of RTCG are not only provided by HPL as a
feature to be manually exploited by the programmer. Rather, the
interface includes facilities to express common patterns of compu-
tation whose codification can be built at runtime in order to tailor it
to the specific requirements needed. An example is reduce, which
accepts as inputs a destination, an input value and a string repre-
senting an operator and which performs the reduction of the input
value provided by each thread in a group using the specified op-
erator into the destination. This routine actually builds an object
that generates at run-time the code for the reduction. This object
accepts, by means of methods, a number of optional hints to con-
trol or optimize the code generated. As an example, the dot product
kernel in Fig. 6(a) is simplified using this feature in Fig. 6(b). In this
case, we provide the optional hint that the kernel will be run us-
ing groups of M threads to help generate a more optimized code.
We also request the reduction to be performed using a binary tree
algorithm, which often yields better performance than the alter-
native used in Fig. 6(a), at the cost of a more complex codification.
As of now reduce supports nine code generation modifiers. Other
examples of modifiers are requesting a maximum amount of local
memory to be used in the reduction process, indicating a minimum
group size rather than the exact group size, or specifying whether
only one thread needs to write the result in the destination, which
is the default, or whether all of them must do it. The object builds
an optimized code that tries to fulfill the requests performed while
using the minimum number of resources, computations and thread
synchronizations, and inserts it in the kernel. This mechanism is
thus equivalent to having a library of an infinite number of func-
tions to perform reductions in a thread group, each one optimized
for a specific situation.

Finally, it should be pointed out that our library does not merely
translate the HPL embedded language into an IR in a passive way.
On the contrary, during this process the code can be analyzed by
the library, which enables it to act as a compiler, gathering infor-
mation and performing optimizations in the generation of the IR.
As of now, HPL does not yet automatically optimize the IR. Nev-
ertheless, kernels are analyzed during the instantiation in order to
learn which arrays are only read, only written or both, and in this
case, in what order. This information is used by the runtime to min-
imize the number of transfers required for the kernel and host ac-
cesses between the host and the device memories in use without

1632 M. Viiias et al. /]. Parallel Distrib. Comput. 73 (2013) 1627-1638

void saxpy(Array<float,1> y, Array<float,1> x, Float a) {
ylidx] = a = x[idx] + y[idx];
}

1
2
3
4
5 int main(int argc, char ssxargv) {
6 float myvector[1000];
7 Float a;
8 Array<float, 1> x(1000), y(1000, myvector);

9
10 /fthe vectors and a are filled in with data (not shown)
11
12 eval(saxpy)(y, X, a);
13 }

Fig. 8. Array creation and SAXPY kernel usage.

any user intervention, as discussed in the previous section. It also
allows to learn the dependences of each kernel submitted to execu-
tion, so that HPL automatically ensures they are satisfied before it
runs, which results in an automatic and effortless synchronization
system.

3.3. Host interface

The most important part of the host interface is function
eval, which requests the execution of a kernel with the syntax
eval(f)(argl,arg2,...)where f is the routine that implements the
kernel. As mentioned before, scalars are passed by value and arrays
are passed by reference, and thus allow the returning of results.

Specifications in the form of methods to parameterize the ex-
ecution of the kernel can be inserted between eval and the ar-
gument list. Two key properties are the global and local domains
associated with the kernel run explained in Section 2, which can
be specified using methods global and local, respectively. For
example, if kernel £ is to be run on arguments a and b on a
global domain of 100 x 200 threads with a local domain of size
5 x 2, the programmer should write eval(f) .global (100,
200) .1local(5, 2)(a, b).

By default the global domain corresponds to the sizes of the first
argument, while the local domain is chosen by the library. Fig. 8
illustrates a simple invocation of the SAXPY kernel of Fig. 4, also
included in this figure for completeness, by means of its function
pointer in line 12. The global domain requires one point per
element of y, which is the first argument, while the local domain
needs no specification. The example also shows that host arrays
can be created from scratch (x), making the library responsible for
the allocation and deallocation of its storage in the host, or they
can use already allocated host memory by providing the pointer to
this memory as last argument to the constructor (y). In this latter
case the user is responsible for the deallocation too.

Also, although not detailed here due to space limitations, our
library provides a simple interface to identify and inspect the

generate it and

NO store it in cache

is there an

eval(f) IR for 2

take it

YES from cache

is there a
binary for this IR
and device

devices in the system and their attributes (number of threads
supported, amount of memory of each kind, etc.) and to obtain a
handle of type Device to make reference to each one of them. A
final method to control the execution of a kernel is device, which
takes as argument one of these handles in order to choose the
associated device for the execution. If none is specified, the kernel
is run in the first device found in the system that is not a standard
CPU. If no such device is found, the kernel is run in the CPU.

The sequence of steps performed by HPL when a kernel is
invoked is described in Fig. 9. In the first place, an IR of the kernel
suitable for the chosen device is sought in an internal cache. If such
IR is not found, the kernel is instantiated following the process
described in the previous section. Once the required IR is available,
it could have been already compiled to generate a binary for the
chosen device or not. This is checked in a second cache, which is
updated with that binary after the corresponding compilation if it
is not found. At this point, HPL transfers to the device those and
only those data needed for the execution. This is possible thanks to
the information that is automatically tracked on the status of the
HPL arrays, and the knowledge of which of the kernel arguments
are inputs, which is obtained during the kernel instantiation. As a
final step, the kernel is launched for execution.

As we can see in Fig. 9, the kernel evaluation request finishes
in the host side when the device is asked to run the kernel,
without further synchronizations with the device. In this way,
HPL kernel runs are asynchronous, i.e., the host does not wait
for their completion before proceeding to the next statement.
This enables overlapping computations among the host and the
device, as well as among several devices in a straightforward way.
There are several ways to synchronize with the kernel evaluations.
As discussed in Section 3.1, whenever the host code accesses an
array or submits for execution a kernel that uses it, our runtime
analyzes the dependences with preceding uses of the array,
enforces them and performs the required transfers. There are also
explicit synchronization mechanisms such as the data method
of Arrays or the sync method of Devices, which waits for the
completion of all the kernels sent to the associated device and then
updates those that have been modified in the host memory.

Another conclusion from our description of Fig. 9 is that kernel
instantiations and compilations are minimized, because each ker-
nel is only instantiated the first time it is used, and an IR is only
compiled when an associated binary does not exist yet for the cho-
sen device. However, a user might want to reinstantiate a kernel in
some situations. For example, as we mentioned in Section 3.2, the
instantiation could depend on the values of external C++ variables,
and the user could be interested in generating several possible in-
stantiations and comparing their performance in order to choose
the best one. For this reason, there is a function reeval with the
same syntax as eval, but which forces the instantiation of a ker-
nel even if there were already a version in the HPL caches. Also, our
library allows the user to retrieve the string with the IR generated
for any kernel, so that it can be inspected and/or directly used on
top of the corresponding backend.

generate it and
store it in cache

transfer
. run kernel
inputs

——

take it
from cache

Fig. 9. Kernel invocation algorithm.

M. Viiias et al. /]. Parallel Distrib. Comput. 73 (2013) 1627-1638

Table 2
Benchmark characteristics.

1633

Benchmark SLOCs OpenCL Routines Repetitive invocation Cooperation Arithmetic intensity
Spmv 500 Medium Low
Reduction 399 1 kernel High Low
Matrix transpose 373 Low Low
Floyd-Warshall 407 1 kernel No Low
EP 605 v Low High
Shallow water 965 v 3 kernels Low High

4. Evaluation

This section evaluates the programmability benefits and the
performance achieved by HPL. The baseline of our study is OpenCL,
since this is the only tool that provides the same degree of portabil-
ity. Also, as it is the current backend for HPL, the comparison allows
for the measurement of the overhead that HPL incurs.

The evaluation is based on six codes, namely the sparse ma-
trix vector multiplication (spmv) and reduction benchmarks of
the SHOC Benchmark suite [12], the matrix transpose and Floyd-
Warshall codes from the AMD APP SDK, the EP benchmark of the
NPB suite [26], and the shallow water simulator with pollutant
transport (shwa) first presented in [37], whose OpenCL version is
thoroughly described and evaluated in [24]. The first five codes
were already used in a preliminary evaluation in [6]. This study
relied on the original OpenCL implementations from the corre-
sponding suites, which include several non-basic routines and use
the C interface of the OpenCL framework. Although EP had not
been taken from any distribution, the baseline code suffered sim-
ilar problems. The HPL versions of spmv and reduction also had
some unneeded routines inherited from the original OpenCL im-
plementation.

We have now streamlined and cleared all the codes. The OpenCL
baselines have also been translated to C++ in order to use the
much more succinct OpenCL C++ interface, so that by avoiding
the C++ versus C expressivity difference in the host interface, the
programmability comparison is much fairer. The same policies
were followed in the translation of the shallow water code from
the original CUDA implementation [37]. The result is that now
the number of source lines of code excluding comments (SLOC)
of our OpenCL baselines is up to 3.3 times smaller than in [6], as
Table 2 indicates. The HPL codes were also improved with features
implemented after the publication of [6], such as the customized
reduce mechanism described in Section 3.2.

Table 2 further characterizes the benchmarks indicating
whether their kernels use subroutines, whether there is a single
kernel invocation or repetitive invocations (and in this case of how
many kernels), the degree of cooperation between the threads in
the kernels and the arithmetic intensity. The repetitive invocation
of kernels is interesting for the analysis of the cost of the kernel
executions and synchronizations with the host, including the ef-
fectiveness of the mechanisms to avoid unneeded transfers be-
tween host and device memory. Reduction and Floyd-Warshall
repetitively invoke in a loop a single kernel, while the shallow wa-
ter simulator performs a simulation through time in a sequential
loop in which in each iteration three different kernels are run one
after another, there being also computations in the host in each
time iteration.

The cooperation column qualitatively represents the weight of
synchronizations and data exchanges between threads in the ker-
nels. For example, in spmv each thread first performs part of the
product of the compressed row of a matrix by a vector, and then
performs a binary tree reduction with other threads in its group
to compute the final value for the row. The reduction benchmark
focuses intensively in reductions that imply continuous data shar-
ing and synchronization among threads. In matrix transpose, each

thread group loads the local memory with a sub-block of the ma-
trix to transpose, then synchronizes once with a barrier, and finally
copies the data from the local memory to the transposed matrix. In
Floyd-Warshall, each thread performs its own computations with-
out the use of local memory or barriers. In EP, each thread runs the
vast majority of the time working on its own data, there being a
final reduction of the results of each thread. The situation is simi-
lar in the shallow water simulator, in which threads only need to
cooperate in a reduction in the most lightweight kernel.

Finally, the arithmetic intensity, which measures the ratio of
computations per memory word transferred, is a usual indicator
for characterizing applications run in GPUs. Due to the much higher
cost of memory accesses compared to computations in these de-
vices, high arithmetic intensity is a very desirable property for
GPGPU computing. As can be seen in Table 2, our evaluation relies
on codes with a wide range of different characteristics.

4.1. Programmability analysis

Productivity is difficult to measure, thus most studies try to ap-
proximate it from metrics obtained from the source code such as
the SLOCs. Lines of code, however, can vary to a large extent in
terms of complexity. Therefore, other objective metrics have been
proposed to more accurately characterize productivity. For exam-
ple, the programming effort [15] tries to estimate in a reasoned
way the cost of developing a code by means of a formula that takes
into account the number of unique operands, unique operators,
total operands and total operators found in the code. For this, it
regards as operands the constants and identifiers, while symbols
or combinations of symbols that affect the value or ordering of
operands constitute the operators. Another indicator of the com-
plexity of a program is the number of conditions and branches it
contains. Based on this idea, [25] proposed as a measure of com-
plexity the cyclomatic number V = P + 1, where P is the number
of decision points or predicates.

Fig. 10 shows the reduction of SLOCs, programming effort [15]
and the cyclomatic number [25] of HPL with respect to an OpenCL
implementation of the considered benchmarks. Fig. 10(a) takes as
the baseline an OpenCL program including the initialization code
to choose a suitable platform and device, build the context and
command queue used by this framework, and load and compile
the kernels. The initialization code is written in a very generic way,
so that it maximizes portability by supporting environments with
multiple OpenCL platforms installed and/or several devices, and it
controls all the errors that can appear during the process. The code
is in fact taken with minor adaptations from the internals of HPL
in order to provide exactly the same high degree of portability and
error control. This is the OpenCL version whose SLOCs appear in
Table 2. Nevertheless, the initialization of the OpenCL environment
as well as the loading and compilation of the kernels can be easily
placed in routines that can be reused across most applications,
thus avoiding much programming cost. For this reason Fig. 10(b)
takes as the baseline for the improvement in productivity metrics
provided by HPL a factorized OpenCL code that replaces with a
few generic routine calls this heavy initialization of ~270 SLOCs.
The two baselines considered thus represent a reasonable maximal

1634

100

Il slocs
90r I effort
— M [Jeycl number

% reduction

Shwa

spmv
(a) Full OpenCL baselinet.

reduction transpose Floyd EP

M. Viiias et al. /]. Parallel Distrib. Comput. 73 (2013) 1627-1638

100
Il slocs
90+ I effort
[Jeycl number
80r b
701 1
S 60]
©
3 50f]
0
N 401 b
30r 1
20r 1
10+ H b
0

spmv reduction transpose Floyd EP ShWa

(b) Factorized OpenCL baseline.

Fig. 10. Productivity metrics reduction in HPL with respect to two OpenCL baseline implementations.

and minimal programming cost of the OpenCL version of each
application, even if the minimal one is somewhat unfair to HPL,
as the removed code has still to be written at some point.

Even if we consider the most demanding scenario, HPL reduces
the SLOCs between 21% and 48%, the programming effort between
15% and 63% and the cyclomatic number between 18% and 44%.
While these numbers are very positive, complexity measurements
on the code do not tell the whole story. Our experience when pro-
gramming with HPL is that it speeds up the development process
in two additional ways not reflected in the code. The first way is by
moving the detection of errors to an earlier point. Concretely, since
OpenCL kernels are compiled at runtime, the application needs to
be recompiled (if there are changes in the host code), sent to exe-
cution, and reach the point where the kernel is compiled to find the
usual lexical and syntactical errors, fix them and repeat the process.
With HPL the detection of the most common problems of this kind
(missing semicolons, unbalanced parenthesis, mistyped variables,
...) happens right at the compilation stage, as in any C++ program.
Besides in many integrated development environments (IDEs) the
integration of the compiler with the editor allows quickly going
through all the errors found by the compiler and fix them. We have
seen a productivity improvement thanks to the faster response
time enabled by HPL.

The second way how HPL further improves productivity is by
providing better error messages. This way, sometimes the error
messages obtained from some OpenCL compilers were not helpful
to address the problem. For example, some errors detectable at
compile or link time, such as invoking a nonexistent function due
to a typo, were reported using a line of a PTX assembly file, without
any mention of the identifier or line of OpenCL where the error
had been made. Obviously, this is a hit to the productivity of the
average user who has to track the source of this problem and fix
it. With HPL, the C++ compiler always clearly complains about the
unknown identifier in the point of the source code where it is
referenced or, in the worst case, when the error is detected during
linking, at least it indicates the object file and name of the missing
function, largely simplifying the programmer’s work.

4.2. Performance analysis

This section compares the performance of the baseline OpenCL
applications with those developed in HPL in two systems. The first
is a host with 4xDual-Core Intel 2.13 GHz Xeon processors that
are connected to a Tesla C2050/C2070 GPU, a device with 448
thread processors operating at 1.15 GHz and 3GB of DRAM. This
GPU operates under CUDA 4.2.1 with an OpenCL 1.1 driver. In order

to evaluate the very different environments and test the portability
of the applications, the second machine selected was an Intel Core
2 at 2.4 GHz with an AMD HD6970 GPU with 2 GB of DRAM and
1536 processing elements at 880 MHz operating under OpenCL 1.2
AMD-APP. The applications were compiled with g++ 4.7.1 using
optimization level O3 on both platforms.

The performance of OpenCL and HPL applications is compared
for the NVIDIA and AMD GPU based systems in Fig. 11(a) and (b),
respectively. The runtime of both versions was normalized to that
which was achieved by the OpenCL version and it was decomposed
in six components: kernel creation, kernel compilation, time spent
in CPU to GPU transfers, time required by GPU to CPU transfers, ker-
nel execution time, and finally host CPU runtime. The kernel cre-
ation time accounts in the OpenCL version for the loading of the
kernel source code from a file, as this is the most usual approach
followed, particularly for medium and large kernels. In the HPL
columns, it corresponds to the time our library required to build
the kernel IR from the C++ embedded language representation. The
other portions of the runtime correspond to the same basic steps in
both versions. The measurements were made using synchronous
executions, as most profilers do for accuracy reasons, thus there
was no overlapping between host computations and GPU compu-
tations or transfers. It should be pointed out that it is particularly
easy to obtain this detailed profiling for the HPL codes because
when our library and the application are compiled with the flag
HPL_PROFILE, HPL automatically gathers these statistics for each
individual kernel invocation as well as for the global execution of
the program. The user can retrieve these measurements by means
of a convenient APIL.

The experiments consisted of multiplying a 16K x 16K sparse
matrix with a 1% of nonzeros by a vector in spmv, adding 16M
values in reduction, transposing a 8K x 8K matrix, applying the
Floyd-Warshall algorithm on 1024 nodes, running EP with class C,
and finally simulating the evolution of a contaminant during one
week in a mesh of 400 x 400 cells that represents an actual estuary
(Ria de Arousa, in Galicia, Spain) using real terrain and bathymetry
data. The input and the visual representation of the results of this
real-world application are illustrated in Fig. 12(a), with the Google
Maps satellite image of the region where the simulation takes
place, the illustration of the initial setup in Fig. 12(b), in which
the contaminant is concentrated in a small circle with a radius
of 400 m, and Fig. 12(c) where we see how it evolved after eight
days via a color scale which indicates the normalized concentration
of the pollutant. All the benchmarks operate on single-precision
values, the exceptions being Floyd-Warshall, which works with
integers, and EP, which is based on double-precision floating point

M. Viiias et al. /]. Parallel Distrib. Comput. 73 (2013) 1627-1638

Y
L
1001 I I . .

g sor
k= Il creation
E] I compilation
T 60F [CJCPU->GPU
8 [1GPU->CPU
© [kernel exec
S
5 401
c

20r

oLl |
spmv reduction transpose Floyd EP ShWa

(a) Tesla C2050/C2070 system.

1635

o
& ov
KK

100

o]
o

Il creation

I compilation
[ClcPu->GPU
[]GPU->CPU
Il kernel exec

[o2]
o

normalized runtime
N
o

20

spmv reduction transpose
(b) HD6970 system.

Floyd EP

Fig. 11. Performance of the OpenCL and the HPL versions of the codes, normalized to the runtime of the OpenCL version.

0.00 0.143 0.286 0.429

0.571 0.714 0.857 ___l.o0

(a) Satellite image. (b) Pollutant drope.

(c) Situation after 8 days.

Fig. 12. Simulation of evolution of a pollutant in Ria de Arousa.

computations. It should also be mentioned that the shallow water
simulation kernels largely rely on vector types both in the OpenCL
and HPL versions.

The most relevant conclusion that can be drawn from Fig. 11 is
that the performance of HPL applications is very similar to that of
the corresponding native OpenCL code. The average slowdown of
HPL with respect to OpenCL across these tests was just 1.5% and
1.3% in the NVIDIA and AMD GPU based systems, respectively. The
maximum overhead measured has been 6.4% for Floyd-Warshall
in the NVIDIA system, followed by a 4.4% for this same algorithm
in the AMD system, and it is mostly concentrated in the CPU run-
time in both cases. The reason is that this application launches
1024 consecutive kernel executions of very short length (0.1 ms)
to the GPU, without any array transfer (only a scalar is sent), and
unsurprisingly the HPL runtime incurs in additional costs in the
kernel launches with respect to the OpenCL implementation. This
was also the main overhead found in the HPL versions of the shal-
low water simulator, as it is the other application that launches
many kernel executions. At this point it is relevant to remember
that the measurements were taken using synchronous executions
for the benefit of the detailed analysis of all the execution stages.
However, HPL runs by default in asynchronous mode, which en-
ables partially overlapping this overhead with GPU computations
and transfers. This way, the overhead, in a non-profiled run of HPL
with respect to an OpenCL implementation of Floyd-Warshall that
also exploits asynchronous execution, is 5% and just 0.44% in the
NVIDIA and AMD systems, respectively.

It is interesting to note in Fig. 11 that the same code spends its
runtime in quite different activities in the two platforms tested. For
example, compilation consumes much more resources in the AMD
than in the NVIDIA system. Also, the kernel creation time is always
negligible.

Table 3
NAS parallel benchmark EP runtimes for class C (in seconds).
Benchmark Tesla C2050/C2070 HD6970
OpenCL HPL OpenCL HPL
SNU NPB EP 2.905 2.930 4513 4536
Locally developed EP 2.745 2772 4.408 4.428

While our sparse matrix vector product, reduction, matrix
transpose and Floyd-Warshall algorithm baseline OpenCL codes
are existing works taken from well-known external sources, this is
not the case for NAS Parallel Benchmark EP and the shallow water
simulator, which we have developed ourselves. Thus it can be
interesting to compare these baselines with other works in order
to evaluate their quality. Although it is not feasible to find another
shallow water simulator with exactly the same characteristics,
the quality of our OpenCL implementation can be assessed in
our recent publication [24]. As for EP, Table 3 shows the total
runtime for problem size C of the SNU NPB suite [34] EP and the
EP we developed in the two platforms tested, both when written
in OpenCL and in HPL. We can see that HPL has a minimal overhead
of around 0.85%-1% for both EP versions in the NVIDIA system,
which drops to 0.5% in the AMD GPU. Regarding the performance of
our implementation, it is competitive with respect to the SNU NPB
implementation, and in fact it outperforms it by a small margin of
5.7% and 2.4% in the NVIDIA and AMD systems, respectively. As a
result, our HPL version slightly outperforms the SNU OpenCL native
implementation in both platforms.

The runtime of the OpenCL and HPL versions of the shallow
water simulator is shown for varying problem sizes in the two
platforms considered in Fig. 13. This code was chosen because
it is the largest and unlike the others has several kernels, which
are invoked repetitively during the simulation, and also because it

1636

5000

Il creation
4500¢| [l compilation ,
[JCPU->GPU
4000({ C]GPU->CPU
[kernel exec
3500n - CPU

3000r 1

25001 1

runtime

20001 1
15001
1000F 1

500r & .
SR

0

100 200 300 400 500 600 700 800
(a) Tesla C2050/C2070 system.

M. Viiias et al. /]. Parallel Distrib. Comput. 73 (2013) 1627-1638

3000

Il creation

[l compilation
2500}{ C1CPU->GPU J
[1GPU->CPU
[l kernel exec
2000 I CPU -

15001 1

runtime

1000 1

500 N J
)
oQé\;?V

0

100 200 300 400 500 600 700 800
(b) HD6970 system.

Fig. 13. Runtime of the OpenCL and the HPL versions of the shallow water simulator for different problem sizes.

is an actual complete application. The figure shows the runtimes
for mesh sizes from 100 x 100 to 800 x 800 in steps of 100
cells. The runtimes of the OpenCL version went from 103.5 and
90 s for the smallest mesh, to 4794 and 2548 s for the largest
in the NVIDIA and AMD systems, respectively. In all of the cases
the runtime was mostly dominated by the execution times of the
kernels, followed by the operations in the host CPU. The periodic
transfers of data from the GPU to CPU are only noticeable in the
AMD system. The runtimes were very similar for both versions for
all the problem sizes, the average slowdown of HPL with respect
to OpenCL being 3.4% and 4.6% in the NVIDIA and AMD GPU based
systems, respectively. The HPL overhead is concentrated in the host
CPU usage implied by its runtime. As we previously explained, this
is a maximal bound of the actual overhead found in a non-profiled
run, in which the asynchronous execution between host and device
hides part of it.

5. Related work

Much research has been devoted to improving the programma-
bility of heterogeneous systems. This is the case for example of
mpC [21], a high level programming language for parallel comput-
ing in heterogeneous networks of computers, inspired by HPF but
more focused on performance models. The interest of this field has
further grown with the rise of modern hardware accelerators. This
way, CuPP [7] and EPGPU [22] facilitate the usage in C++ programs
of CUDA [10] and OpenCL [29], respectively, by providing a better
interface and a runtime that takes care of low level tasks such as
memory management and kernel invocation. A higher degree of
abstraction is provided by CUDPP [33], a library of data-parallel al-
gorithm primitives that can only run a predefined set of operations
and only in CUDA-supported devices. ViennaCL [31] mainly focuses
on a convenient C++ API for running linear algebra operations on
top of OpenCL, although it also simplifies the execution of custom
kernels provided as strings in OpenCL C.

Thrust [4] provides an interface inspired in STL to perform op-
erations on 1D vectors in either CPUs of CUDA-supported GPUs. Its
user-defined operations are restricted to being one-to-one, that is,
each element of the output vector is computed using a single value
from each input vector and the user cannot control basic execution
parameters such as numbers of threads or kinds of memory to use.

SkePU [13] and SkelCL [35] further explore the idea of using
skeletons to express computations in heterogeneous systems. They
canrun on top of OpenCL (SkePU also supports CUDA and OpenMP)
and they support up to 1D (OpenCL) or 2D (SkePU) arrays. Their
skeletons accept user functions in the form of strings for OpenCL, or

class member functions for the CUDA and OpenMP backends. How-
ever, since these latter functions must be representable as strings,
they have in practice the same restrictions as strings. In this way,
contrary to HPL kernels, which can capture external variables and
perform RTCG even under the control of the programmer, their
code must be constant at compile time and include all the defi-
nitions of the values they use. An additional restriction in the case
of SkePU is that since all its backends use the same user function
code, only the common denominator of the language supported by
all the backends can appear in the user code, which can preclude
many important optimizations. These libraries, which also support
the usage of multiple GPUs in a straightforward way, are excellent
options to run in heterogeneous devices for those computations
whose structure naturally conforms to one of their skeletons.

The PyCUDA and PyOpenCL [20] toolkits simplify the usage of
hardware accelerators in the high-level scripting language Python
to perform many predefined computations. Custom user func-
tions in the form of strings are also supported, although they are
restricted to element-to-element computations and reductions.
These projects also emphasize RTCG, although in their case it is
based on string processing in the form of keyword replacement,
textual templating and syntax tree building. These approaches re-
quire learning a new, and sometimes quite complex, interface to
perform the corresponding transformations. This contrasts with
the natural integration of HPL kernels in C++ and the direct and
simple use of this language to control RTCG.

The kind of RTCG provided by HPL is supported by TaskGraph [3]
and Intel Array Building Blocks (ArBB) [27] because they also build
at runtime their kernels from a representation using a language
embedded in C++. TaskGraph combines code specialization with
runtime dependence analysis and restructuring optimizations. It
has been used to build active libraries that can compose and op-
timize sequences of kernels [32], and while it exposes no parallel
programming model, its authors have explored parallel schemes
using it. Regarding ArrBB, it only targets multicore CPUs, however,
and it has a very different programming model, with special in-
structions to copy data in and out of the space where the kernels
are run and does not offer the possibility of controlling the task
granularity, optimizing the memory hierarchy usage or cooperat-
ing between parallel threads.

Copperhead [8] is an embedded language that allows the ex-
ploitation of heterogeneous devices, although only NVIDIA GPUs,
in order to run computations expressed with data-parallel primi-
tives and a restricted subset of Python, which is its host language.
It is a powerful tool for expressing computations that adjust to the
usual data-parallel abstractions and in which all the code genera-
tion and execution parameters are transparently controlled by the

M. Viiias et al. /]. Parallel Distrib. Comput. 73 (2013) 1627-1638 1637

Copperhead runtime. This results in a high level of abstraction that
benefits programmability, but which provides little or no program-
mer control on the result, which largely depends on the ability of
the compiler. These characteristics are typical of compiler direc-
tives, which have been also explored in the area of heterogeneous
programming [5,23,16,30]. The number of directives and clauses
that some of these approaches require to generate competitive
code is sometimes on par with or even exceeds the programming
costs of library-based approaches. More importantly, the lack of a
clear performance model [28] and the suboptimal code generated
by compilers in many situations have already led to the demise of
promising approaches of this kind such as HPF [18]. The state of
affairs is even worse in the case of heterogeneous systems because
they allow for more possible implementations for the same algo-
rithm, they have a large number of parameters that can be chosen,
and their performance is very sensitive to small changes in these
parameters.

6. Conclusions and future work

Heterogeneous systems are becoming increasingly important
in the computing landscape as a result of the absolute perfor-
mance and performance per watt advantage that devices such as
GPUs achieve with respect to the standard general-purpose CPUs
for many problems. Nevertheless, an improvable aspect of these
systems is their programmability and the portability of the codes
that exploit them. This paper addresses these issues proposing the
Heterogeneous Programming Library (HPL), whose most charac-
teristic component is a language embedded inside C++ to express
the computations (kernels) to run in heterogeneous environments.
This language allows our library to capture the kernels so that it can
translate them into a suitable IR that is then compiled for the de-
vice where they will be run. The host C++ language can be naturally
interleaved with our embedded language in the kernels, acting as a
metaprogramming language that controls the code generated us-
ing a syntax that is much more convenient and intuitive than other
metaprogramming approaches such as C++ templates. This results
in a very powerful run-time code generation (RTCG) environment
that is particularly useful for heterogeneous systems, in which
users often need to tune the kernels to the specific characteristics
of each device to achieve good performance. HPL also provides very
convenient interfaces to exploit RTCG to generate highly special-
ized code for common patterns of computation such as reductions.

During the generation of the IR for a kernel, our library has the
opportunity of analyzing and potentially optimizing it, as a com-
piler would do. While our current implementation performs no
code transformations, it does analyze the kernels in order to deter-
mine their inputs and outputs. This information allows HPL to track
the data dependences between the tasks that the user requests to
run in the devices exploiting the asynchronous execution model
of the library, as well as between these tasks and the host. This
way HPL provides automatic task synchronization while minimiz-
ing the number of data transfers. In a related manner, HPL provides
rather handy classes to represent data for use in the heterogeneous
kernels whose management (creation and deallocation of buffers,
tracking of the state and synchronization as required among physi-
cal buffers associated with the same logical array in different mem-
ories, etc.) is completely automated by our library.

As of today HPL uses as only backend OpenCL, as it maximizes
the portability of the applications. The programmability advan-
tages of HPL over OpenCL are not restricted to the points discussed
above. The ability to exploit C++ templates in kernels, the detection
of errors at compile time, at times with clearer messages, the
natural embedding in the kernels of runtime constants, and the
transparent indexing of multidimensional arrays further boost HPL
programmer productivity.

An evaluation using codes with quite different natures and
taken from different sources indicates that HPL provides significant
programmability improvements with respect to OpenCL while
achieving nearly the same performance in different platforms. In
fact, evenif we take as the baseline a streamlined version of OpenCL
codes in which the initialization and program compilation stages
typical of this platform have been removed, the average reduction
in terms of SLOCs, programming effort and cyclomatic number
achieved by HPL are 34%, 44% and 30%, respectively. Nevertheless,
the typical performance overhead is below 5%.

The Heterogeneous Programming Library is an ongoing project
in our group. Our future lines of work include the addition of more
mechanisms to help further exploit RTCG and ease the exploration
of the search space for different versions of HPL computational
kernels. We also plan to support distributed memory systems,
so that HPL applications can run with minimal effort on clusters.
Finally, we have found that skeletons are an appealing alternative
for expressing numerous computations, and the integration of
typical ones in our framework is thus an interesting extension.

HPL is publicly available under GPL license at http://hpl.des.
udc.es.

Acknowledgments

This work was funded by the Xunta de Galicia under the
project “Consolidacion e Estructuracion de Unidades de Investigacion
Competitivas” 2010/06 and the MICINN, cofunded by FEDER
funds, under grant TIN2010-16735. Zeki Bozkus is funded by the
Scientific and Technological Research Council of Turkey (TUBITAK;
112E191). We also thank Prof. Paul HJ. Kelly for his valuable
comments and the Conselleria do Mar of Xunta de Galicia and
the Centro Tecnol6xico do Mar (CETMAR) for providing the ocean
currents and topographic data of Ria de Arousa. Basilio B. Fraguela
is a member of the HiPEAC European network of excellence and
the Spanish network CAPAP-H3, in whose framework this paper
has been developed.

References

[1] D. Abrahams, A. Gurtovoy, C++ Template Metaprogramming, Addison-Wesley,

2004.

[2] AMD. Stream computing user guide, 2008.

[3] O. Beckmann, A. Houghton, M. Mellor, P.H.J. Kelly, Runtime code generation
in C++ as a foundation for domain-specific optimisation, in: Domain-Specific
Program Generation, International Seminar, Dagstuhl Castle, Germany, March
23-28,2003, Revised Papers, in: Lecture Notes in Computer Science, vol. 3016,
Springer Verlag, 2004, pp. 291-306.

[4] N. Bell, J. Hoberock, GPU Computing Gems Jade Edition, Morgan Kaufmann,
2011 (Chapter 26).

[5] S.Bihan, G.E.Moulard, R. Dolbeau, H. Calandra, R. Abdelkhalek, Directive-based
heterogeneous programming. a GPU-accelerated RTM use case, in: Proc. 7th
Intl. Conf. Con Computing, Communications and Control Technologies, July
2009.

[6] Z. Bozkus, B.B. Fraguela, A portable high-productivity approach to program
heterogeneous systems, in: 2012 IEEE 26th Intl. Parallel and Distributed
Processing Symp. Workshops Ph.D. Forum, IPDPSW, May 2012, pp. 163-173.

[7]].Breitbart, CuPP — a framework for easy CUDA integration, in: IEEE Intl. Symp.
on Parallel Distributed Processing, IPDPS 2009, May 2009, pp. 1-8.

[8] B. Catanzaro, M. Garland, K. Keutzer, Copperhead: compiling an embedded
data parallel language, in: Proc. 16th ACM symp. on Principles and Practice
of Parallel Programming, PPoPP’11, 2011, pp. 47-56.

[9] IBM, Sony, and Toshiba. C/C++ Language Extensions for Cell Broadband Engine
Architecture, IBM, 2006.

[10] Nvidia. CUDA Compute Unified Device Architecture, Nvidia, 2008.

[11] K. Czarnecki, U.W. Eisenecker, Generative Programming: Methods, Tools, and
Applications, Addison-Wesley Professional, 2000.

[12] A.Danalis, G. Marin, C. Mccurdy, J.S. Meredith, P.C. Roth, K. Spafford, J.S. Vetter,
The Scalable HeterOgeneous Computing (SHOC) benchmark suite, in: Proc.
3rd Workshop on General-Purpose Computation on Graphics Processing Units,
GPGPU3, 2010, pp. 63-74.

[13] J. Enmyren, C.W. Kessler, SkePU: a multi-backend skeleton programming
library for multi-GPU systems, in: Proc. 4th intl. workshop on High-level
Parallel Programming and Applications, HLPP'10, 2010, pp. 5-14.

http://hpl.des.udc.es
http://hpl.des.udc.es
http://hpl.des.udc.es
http://hpl.des.udc.es
http://hpl.des.udc.es
http://refhub.elsevier.com/S0743-7315(13)00151-2/sbref1
http://refhub.elsevier.com/S0743-7315(13)00151-2/sbref3
http://refhub.elsevier.com/S0743-7315(13)00151-2/sbref4
http://refhub.elsevier.com/S0743-7315(13)00151-2/sbref11

1638 M. Viiias et al. /]. Parallel Distrib. Comput. 73 (2013) 1627-1638

[14] B.B. Fraguela, G. Bikshandi, J. Guo, M.J. Garzaran, D. Padua, C. von Praun,
Optimization techniques for efficient HTA programs, Parallel Comput. 38 (9)
(2012) 465-484.

[15] M.H. Halstead, Elements of Software Science, Elsevier, 1977.

[16] T.D. Han, T.S. Abdelrahman, hiCUDA: high-level GPGPU programming, IEEE
Trans. Parallel Distrib. Syst. 22 (2011) 78-90.

[17]]. Herrington, Code Generation in Action, Manning Publications, 2003.

[18] High Performance Fortran Forum. High Performance Fortran Specification
Version 2.0, January 1997.

[19] S.W.Keckler, W]. Dally, B. Khailany, M. Garland, D. Glasco, GPUs and the future
of parallel computing, IEEE Micro 31 (5) (2011) 7-17.

[20] A. Klockner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, A. Fasih, PyCUDA and
PyOpenCL: a scripting-based approach to GPU run-time code generation,
Parallel Comput. 38 (3) (2012) 157-174.

[21] Alexey Lastovetsky, Adaptive parallel computing on heterogeneous networks
with mpC, Parallel Comput. 28 (10) (2002) 1369-1407.

[22] O.S. Lawlor, Embedding OpenCL in C++ for expressive GPU programming,
in: Proc. 5th Intl. Workshop on Domain-Specific Languages and High-Level
Frameworks for High Performance Computing, WOLFHPC 2011, May 2011.

[23] S. Lee, R. Eigenmann, OpenMPC: Extended OpenMP programming and tuning
for GPUs, in: Proc. of 2010 Intl. Conf. for High Performance Computing,
Networking, Storage and Analysis (SC), 2010, pp. 1-11.

[24]]. Lobeiras, M. Vifias, M. Amor, B.B. Fraguela, M. Arenaz,].A. Garcia, M.
Castro, Parallelization of shallow water simulations on current multi-threaded
systems, Intl. J. High Perform. Comput. (2013) accepted for publication.

[25] TJ. McCabe, A complexity measure, IEEE Trans. Softw. Eng. 2 (1976) 308-320.

[26] National Aeronautics and Space Administration. NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Software/NPB/ (last accessed 05.09.12).

[27] CJ. Newburn, B. So, Z. Liu, M.D. McCool, A.M. Ghuloum, S. Du Toit, Z-G. Wang,
Z. Dy, Y. Chen, G. Wu, P. Guo, Z. Liu, D. Zhang, Intel’s array building blocks:
A retargetable, dynamic compiler and embedded language, in: 9th Annual
IEEE/ACM Intl. Symp. on Code Generation and Optimization, CGO 2011, April
2011, pp. 224-235.

[28] T.A. Ngo, The Role of Performance Models in Parallel Programming and
Languages. Ph.D. thesis, Dept. of Computer Science and Engineering,
University of Washington, 1997.

[29] Khronos OpenCL Working Group. The OpenCL Specification. Version 1.2, Nov
2011.

[30] OpenACC-Standard.org. The OpenACC Application Programming Interface
Version 1.0, Nov. 2011.

[31] K. Rupp, F. Rudolf,]. Weinbub, ViennaCL — a high level linear algebra library
for GPUs and multi-core CPUs, in: Intl. Workshop on GPUs and Scientific
Applications, GPUScA, 2010, pp. 51-56.

[32] E.P. Russell, M.R. Mellor, P.H.J. Kelly, O. Beckmann, DESOLA: An active linear
algebra library using delayed evaluation and runtime code generation, Science
of Computer Programming 76 (4) (2011) 227-242.

[33] S. Sengupta, M. Harris, Y. Zhang, J.D. Owens, Scan primitives for gpu
computing, in: Proc. 22nd ACM SIGGRAPH/EUROGRAPHICS symp. on Graphics
hardware, GH’07, 2007, pp. 97-106.

[34] S. Seo, G. Jo, J. Lee, Performance characterization of the NAS Parallel
Benchmarks in OpenCL, in: Proc. 2011 IEEE Intl. Symp. on Workload
Characterization, [ISWC'11, 2011, pp. 137-148.

[35] M. Steuwer, P. Kegel, S. Gorlatch, SkelCL — a portable skeleton library for high-
level GPU programming, in: 2011 IEEE Intl. Parallel and Distributed Processing
Symp. Workshops and Phd Forum, IPDPSW, May 2011, pp. 1176-1182.

[36] T.L. Veldhuizen, C++ templates as partial evaluation, in: Proc. ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Program Manipulation,
PEPM’99, January 1999, pp. 13-18.

[37] M. Viiias, J. Lobeiras, B.B. Fraguela, M. Arenaz, M. Amor, R. Doallo, Simulation
of pollutant transport in shallow water on a CUDA architecture, in: 2011
Intl. Conf. on High Performance Computing and Simulation, HPCS, July 2011,
pp. 664-670.

. Moisés Viiias is a Ph.D. student at the Computer Archi-
tecture Group (GAC) in the Departamento de Electronica e
: Sistemas of the Universidade da Corufia, Spain. He received
, his Computer Science Graduate in 2011 and the Master’s
degree in High Performance Computing in 2012, both of
#® the Universidade da Coruiia. Before being Ph.D. student, he
- worked on fluid simulation using GPUs. Currently, he is de-
voted to make easier the programming of heterogeneous
% architectures through the use of libraries.

Zeki Bozkus received the M.S. and the Ph.D. degrees in
computer science from Syracuse University, NY, USA, in
1990 and 1995, respectively. He worked as a senior com-
piler engineer at the Portland Group, Inc. for six years. He
worked as a senior software engineer at Mentor Graphics
for the parallelization of Calibre product line for 11 years.
He is now an assistant professor at the Computer Engi-
neering Department of Kadir Has University since 2008.
His primary research interests are in the fields of paral-
lel programming algorithms, parallel programming lan-
guages, and compilers.

Basilio B. Fraguela received the M.S. and the Ph.D. degrees
in computer science from the Universidade da Coruiia,
Spain, in 1994 and 1999, respectively. He is an associate
professor in the Departamento de Electronica e Sistemas
of the Universidade da Corufia since 2001. His primary re-
search interests are in the fields of programmability, an-
alytical modeling, design of high performance processors
and memory hierarchies, and compiler transformations.
His homepage is http://gac.udc.es/~basilio.

http://refhub.elsevier.com/S0743-7315(13)00151-2/sbref14
http://refhub.elsevier.com/S0743-7315(13)00151-2/sbref15
http://refhub.elsevier.com/S0743-7315(13)00151-2/sbref16
http://refhub.elsevier.com/S0743-7315(13)00151-2/sbref17
http://refhub.elsevier.com/S0743-7315(13)00151-2/sbref19
http://refhub.elsevier.com/S0743-7315(13)00151-2/sbref20
http://refhub.elsevier.com/S0743-7315(13)00151-2/sbref21
http://refhub.elsevier.com/S0743-7315(13)00151-2/sbref24
http://refhub.elsevier.com/S0743-7315(13)00151-2/sbref25
http://www.nas.nasa.gov/Software/NPB/
http://refhub.elsevier.com/S0743-7315(13)00151-2/sbref32
http://gac.udc.es/~basilio

	Exploiting heterogeneous parallelism with the Heterogeneous Programming Library
	Introduction
	Supported programming model
	The heterogeneous programming library
	The Array data type
	Computational kernels
	Host interface

	Evaluation
	Programmability analysis
	Performance analysis

	Related work
	Conclusions and future work
	Acknowledgments
	References

