
Discrete Applied Mathematics 161 (2013) 1950–1958

Contents lists available at SciVerse ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Three-fast-searchable graphs
Dariusz Dereniowski a, Öznur Yaşar Diner b,∗, Danny Dyer c
a Department of Algorithms and System Modeling, Gdańsk University of Technology, Poland
b Department of Information Technology, Kadir Has University, Turkey
c Department of Mathematics and Statistics, Memorial University of Newfoundland, Canada

a r t i c l e i n f o

Article history:
Received 28 February 2011
Received in revised form 12 February 2012
Accepted 4 March 2013
Available online 26 March 2013

Keywords:
Computational complexity
Fast searching
Graph searching

a b s t r a c t

In the edge searching problem, searchers move from vertex to vertex in a graph to capture
an invisible, fast intruder that may occupy either vertices or edges. Fast searching is a
monotonic internal model in which, at every move, a new edge of the graph G must be
guaranteed to be free of the intruder. That is, once all searchers are placed the graph G is
cleared in exactly |E(G)| moves. Such a restriction obviously necessitates a larger number
of searchers. We examine this model, and characterize graphs for which 2 or 3 searchers
are sufficient. We prove that the corresponding decision problem is NP-complete.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Graph searching was first introduced by Breisch in [6], as a problem in spelunking to find an individual lost in a cave.
Obviously, in such a situation, the person who is lost may be moving (though not actively avoiding the searchers), and due
to the darkness it may be hard to see. Such a person could easily be in themiddle of a cave corridor, as opposed to a junction.
This problem was first developed mathematically by Parsons in [15], who examined it particularly for trees.

The graph searching (or edge searching) problem is to move agents called searchers in such a way as to guarantee the
capture of an intruder. Capture occurs when an intruder and a searcher both occupy the same vertex at the same time.
Initially, an intruder may be located on any edge or vertex of the graph. Intruders are invisible to the searcher, and as such
all edges that may contain an intruder are said to be contaminated, or dirty. A path that does not contain any searcher is
called an unguarded path. The intruder can move at any time, and can move from its present location along any unguarded
path to any other vertex or edge in the graph. The intruder has full knowledge of the graph and the location of the searchers.

On the other hand, the searchers only stop on vertices. They have full knowledge of the graph, and each others’ locations,
but not that of any intruders. Theymove one at a time. In Parsons’ originalmodel, only threemoveswere allowed: a searcher
may be placed on any vertex u; a searcher may be removed from any vertex u and a searcher on umay slide along any edge
uv. An edge uv becomes clear by a sliding move in two ways: There may be (at least) two searchers on u, and one traverses
the edge uv while the other remains on u. The second way is when u contains one searcher, denoted by σ , and all edges
incident to u, other than uv, are clear. Then that searcher σ traverses uv.

Given a graphG, a sequence ofmoves using k searchers that endswith all edges ofG being clear is called a k-search strategy
for G; in that case G is called k-searchable. The minimum number of searchers needed to clear the edges of G is called the
search number of G, denoted by s(G).

In a search strategy, if, after removing a searcher, a clear edge is incident with a vertex that is connected by an unguarded
path to a contaminated edge, we say that the clear edge becomes recontaminated. A search strategy is said to bemonotonic if,

∗ Corresponding author. Tel.: +90 212 5336532; fax: +90 212 533 65 15.
E-mail addresses: deren@eti.pg.gda.pl (D. Dereniowski), oznur.yasar@khas.edu.tr (Ö.Y. Diner), dyer@mun.ca (D. Dyer).

0166-218X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.dam.2013.03.004

http://dx.doi.org/10.1016/j.dam.2013.03.004
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.dam.2013.03.004&domain=pdf
mailto:deren@eti.pg.gda.pl
mailto:oznur.yasar@khas.edu.tr
mailto:dyer@mun.ca
http://dx.doi.org/10.1016/j.dam.2013.03.004


D. Dereniowski et al. / Discrete Applied Mathematics 161 (2013) 1950–1958 1951

after an edge is cleared, searchersmustmove in away to never allow recontamination. A search strategy is said to be internal
if all searchers are first placed in the graph, and then are allowed only to slide along edges, and may never be removed. That
is, theymay not ‘‘jump’’ from a vertex to a non-adjacent vertex. Using these properties, we analogously define themonotonic
search number,ms(G), the internal search number, is(G), and themonotonic internal search number,mis(G). It is straightforward
to see that for a connected graph G, s(G) = is(G). It was shown independently in [5,13] that s(G) = ms(G). It is clear that
s(G) ≤ mis(G), and many examples of graphs exist where the ratio of these parameters may be arbitrarily large [3,18].

In [14], it is shown that computing the search number of trees is polynomial, graphs with search number at most 3 were
characterized, and, when combined with the results of [5,13], that the decision problem for search number is NP-complete.

Here we discuss the fast search model introduced in [7]. In this model, the intruder behaves as in the standard search
model. The searchers have full knowledge of the graph and each others’ positions, and move from vertex to vertex.
However, after placing all the searchers in the graph, we require that every subsequent move clears an edge and no edge
gets recontaminated. In addition the searchers cannot jump from vertex to vertex. Thus, any such strategy must be both
monotonic and internal. A strategy that corresponds to such a search is called a fast search strategy. The fast search number,
denoted by sf (G), is the minimum number of searchers needed for any fast search strategy. If k searchers are enough to
fast search G, then we say that G is k-fast searchable. The complexity result for fast searching of trees is shown in [7]. It was
observed by Yang [17] that the fast searching problem is related with the graph brushing problem [1] and the balanced
vertex ordering problem [4]. Other time constrained models are discussed in [2], and a general survey of graph searching is
available [9].

This paper develops the fast search problem further.We first characterize those graphswhich have fast search number at
most 3, and then show that the fast search decision problem is NP-complete through a reduction from a new search model
called the weak searching problem.

2. Preliminaries

Let G be a connected graph which may have loops or parallel edges. Let S denote a fast search strategy for G. Assume that
σ denotes one of the searchers used in S. We say that v is the start vertex for σ if σ is initially placed on v according to the
strategy S. We say that u is the end vertex for σ if σ stops at u (and never moves again). The start and end vertices for σ are
denoted by b(σ ) and t(σ ), respectively. Moreover,W (σ ) is the walk traversed by σ during the search of G. We say that the
start vertices of a search strategy are the vertices of the set ∪σ b(σ ). Similarly, the end vertices of a search strategy are the
vertices of the set ∪σ t(σ ). The degree of a vertex u in G, denoted by degG(u), is the number of the endpoints of the edges
incident to u in G. This in particular implies that adding a loop to a vertex increases its degree by 2. We call a vertex v even
(resp. odd) if it has even (resp. odd) degree. Let Vo be the set of odd vertices in G. Since an odd vertex is a start or an end
vertex in a fast search strategy, we have the following lemma.

Lemma 1 ([7]). If Vo is the set of odd degree vertices in a graph G, then sf (G) ≥
|Vo|
2 .

Following the development of edge searching we are interested in characterizing graphs where sf (G) is small.
We define reduction as reducing any path with consecutive vertices of degree two to a single edge. Note that reduction

does not change the fast search number, and that sf (G) = 1 whenever G can be reduced to a single edge. If a graph G does
not contain any vertices of degree 2 then G is a reduced graph.

The characterization of 3-searchable graphs is given in [14]. For the characterization of 2-fast searchable graphs G we
have the following result.

Theorem 2. For any reduced graph G, sf (G) ≤ 2 if and only if G consists of a path with vertex set {v0, v1, . . . , vn} together with
the following conditions:

1. For every i = 0, 1, . . . , n − 1 there are exactly two parallel edges between each pair of consecutive vertices vi and vi+1.
2. For every i = 0, 1, . . . , n there may be an arbitrary number of loops attached to each vi.
3. There may be at most two pendant edges attached to v0 or to vn.

Proof. Necessity is obvious. In order to show sufficiency we consider the graphs G for which s(G) ≤ 2 since s(G) ≤ sf (G) for
every graph. It is known [14] that the graphs for which s(G) ≤ 2 are those that are paths P together with possible pendant
edges and loops attached to each vertex. By Lemma 1, we have |V◦| ≤ 4. Let e = uvi be a pendant edge attached to vi where
vi is an internal vertex of the path P; hence i ∈ {1, 2, . . . , n−1}. Let deg(u) = 1. Thus u is either a start or an end vertex for a
searcher. Assume that u is a start vertex for a searcher. The other case can be shown similarly. This implies that the vertices
v0, v1, . . . , vi−1 must be cleared by a single searcher. Similarly vi+1, vi+2, . . . , vn must be cleared by a single searcher. Thus
the graph induced by v0, v1, . . . , vi−1 must be a path. Similarly vi+1, vi+2, . . . , vn also induce a path. Since G is a reduced
graph, G = K1,3 or K1,4 and v0 = vn = vi. This contradicts the assumption that vi is an internal vertex. Thus no pendant
edge is attached to an internal vertex. Hence we have proved Condition 3. Using a similar discussion we conclude that all
internal vertices must have even degree, thus Condition 1 and Condition 2 hold. �



1952 D. Dereniowski et al. / Discrete Applied Mathematics 161 (2013) 1950–1958

3. Characterization of biconnected 3-fast searchable graphs

Here we give the structure of the biconnected graphs that can be cleared with 3 searchers using a fast search strategy.
These three searchers are denoted by σ1, σ2 and σ3. First, we give the necessary definitions.

Recall that a biconnected graph is a graph which remains connected when we remove any single vertex. For a graph
G = (V , E) and X ⊆ V ,G[X] denotes the induced subgraph that is the subgraph of G with the vertex set X and the edge set
E(G[X]) = {uv ∈ E(G) : u, v ∈ X}. For a given pair of vertices u, v, µ(u, v) is the number of edges between u and v. In this
paper, we consider multigraphs and in that case we assume that E is a multiset, i.e. multiple occurrences of an edge with
the same endpoints are allowed. Then, E \ {e} means removing only one occurrence of e from E.

The contraction of an edge uv ∈ E ofG is an operation of removing all the edges between u and v, and unifying the vertices
u and v, i.e. these vertices are replaced with a new vertex that is adjacent to all the vertices adjacent to u or v in the initial
graph preserving the multiplicities of the edges. The deletion of an edge e ∈ E is the operation of removing the edge e. If H
is the graph obtained from G by sequence of edge deletions and contractions, then H is called a minor of G. The following
lemma says that edge searching is closed under taking minors.

Lemma 3 ([15]). If H is a minor of G, then s(H) ≤ s(G).

However, a similar lemma does not hold for fast searching [7] and this forces us to establish different ground rules of
characterizational discussions.

A biconnected graph G is outerplanar if it has a planar embedding in which the infinite face includes all of its vertices.
Consider an outerplanar embedding of a biconnected planar graph G. We say that uv ∈ E is a boundary edge if it is incident
to the infinite face. All the remaining edges of G are called internal edges. We fix an outerplanar embedding of G, in order
boundary edges and internal edges to be well defined.

A boundary path in G is a path containing only boundary edges. Note that a boundary path is not necessarily an induced
path. Note that the biconnectedness of G implies that the boundary edges form a cycle. If uv and u′v′ are different boundary
edges then a boundary path P is connecting them if it is one of the two boundary paths formed from removing uv and u′v′

from the set of all boundary edges. Here the term path means a simple graph, i.e. a path does not contain parallel edges.
A chord of a path P in a graph G is an edge e ∈ E(G) \ E(P) between two vertices of P . Two chords e, e′ of P are nested if

the graph (V (P), E(P) ∪ {e, e′
}) is contractible to a multigraph with two vertices and three parallel edges between them.

Two edges e, e′
∈ E are called opposing poles of G if the two boundary paths connecting e and e′ have no nested chords.

An edge e ∈ E is a pole if there exists e′
∈ E such that e and e′ are opposing poles. If such two edges exist or G consists of a

single edge, then we say that G is bipolar.

Theorem 4 ([14]). If G is a reduced biconnectedmultigraph then the search number of G is atmost 3 if and only if G is outerplanar
and bipolar.

Since every fast search strategy is also a search strategy, by Theorem 4 we have the following result.

Corollary 5. If a reduced biconnected graph G is 3-fast searchable then G is bipolar and outerplanar. �

To be able to conclude that a property shown for the set of start vertices is also true for the set of end vertices in some
search strategy, we use the concept of reversibility.

Definition 1 ([16]). Given a search strategy S, define the reverse of a step a ∈ S, denoted by a−1, as follows:

• If a is ‘slide σi from v to u’ then a−1 is ‘slide σi from u to v’.
• If a is ‘remove σi from v’, then a−1 is ‘place σi on v’.
• If a is ‘place σi on v’, then a−1 is ‘remove σi from v’.

Given a search strategy S = (a1, a2, . . . , al) that uses l steps, define the inverse of S, denoted by S−1 to be S−1
= (a−1

l ,

a−1
l−1, . . . , a

−1
1 ).

We say that a search strategy S is reversible if S−1 is a search strategy. Lemma 3 in [16] proves that monotonic search
strategies are reversible. However, their proof can be easily generalized to general search strategies on general graphs.
Moreover, if S is a fast search strategy, then an operation of sliding a searcher along an edge e appears in S−1 exactly once
for each edge e. This gives us the following lemma.

Lemma 6. If S is a fast search strategy that uses k searchers for a multigraph G, then S−1 is a fast search strategy that uses k
searchers for G. �

Lemma 7. If G is a reduced biconnected 3-fast searchable multigraph then for any fast search strategy with 3 searchers, the set
X of start (end) vertices is such that |X | = 1, or |X | = 2 and the two vertices in X are adjacent.



D. Dereniowski et al. / Discrete Applied Mathematics 161 (2013) 1950–1958 1953

Fig. 1. Nested chords of a boundary path between e and e1 .

Fig. 2. The graphs H such that G is contractible to H .

Proof. Assume that S = (s1, . . . , sl) is a search strategy for G. Assume for a contradiction that the set of start vertices X is
of size 3. When the first move of sliding a searcher σi from u to v occurs, then degG(u) = 1, because no other searcher is at
u. This contradicts the fact that G is biconnected. Hence |X | ≤ 2.

Let the initial placement of the searchers be u = b(σ1) = b(σ2) ≠ b(σ3) = v and suppose that there is no edge between
u and v. As before, σ3 cannot change his position until another searcher reaches v. Then, after either of σ1 or σ2 move,
they are on vertices of degree at least three since G is reduced. Each of those two vertices must be incident to at least two
contaminated edges, and hence unable to move. Thus, the edges incident to v can never be clear, a contradiction. Therefore
there is an edge between u and v. By Lemma 6, the property also holds for the set of end vertices. �

Lemma 8. If G is a reduced biconnected outerplanar bipolar 3-searchable multigraph then for each monotonic search strategy
using 3 searchers we have b(σi) ∈ e for each i = 1, 2, 3 and t(σi) ∈ e′ for each i = 1, 2, 3, where e, e′ are some opposing poles
of G. Furthermore, e is the first cleared edge and e′ is the last.

Proof. By Lemma 7 the set X of start vertices has size at most 2. If all the searchers start at the same vertex u then the first
move of a searcher results in a situationwhen one edge e incident to u is clear and both end vertices of e = uv are occupied by
the searchers. If the set of starting vertices containsmore than one vertex then by Lemma 7, u = b(σ1) = b(σ2) ≠ b(σ3) = v
and uv ∈ E. Then, if e = uv is not the first cleared edge, then all searchers get stuck after the first move (as G is a reduced
graph).

Thus, we let e = uv be the first cleared edge. We prove that in both cases e is a pole of G.
Fix an outerplanar embedding of G. Assume that e is not a pole. Let e1, e2 be two poles of G. We consider two cases and

in both of them we obtain a contradiction by proving that 3 searchers are not sufficient to clear G.

Case 1: e is a boundary edge. The edges e and e1 are not opposing poles. Let P1, P2 be the two boundary paths connecting
e and e1 in G. One of these paths contains e2. Assume without loss of generality that P2 contains e2. Note that P1
cannot have nested chords because then a boundary path connecting e1 and e2 would have nested chords. Thus, P2
has two nested chords and one of these chords has a subpath that contains e2 between its end vertices.
All possible configurations of chords of P2 are depicted in Fig. 1.
Similarly, since e and e2 are not opposing poles and since we consider a planar embedding of G, the pairs of chords
related to the pairs e, e1 and e, e2 are edge-disjoint. Then every such graph contains one of the graphs shown in
Fig. 2 as a minor. Call this minor H .
It is easy to see that it is impossible to search H if the three searchers are initially placed on the vertices incident to
e and e is the first cleared edge. By Lemma 3, there exists no 3-search strategy that clears G, such that the first edge
cleared is e. Thus, no 3-fast search strategy for G starting by clearing e exists. This leads to a contradiction.

Case 2: e is an internal edge. Let P1 and P2 be the two different boundary paths connecting the end vertices of e. Assume,
without loss of generality, that ei ∈ E(Pi) for i = 1, 2. For each i = 1, 2, Pi has a chord, because otherwise either
G is not a reduced graph or e is a boundary edge. There are two possibilities when we take into consideration the
position of the chord of Pi with respect to the pole ei. Both possibilities in the case of P2 are depicted in Fig. 3(a). As
before, each such graph contains one of the graphs in Fig. 3(b) as a minor H . Then it is easy to see that, by Lemma 3,
it is not possible to clear G when all the searchers are initially placed at the vertices of e. The situation for P1 is
analogous.



1954 D. Dereniowski et al. / Discrete Applied Mathematics 161 (2013) 1950–1958

Fig. 3. (a) A graph G′ with two possible positions of the chord of P2; (b) possible graphs H such that G′ is contractible to H .

In this way we showed that in each 3-fast search strategy b(σi) ∈ e for some pole e of G. Since each search strategy is
reversible, we have t(σi) ∈ e′ for a pole e′ of G. It is easy to see that e and e′ must be opposing poles. �

We define starting and ending poles to be a pair of opposing poles in a biconnected bipolar 3-fast searchable graph from
which the searchers in a 3-fast search strategy start and end. Thus e and e′ from the statement of Lemma 8 is a pair of starting
and ending poles.

Lemma 9. If G is a reduced biconnected 3-fast searchable graph then

1. if all vertices of G are even, then G contains a pair of adjacent starting and ending poles;
2. if G has an odd vertex, then there are exactly two odd vertices, one of which is a vertex of a starting pole and the other is a

vertex of a corresponding ending pole.

Proof. LetGbe a reduced biconnected 3-fast searchable graph, and e and e′ be the starting and ending poles ofG. By Lemma1,
|Vo| ≤ 6. On the other hand by Lemma 8, the searchers start and end at the poles, thus Vo ⊆ e ∪ e′, and thus |Vo| ≤ 4. Since
the number of odd vertices must be even, we must have 0, 2 or 4 odd vertices. If the poles are incident, then |Vo| ≤ 3, and
hence |Vo| ≤ 2. Assume that the poles are not incident and |Vo| = 4. Then, each vertex of each pole must be odd. Lemma 8
implies that each pole contains a vertex that is initially occupied by even number of searchers. This is a contradiction. Thus,
when the poles are not incident |Vo| ≤ 2.

Assume that all the vertices of G have even degree. There exists a vertex u ∈ e such that 1 or 3 searchers start at u. This
vertex has even degree only if t(σi) = u for some i ∈ {1, 2, 3}. Thus e′

= uv′ for some v′
∈ V . Therefore e and e′ are adjacent

and we have the first part.
Finally assume that there are two vertices of odd degree in G. Since an odd degree vertex is a start or an end vertex in

each fast search strategy, by Lemma 8 we have that both of these vertices belong to e ∪ e′. Let e = uv. If only one of u or
v is odd, then e′ contains the second odd vertex and the statement follows. Otherwise, either e or e′ contains both of the
odd vertices. Without loss of generality we can consider the case when both u and v are of odd degree. We have that the
number of searchers that start at one of the vertices in e, say u, is even. Then, degG(u) is odd if and only if t(σi) = u for some
i ∈ {1, 2, 3}. This means that u ∈ e′. So, each pole has at least one vertex of odd degree and the lemma follows. �

The following theorem completes the classification of biconnected 3-fast searchable graphs. Together with Corollary 11
they give the characterization of start and end vertices in a 3-fast search.

Theorem 10. Let G be a reduced biconnected graph. Then G is 3-fast searchable if and only if G is outerplanar, bipolar and satisfies

(Vo = ∅ and e ∩ e′
≠ ∅) or (|Vo| = 2, Vo ⊂ e ∪ e′, e ∩ Vo ≠ ∅ and e′

∩ Vo ≠ ∅) (1)

for some opposing poles e and e′. Moreover, for each 3-fast search strategy for G, ∃e, e′
∈ E such that the following holds:

for v ∈ e \ e′, deg
G

(v) ⇔ |{σi : b(σi) = v, i = 1, 2, 3}| is even, and (2)

for u ∈ e′
\ e, deg

G
(u) ⇔ |{σi : t(σi) = u, i = 1, 2, 3}| is even. (3)

Proof. If a reduced biconnected graph G is 3-fast searchable then, by Corollary 5 and by Lemma 9, G is outerplanar, bipolar
and Condition (1) holds.

Let us prove the reverse implication by constructing a 3-fast search strategy for G. First, fix an outerplanar embedding of
G. Since G is a reduced biconnected outerplanar bipolar graph, [14] tell us that G is 3-searchable. Then by Lemma 8, there
exist two opposing poles e = u1v1 and e′

= un1vn2 such that b(σi) ∈ e and t(σi) ∈ e′ for each i = 1, 2, 3. Let P1 and P2 be the
two disjoint boundary paths connecting e and e′. Let P1 and P2 contain the vertices u1, . . . , un1 and v1, . . . , vn2 , respectively.
Assume without loss of generality that u1 ∉ {un1 , vn2}, i.e. if the poles share a vertex then this vertex is v1.

All possible configurations of the poles (and initial and final placements of searchers) are summarized in Fig. 4. The
vectors (m; n) and (k; l) at the vertices u1 and v1, respectively, characterize the possible initial configurations: m searchers
start at u1 while k searchers start at v1 or n searchers start at u1 while l searchers start at v1. Note that it must hold that
m + k = n + l = 3.

We will restrict our discussion to Case (a), the other cases follow in a similar fashion. Note that the parity of the vertices
in edge e in Fig. 4(d) is independent of the fact which vertex in the pole un1vn2 is of odd degree.



D. Dereniowski et al. / Discrete Applied Mathematics 161 (2013) 1950–1958 1955

Fig. 4. All possible configurations of the poles (filled vertices are of odd degree).

Now we prove that there exists a 3-fast search strategy for G. We use induction on i + j to show that if all the edges of
the graph

G′
= G[{u1, . . . , ui, v1, . . . , vj}] (4)

have been cleared, then we can extend the cleared graph by adding one of the vertices ui+1, vj+1 (and its corresponding
edges) to the clear part of G. First we show that G[{u1, v1}] can be cleared. We first clear the edge e. If b(σ1) = u1 and
b(σ2) = b(σ3) = v1, then move σ3 along e to u1, clearing e. If b(σ1) = b(σ2) = b(σ3) = u1, move σ2 along e to v1, clearing
e. In either case, σ3 next clears all the edges between u1 and v1 parallel to e. In this way G[{u1, v1}] has been cleared.

Moreover, σ1 occupies u1 while σ2 occupies v1, and those searchers will follow the paths P1 and P2, respectively, during
the search.

Assume that G′ in Eq. (4) is clear. Since G is outerplanar and bipolar, we have the possibilities:

(1) All the contaminated edges incident to ui are incident to ui+1. Assume first that σ3 is at ui. We have µ(ui, ui+1) ≤ 2,
because otherwise the graph has a pair of nested chords. First we show that there are exactly two edges between ui and
ui+1.
If i = 1 then it follows from how we clear G[{u1, v1}] that there are exactly two searchers at u1 if and only if µ(u1, v1)
is odd. Since we consider the case where u1 has odd degree and since the only neighbors of u1 are v1 and u2, we must
have that µ(ui, ui+1) is even. Since nested chords are not allowed, µ(ui, ui+1) = 2.
If i > 1 then, by assumption, degG(ui) is even. Moreover, degG′(ui) is also even, because each time a searcher visited and
left the vertex ui, two edges incident to ui were cleared, and two searchers occupy ui, which means that each of them
cleared one edge incident to ui when reaching ui last time. So, an even number of cleared edges is incident to ui, and
consequently, an evennumber of contaminated edges is incident toui. This gives that there are exactly two contaminated
edges and, by assumption, those edges are between ui and ui+1. Thus, both of the searchers at ui can proceed to ui+1.
Then, σ1 remains at ui+1 and σ3 clears all edges, if any, between ui+1 and vj.
We can prove similarly that if σ3 is at vj then µ(ui, ui+1) = 1, and σ2 can slide to ui+1. Then σ3 clears all edges between
vj and ui+1.

(2) There exist contaminated edges connecting ui and vj′ for some j′ > j. Since G is outerplanar and bipolar no edge
vjui′ , i′ > i, is possible and the situation is analogous to (1).

At this point, we have shown that a 3-fast search strategy exists for all graphs corresponding to (a) in Fig. 4. Nowwe show
that statements (2) and (3) are true, again for case (a). Assume, by way of contradiction, that an even number of searchers
begin at u1. That is, either two or zero searchers begin there. Then, every time a searcher enters and leaves u1, he clears an
even number of edges. Since the degG(u1) is odd, to clear all incident edges, at least one searcher must finish the search at
u1. However, by Lemma 8, no searcher may end at u1, a contradiction. Again, similar arguments suffice for the other cases
of Fig. 4. �

Since the search strategies described in Theorem 10 differ only by their first move, we have the following result.

Corollary 11. If G is a reduced biconnected 3-fast searchable graph with a pair of starting and ending poles that are not adjacent,
then the initial placement of the searchers is independent of the final configuration of the searchers. �

Since any 3-fast searchable graph is 3-searchable, a complete characterization follows in the samemanner as in Theorem
6 of [14], though in this case, the statement of such a theorem becomes even less pleasant. In Theorem 10 we have
characterized the 3-fast searchable biconnected components of any 3-fast searchable graph.

4. NP-completeness of fast searching

In this section, we show that the fast searching problem is NP-complete. This result has been independently obtained by
Yang in [17] by a direct reduction from node searching.



1956 D. Dereniowski et al. / Discrete Applied Mathematics 161 (2013) 1950–1958

We introduce a new model called weak searching and prove that it is NP-complete, by reducing the node searching
problem to weak searching. Then, we give a reduction from the weak searching problem to the fast searching problem. We
consider only monotonic search strategies, so the following definitions do not allow any recontamination.

Definition 2. Given a graph G, a search strategy S is called amonotonic k-node search strategy if it satisfies the following:

• In the initial state all the edges of G are contaminated while in the final state all the edges of G are clear.
• Both in initial and final states no vertex of G is occupied by a searcher.
• Each step of S is one of the following.

(i) (placing a searcher) Place a searcher at an arbitrary vertex of G. No more than k searchers are occupying the vertices
of G at each step.

(ii) (removing a searcher) Remove a searcher from a vertex v of G. This operation is allowed only if all the edges incident
to v are clear or if there is another searcher located at v.

• An edge of G becomes clear whenever both of its end vertices are occupied by a searcher.

Notice that searching a multigraph does not differ from searching an underlying simple graph where parallel edges are
replaced with a single edge.

Definition 3. Given a graph G a monotonic k-weak search strategy S is defined as follows: The initial and final states are as
in a node search strategy. Each step of S consists of one of the following:

(i) (placing a searcher) Place a searcher at an arbitrary vertex of G. No more than k searchers are occupying the vertices of
G at the end of this step.

(ii) (removing a searcher) Remove a searcher from a vertex v of G. This operation is allowed only if all the edges incident to
v are clear or if there is another searcher located at v.

(iii) (clearing an edge) If at least two searchers are at u and at least one searcher is at v at the beginning of this step then we
clear an edge uv by sliding one of the searchers occupying u along the edge uv. The searcher moved along uv stays at v
at the end of the step.

Both models of searching we introduced above are monotonic, so wemay omit the term ‘‘monotonic’’ when wemention
these models. Note that in both the node and weak search strategy we consider the graph as searched once all the edges
have been cleared and all searchers have been removed from the graph.

Using the equivalence of the pathwidth and node searching problems [12] we have the following.

Theorem 12 ([10]). Given an integer k and a graph G, the problem of deciding whether a monotonic k-node search for G exists
is NP-complete.

Theorem 13. Given a graph G and an integer k, there exists amonotonic k-node search for G if and only if there exists amonotonic
(k + 1)-weak search for G.

Proof. Let S be a k-node search for G using searchers σ1, . . . , σk. Define a (k + 1)-weak search S ′ for G as follows. Initial
(empty) states of S and S ′ are identical. If in the jth step of S a searcher σi, i ∈ {1, . . . , k}, is placed on (removed from)
v ∈ V (G), thenwe extend S ′ by placing σi on v (removing σi from v, respectively). Moreover, if a set X = {vv1, vv2, . . . , vvl}

of edges gets clear in S as a result of placing a searcher at v, then each vi, i = 1, 2, . . . , l, must contain a searcher. In S ′ we
clear the edges in X by adding at most 3|X | moves: select an edge vvi ∈ X , place the searcher σk+1 on v, slide it from v to vi,
remove it from vi. Then remove uvi from X . Continue repeating this procedure until all edges in X are cleared.

Assume now that S ′ is a (k + 1)-weak search for G. Observe, that if in the jth step of S ′σi is placed on v and this results
in a situation when the k + 1 searchers are occupying k + 1 pairwise different vertices then in the (j + 1)th step the only
allowed operation is removing a searcher from a vertex. So, we can exchange these operations. After a finite number of such
modificationswe obtain a (k+1)-weak search S ′′ forG. Then S ′′ has the property that in each step atmost k different vertices
are occupied by searchers. If we remove from S ′′ all the operations of clearing edges and the operations of placing a searcher
on a vertex occupied by another searcher, then we get the desired k-node search for G. �

Now we describe a polynomial-time reduction from the weak searching problem to the fast searching problem. Let
k be an integer and G = (V , E) be a (simple) graph such that G and k constitute an instance of the monotonic k-weak
search problem. Define G(t) as a multigraph with t parallel edges between each pair of vertices that are adjacent in Gwhere
t = 2(|V (G)| + 1) · |E(G)|. The input to the fast searching problem is a graphG constructed as follows. We take 2k vertex
disjoint copies of G(t), denoted by G(t)

1 , . . . ,G(t)
2k , and we introduce another vertex v0. For each v ∈ V (G(t)

1 ) ∪ · · · ∪ V (G(t)
2k )

there are t parallel edges between v0 and v. Note here that the size of G is polynomial in the size of G, since we assume
without loss of generality that k ≤ |V (G)| + 1.

Theorem 14. Let G be a connected graph and let k ≥ 2. There exists a k-weak search for a G containing at least one edge if and
only if there exists a (k + 1)-fast search for G.



D. Dereniowski et al. / Discrete Applied Mathematics 161 (2013) 1950–1958 1957

Proof. Let S be a k-weak search strategy for Gwith searchers σ1, σ2, . . . , σk. We make five assumptions concerning S. Note
that none of the assumptions on S made below increases the number of searchers used.

1. We do not move a searcher along a clear edge e = uv. Such an operation can be replaced by two steps: removing the
searcher from u and placing it on the adjacent vertex v.

2. We do not place a searcher on a clear vertex (a vertex with no dirty edges incident to it). Such a move is not necessary,
since we consider only monotone strategies, and moving a searcher along a clear edge is forbidden. This means that
when all the edges adjacent to a vertex v are cleared we place no more searchers at v and we remove (not necessarily
immediately) the searchers at v in the forthcoming steps.

3. All edges are cleared by the searcher σk. As in the proof of Theorem 13, we know that no more than k − 1 vertices ever
contain searchers at any time. Thus, there is always one searcher ‘‘free’’.

4. No vertex ever contains more than 2 searchers. (Prior to such an event, surplus searchers may be removed.)
5. When σk clears an edge uv, the move immediate before was placing σk at u, and the move immediately following is to

remove σk from v.

Wewill construct a fast search strategy S ′ forG using k+1 searchers. The initial placement of the searchers in S ′ is b(σi) = v0
for each i = 1, . . . , k + 1. S ′ proceeds in such a way that v0 is occupied by σk+1 during the entire search strategy and the
subgraphsG[{v0} ∪ V (G(t)

i )] are cleared one by one. So, we only show how to clearG[{v0} ∪ V (G(t)
1 )]. The strategy S ′ for this

subgraph reflects the moves done in S as follows:

1. If in S a searcher σi has been placed on a vertex v ∈ V (G), then in S ′ we slide σi from v0 to v ∈ V (G(t)
1 ).

2. If in S a searcher σi (i ≠ k) has been removed from v ∈ V (G), then in S ′ we slide σi from v ∈ V (G(t)
1 ) to v0.

3. Assume that in S a searcher σk slides along an edge uv ∈ V (G) from u to v. In the search strategy S ′, the searcher σk slides
from v0 to u (and in this way clears one of the parallel edges between v0 and u). Then, σk clears all the edges between u
and v inG. As a result, σk ends at u, because there are t edges between u and v in G(t)

1 , and t is even. Then σk slides to v0.
Moreover, if all the edges adjacent to u (respectively v) in G are clear then we also use σk to clear all the edges between u
(v, resp.) and v0 of G

(t)
1 . Note that after performing all above moves the searcher σk occupies v0, because µ(v0, x) is even

for each x ∈ V (G(t)
1 ).

Due to the choice of t the construction of S ′ is correct. In particular, note that after clearing G(t)
1 , the searchers end at v0,

ready to clear G(t)
2 , and so on.

Assume now that S ′ is a (k+1)-fast search strategy forG. Wewill construct a k-weak search strategy forG. Since there are
2k subgraphs G(t)

j , initially at least k of them have all the vertices unoccupied by the searchers in the strategy S ′. (Otherwise,
no edge could be cleared in S ′.) For any such unoccupied subgraph, we know that when a searcher first reaches a vertex of
G(t)
j then another searcher, say σk+1, is at v0, because no recontamination is allowed.Without loss of generality, assume that

the unoccupied subgraphs are G(t)
1 to G(t)

k .
Let σk+1 be the last searcher leaving v0 (if this ever happens in S ′). Suppose that none of G(t)

1 through G(t)
k have been

completely cleared at this point. Then, since there is at least one contaminated edge in each of these copies of G, there must
be at least two searchers present in each of the k subgraphs, accounting for 2k > k+ 1 searchers, a contradiction. Thus, one
of these subgraphs must have been completely cleared while the searcher σk+1 remained at v0. In the following we assume
that this distinguished subgraph is G(t)

1 .
We will construct a k-weak search S for G. Remember that, according to the definition, initially no vertices of G are

occupied by the searchers in S. SinceG is a multigraph with exactly t edges between each pair of adjacent vertices u, v we
know that there exists a step in S ′ when a searcher slides along an edge between u and v, u, v ∈ V (G(t)

1 ), and two other
searchers occupy u and v. We build S based on S ′ as follows.

1. Assume that σi slides from u to v, u, v ∈ V (G(t)
1 ), and after this move σi is the only searcher at v. This means that all the

remaining edges between u and v in G(t)
1 are still dirty. In S we add two steps in which σi is first removed from u and then

placed at v.
2. Assume that σi slides from u to v, u, v ∈ V (G(t)

1 ), and there is a searcher at each of u and v. If this is the first time this has
occurred, then in S we slide σi from u to v, clearing this edge. Otherwise, we remove σi from u and subsequently place it
on v.

3. Assume that σi slides from u to v, u, v ∈ V (G(t)
1 ), and after this move no searcher is at u. This can only occur if all the

other edges between u and v in G(t)
1 are clear; thus one of the previous moves has cleared uv in G. We add two steps to

S: remove σi from u; place σi at v.

The above rules imply that the configuration of searchers σ1, . . . , σk is identical in G(t)
1 and in G after the corresponding

moves in S ′ and S, respectively. Moreover, after each pair of corresponding steps in the search strategies, when a set of all
parallel edges in G(t)

1 is cleared, the corresponding edge in G is cleared. �



1958 D. Dereniowski et al. / Discrete Applied Mathematics 161 (2013) 1950–1958

Theorem 15. The fast searching problem is NP-complete for multigraphs and for simple graphs.

Proof. Theorems 13 and 14 imply the NP-hardness of the decision version of fast searching. Due to monotonicity, the
problem is clearly in NP. In order to get the result for simple graphs one can observe that there exists a k-fast search for
a multigraph if and only if there exists a k-fast search for a simple graph obtained by ‘‘dividing’’ each edge of the multigraph
into a path with two edges. �

5. Conclusion and future directions

We investigate some of the classical areas of graph searching as they correspond to the fast search problem; namely, we
have considered graphs with small fast search number, and the complexity of the decision problem. The major area that
remains unconsidered is the fast search number’s relation to any of the width family of graph parameters. It is well known
from [8,11] that the search number of a graph is, essentially, its pathwidth, denoted by pw(G). In fact, pw(G) ≤ s(G) ≤

pw(G)+ 2. As a result, we know that pw(G) ≤ s(G) ≤ sf (G); however, this is a terrible lower bound for fast search number,
as the ratio sf (G)

s(G)
is shown to be arbitrarily large [7]. The same example shows that treewidth is equally bad. The ‘‘right’’

width parameter remains to be seen.
Another restriction that is commonly placed on a search strategy is that at every step the set of clear edges induces a

connected subgraph; such a strategy is called connected. We could apply the same restriction to the fast searching problem,
as was briefly discussed in [7]. Investigation of the connected fast search number csf (G) remains wide open.

Acknowledgments

We would like to thank the referees for their valuable comments and criticism.
The first author was partially supported by the Foundation for Polish Science (FNP) and by MNiSW grant N N206 379337

(2009–2011). The second author was partially supported by the Kadir Has University Research Grant BAP (2011–2013). The
third author was partially supported by NSERC.

References

[1] N. Alon, P. Pralat, R. Wormald, Cleaning regular graphs with brushes, SIAM Journal on Discrete Mathematics 23 (2008) 233–250.
[2] B. Alspach, D. Dyer, D. Hanson, B. Yang, Time constrained graph searching, Theoretical Computer Science 399 (3) (2008) 158–168.
[3] L. Barrière, P. Fraigniaud, N. Santoro, D. Thilikos, Searching is not jumping, in: Proceedings of the 29th Workshop on Graph Theoretic Concepts in

Computer Science, WG’03, in: LNCS, vol. 2880, Springer-Verlag, 2003, pp. 34–45.
[4] T. Biedl, T. Chan, Y. Ganjali, M.T. Hajiaghayi, D. Wood, Balanced vertex-ordering of graphs, Disrete Applied Mathematics 148 (2005) 27–48.
[5] D. Bienstock, P. Seymour, Monotonicity in graph searching, Journal of Algorithms 12 (1991) 239–245.
[6] R.L. Breisch, An intuitive approach to speleotopology, Southwestern Cavers 6 (1967) 72–78.
[7] D. Dyer, B. Yang, Ö. Yaşar, On the fast searchingproblem, in: R. Fleischer, J. Xu (Eds.), AAIM2008, in: LNCS, vol. 5034, Springer-Verlag, 2008, pp. 143–154.
[8] J.A. Ellis, I.H. Sudborough, J.S. Turner, The vertex separation and search number of a graph, Information and Computation 113 (1994) 50–79.
[9] F.V. Fomin, D.M. Thilikos, An annotated bibliography on guaranteed graph searching, Theoretical Computer Science 399 (3) (2008) 236–245.

[10] J. Gustedt, On the pathwidth of chordal graphs, Discrete Applied Mathematics 45 (1993) 233–248.
[11] N.G. Kinnersley, The vertex separation number of a graph equals its path-width, Information Processing Letters 42 (1992) 345–350.
[12] L.M. Kirousis, C.H. Papadimitriou, Searching and pebbling, Theoretical Computer Science 47 (1986) 205–218.
[13] A.S. LaPaugh, Recontamination does not help to search a graph, Journal of the ACM 40 (1993) 224–245.
[14] N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson, C.H. Papadimitriou, The complexity of searching a graph, Journal of the ACM 35 (1988) 18–44.
[15] T.D. Parsons, Pursuit-evasion in a graph, in: Theory and Applications of Graphs, in: Lecture Notes inMathematics, Springer-Verlag, 1976, pp. 426–441.
[16] C.Worman, B. Yang, Searching trees with sources and targets, in: Proceedings of the 2nd Annual InternationalWorkshop on Frontiers in Algorithmics,

FAW’08, in: LNCS, vol. 5059, Springer-Verlag, 2008, pp. 174–185.
[17] B. Yang, Fast edge searching and fast searching on graphs, Theoretical Computer Science 412 (2011) 1208–1219.
[18] B. Yang, D. Dyer, B. Alspach, Sweeping graphs with large clique number, Discrete Mathematics 309 (18) (2009) 5770–5780.


	Three-fast-searchable graphs
	Introduction
	Preliminaries
	Characterization of biconnected 3-fast searchable graphs
	NP-completeness of fast searching
	Conclusion and future directions
	Acknowledgments
	References


