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We use the shell-model Monte Carlo approach to study microscopically the crossover from vi-
brational to rotational collectivity in families of even-even samarium and neodymium isotopes. In
particular, we identify a signature of this crossover in the low-temperature behavior of 〈J2〉T , where
J is the total spin and T is the temperature, and find it in agreement with its values inferred from
experimental data. We calculate the state densities and find them to agree very well with experimen-
tal data. We also calculate a collective enhancement factor from the ratio of the total state density
to the intrinsic state density as calculated in the finite-temperature Hartree-Fock-Bogoliubov ap-
proximation. The decay of this enhancement factor with excitation energy is shown to be correlated
with the pairing and shape phase transitions in these nuclei.

PACS numbers: 21.60.Cs, 21.10.Ma, 21.60.Ka, 27.70.+q

Introduction. The shell-model Monte Carlo (SMMC)
method [1, 2] has been used successfully for the mi-
croscopic calculation of statistical and collective prop-
erties of atomic nuclei, and in particular level densi-
ties [3–8]. The SMMC approach enables fully correlated
configuration-interaction (CI) shell model calculations in
much larger configuration spaces than those that can be
treated by conventional diagonalization methods. Us-
ing a proton-neutron formalism and stabilization tech-
niques in the canonical ensemble, SMMC has been ap-
plied successfully to the well-deformed rare-earth nucleus
162Dy [9]. Here we apply the SMMC approach to study
microscopically families of even-even rare-earth isotopes.
Such isotopic families are known to exhibit a crossover
from vibrational to rotational collectivity as the num-
ber of neutrons increases from shell closure towards the
mid-shell region. This crossover corresponds, in the ther-
modynamic limit, to a phase transition from spherical to
deformed nuclei. However, the microscopic description of
such a crossover in the framework of a truncated spher-
ical shell model has remained a major challenge. The
dimensionality of the many-particle shell model space re-
quired to describe heavy rare-earth nuclei is many orders
of magnitude beyond the capability of conventional diag-
onalization methods. The SMMC approach, while capa-
ble of treating such large model spaces, does not provide
the detailed spectroscopic information that is often used
to identify the appropriate type of nuclear collectivity.

Here we study families of even-even samarium and
neodymium isotopes and show that the crossover from
vibrational to rotational collectivity can be identified
through the temperature dependence of 〈J2〉T , with J

being the total nuclear spin and T the temperature.
This thermal observable can be calculated in the SMMC
method and we use it to demonstrate that the above
crossover can be described microscopically in the frame-

work of a truncated spherical shell model approach. Fur-
thermore, we find that the temperature dependence of
〈J2〉T agrees well with its values extracted from experi-
mental data. We also calculate the total state densities
for the corresponding samarium isotopes and find them
in very good agreement with experimental state densities.

Vibrational and rotational collective states account for
a significant fraction of the total state density up to mod-
erate excitation energies and their contribution is de-
scribed by the so-called collective enhancement factor.
Collective enhancement is one of the least understood
topics in the studies of level densities [10]. Both empirical
models and combinatorial models of level densities often
utilize phenomenological enhancement factors [11, 12].
Although various expressions for vibrational and rota-
tional collective enhancement factors are available in the
literature [10, 13], it is highly desirable to study such en-
hancement factors microscopically. In particular, little
is known about the decay of collectivity with excitation
energy although it plays an important role in fission re-
actions [10]. Here we define a total collective enhance-
ment factor as the ratio between the total state density
and the intrinsic state density obtained within the ther-
mal Hartree-Fock-Bogoliubov (HFB) approximation and
study microscopically the decay of this enhancement fac-
tor with excitation energy. We find that the damping
of the vibrational and rotational collectivity with excita-
tion energy is correlated, respectively, with the pairing
and shape phase transitions in these nuclei.

Model space and interaction. Here we use the same
single-particle model space as in Ref. [9], namely 0g7/2,
1d5/2, 1d3/2, 2s1/2, 0h11/2, 1f7/2 for protons, and 0h11/2,
0h9/2, 1f7/2, 1f5/2, 2p3/2, 2p1/2, 0i13/2, and 1g9/2 for
neutrons. This model space is larger than one major
shell for both protons and neutrons, and was determined
by examining the occupation probabilities of spherical
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orbitals for well-deformed rare-earth nuclei [9].
The single-particle energies in the CI shell-model

Hamiltonian are determined so as to reproduce the single-
particle energies of a spherical Woods-Saxon plus spin-
orbit potential in the spherical Hartree-Fock approxima-
tion. The effective interaction consists of monopole pair-
ing and multipole-multipole terms (quadrupole, octupole
and hexadecupole) [9]

−
∑

ν=p,n

gνP
†
νPν −

∑

λ

χλ : (Oλ;p +Oλ;n) · (Oλ;p +Oλ;n) : .

(1)
Here : : denotes normal ordering, P †

ν =
∑

nljm(−)j+m+la†αjm;νa
†
αj−m;ν are monopole pair oper-

ators for protons (ν = p) and neutrons (ν = n), while

Oλ;ν = 1√
2λ+1

∑

ab〈ja||
dVWS

dr Yλ||jb〉[a
†
αja;ν

× ãαjb;ν ]
(λ)

with ãjm = (−)j+maj−m is the mass 2λ-pole operator.
The pairing coupling strengths are parametrized by
gν = γ · ḡν with ḡp = 10.9/Z and ḡn = 10.9/N (Z and N
are the number of protons and neutrons, respectively).
The latter are determined so that the pairing gaps
calculated in the number-projected BCS approxima-
tion could reproduce the experimental even-odd mass
differences for spherical nuclei in the mass region [9].
The factor γ is an effective suppression factor of the
overall pairing strength, part of which may be ascribed
to the fluctuations induced by pairing correlations
beyond the number-projected BCS approximation. The
multipole-multipole interaction terms we include in
(1) are the quadrupole, octupole and hexadecupole
terms (i.e., λ = 2, 3, 4). Their strengths are given by
χλ = χ · kλ, where χ is determined self-consistently [14]
and kλ are renormalization factors accounting for core
polarization effects.
In general, the moment of inertia I of the ground-state

band for a deformed nucleus is sensitive to γ, while the
slope of ln ρ(Ex) is sensitive to k2 [9]. In Ref. [9] we have
adopted the values γ = 0.77, k2 = 2.12, k3 = 1.5 and
k4 = 1 for 162Dy. We have studied families of samarium
(148−155Sm) and neodymium (143−152Nd) isotopes (both
even and odd) and found that a more appropriate choice
to reproduce the overall experimental systematics is k3 =
1, while γ and k2 are parametrized by a weak and smooth
N -dependence γ = 0.72− 0.5/[(N − 90)2+5.3] and k2 =
2.15 + 0.0025(N − 87)2.
The crossover from vibrational to rotational collectiv-

ity. At low temperatures, the observable 〈J2〉T is domi-
nated by the ground-state band. Assuming a vibrational
or rotational ground-state band with an excitation en-
ergy E2+ of the first excited J = 2+ state, we find [9, 15]

〈J2〉T ≈







30 e
−E

2+
/T

(

1−e
−E

2+
/T

)2 vibrational band

6
E

2+
T rotational band

. (2)

Thus, the low-temperature behavior of 〈J2〉T is sensitive
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FIG. 1. 〈J2〉T as a function of temperature in a family of
even-even samarium isotopes 148−154Sm. The SMMC results
(open circles) are compared with the experimental results de-
duced from known low-lying levels (dashed lines) and from
the additional contribution of higher levels described by an
experimental BBF level density (solid lines).

to the type of collectivity and can be used to distinguish
between vibrational and rotational nuclei.
In Fig. 1, we show the SMMC results (open circles)

for 〈J2〉T at low temperatures for the even-even samar-
ium isotopes 148−154Sm. The 148Sm nucleus exhibits a
soft response to temperature, typical of a vibrational nu-
cleus. Indeed, the vibrational band formula in Eq. (2)
can be well fitted to the SMMC results for 〈J2〉T with
Evib

2+ = 0.538 ± 0.031 MeV, in agreement with the ex-
perimental value of Eexp

2+ = 0.550 MeV. In the heav-
ier samarium isotopes, the low-temperature response of
〈J2〉T becomes increasingly linear, suggesting the pres-
ence of stronger rotational collectivity. Fitting the rota-
tional band formula in Eq. (2) to the SMMC results for
154Sm, we find Erot

2+ = 0.087±0.006MeV, consistent with
the experimental value of Eexp

2+ = 0.082 MeV – an evi-
dence for the rotational nature of this nucleus. Thus our
SMMC results for 〈J2〉T reproduces the proper dominant
collectivity in both 148Sm and 154Sm, demonstrating the
crossover from vibrational to rotational collectivity in the
even-even isotopic chain.
The experimental values of 〈J2〉T can be extracted at

sufficiently low temperatures from

〈J2〉T =

∑

i Ji(Ji + 1)(2Ji + 1)e−Ei/T

∑

i(2Ji + 1)e−Ei/T
, (3)

where the summations are carried over the experimen-
tally known low-lying energy levels i with excitation en-
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ergy Ei and spin Ji. These experimental estimates are
shown by the dashed lines in Fig. 1 for the even-even
148−154Sm isotopes. However, since the experimental
level scheme is incomplete above a certain energy, Eq. (3)
underestimates the correct experimental value of 〈J2〉T
above a certain temperature. We can obtain a more re-
alistic estimate by using the discrete sum over energy
levels up to a certain energy threshold EN (below which
the experimental spectrum is complete), and estimate the
contribution of levels above EN in terms of an average
level density ρ(Ex) that is parametrized with the help of
available experimental data. We then have

〈J2〉T =
1

Z(T )

(

N
∑

i

Ji(Ji + 1)(2Ji + 1)e−Ei/T+

∫ ∞

EN

dEx ρ(Ex) 〈J
2〉Ex e−Ex/T

)

, (4)

with Z(T ) =
∑N

i (2Ji+1)e−Ei/T +
∫∞
EN

dExρ(Ex)e
−Ex/T

is the corresponding experimental partition function.
Here 〈J2〉Ex is the average value of J2 at a given excita-
tion energy Ex. For the level density we use a backshifted
Bethe formula (BBF) with single-particle level density
parameter a and backshift parameter ∆, extracted from
the neutron resonance data (when available) and count-
ing data at low energies. Using the spin-cutoff model
(obtained assuming random coupling of the individual
nucleon spins [16]), we have 〈J2〉Ex = 3〈J2z〉Ex = 3σ2(Ex)
where σ2 is the spin-cutoff parameter. The latter is esti-
mated from σ2 = IT/~2 using T = [(E −∆)/a]1/2 and
a rigid-body moment of inertia I ≈ 0.015A5/3

~
2. The

corresponding results for 〈J2〉T , shown by the solid lines
in Figs. 1, are in reasonable agreement with the SMMC
results along the crossover from 148Sm to 154Sm.
In Fig. 2 we show similar results for the low-

temperature behavior of 〈J2〉T for the even-even
144−152Nd isotopes. The 〈J2〉T response at low
temperatures—soft in 144Nd— becomes more rigid in the
heavier neodymium isotopes to assume an approximately
linear form in 150Nd and 152Nd. Fitting the SMMC re-
sults to the vibrational band formula in Eq. (2) for 144Nd
we find Evib

2+ = 0.702±0.062 MeV, in agreement with the
experimental value of Eexp

2+ = 0.697 MeV. Using the rota-
tional band formula, we find Erot

2+ = 0.132±0.012MeV for
150Nd (Eexp

2+ = 0.130MeV) and Erot
2+ = 0.107±0.006MeV

for 152Nd (Eexp
2+ = 0.073 MeV). These results confirm

that our spherical shell model Hamiltonian is capable of
describing the crossover from vibrational collectivity in
144Nd to rotational collectivity in 150Nd and 152Nd.
The determination of the ground-state energy for even-

even isotopes. An accurate estimate of the ground-state
energy E0 is crucial in obtaining the excitation energy
Ex = E −E0 necessary for the calculations of state den-
sities. Because of the low excitation energies in the heavy
rare-earth nuclei, we have carried out calculation of the
thermal energy up to an inverse temperature value of
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FIG. 2. 〈J2〉T as a function of temperature in a family of
even-even neodymium isotopes 144−152Nd. Symbols and lines
are as in Fig. 1.

β (= 1/T ) ∼ 20 MeV−1 [9]. The ground-state energy
can then be estimated by extrapolating the thermal en-
ergy in the limit β → ∞. In vibrational and rotational
nuclei we have used expressions for the low-temperature
energy in the ground-state band approximation [9, 15]

E(T ) ≈

{

E0 + 5E2+
e
−E

2+
/T

1−e
−E

2+
/T vibrational band

E0 + T rotational band
(5)

to extract the ground-state energy E0. For other nuclei
in the crossover we have estimated E0 by taking average
value of E(T ) at sufficiently low temperatures.
State densities: theory and experiment. In Fig. 3 we

show the total state densities as a function of the ex-
citation energy Ex for the even-even samarium isotopes
(148−154Sm). The SMMC state densities (circles), calcu-
lated using the methods of Refs. [3] and [9], are compared
with experimental data that consist of level counting data
at low excitation energies (histograms) and, when avail-
able, neutron resonance data at the neutron threshold en-
ergy (triangles). For nuclei with neutron resonance data,
we have also included a BBF state density [17] (solid
lines) whose parameters a and ∆ are determined from
the level counting and the neutron resonance data [18].
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FIG. 3. Total state densities in the even-even 148−154Sm iso-
topes. The SMMC results (open circles) are compared with
level counting data (histograms), neutron resonance data (tri-
angles) and the BBF parametrization of the experimental
data (solid lines). Also shown are the HFB level densities
(dashed lines). The neutron and proton pairing transitions
are indicated by arrows and the shape transition by thick ar-
rows.

For the SMMC state densities of the even-even 144−152Nd
isotopes (not shown) we find similar agreement with ex-
perimental data.
For comparison, we also show in Fig. 3 the level den-

sity ρHFB calculated from the finite-temperature HFB
approximation (dashed lines) using the same Hamilto-
nian. The HFB level density accounts only for intrinsic
states, and therefore the enhancement observed in the
SMMC state density originates in vibrational and rota-
tional bands that are built on top of these intrinsic states.
The kinks in ρHFB are associated with the proton and
neutron pairing phase transitions (arrows) and the shape
phase transition (thick arrows). 148Sm is spherical in
its ground state and undergoes pairing transitions only.
150Sm has a non-zero deformation in its ground state and
undergoes also a shape transition to a spherical shape at
Ex ≈ 12.5 MeV. The ground-state deformation continues
to increase with mass number in 152Sm and 154Sm, and
the shape transitions occur at higher excitation energies
(outside the energy range shown in the figure).
Collective enhancement factors. The enhancement of

level densities due to collective effects is difficult to calcu-
late microscopically and is often modeled by phenomeno-
logical formulas. Here we propose to define a collective
enhancement factor by the ratio K = ρSMMC/ρHFB, a
quantity that we can extract directly in our microscopic
CI shell model approach. In Fig. 4, we show K (on a log-
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FIG. 4. Total collective enhancement factor K (see text) in
the even-even 148−154Sm isotopes as a function of excitation
energy Ex. Arrows are as in Fig. 3.

arithmic scale) versus excitation energy Ex for the same
samarium isotopes of Fig. 3 but up to higher excitation
energies of Ex ∼ 30 MeV.

148Sm is spherical in its ground state and the observed
collective enhancement must be due to vibrational collec-
tivity. This collectivity disappears (i.e, K ≈ 1) above the
proton pairing transition. The other samarium isotopes
shown in Fig. 4 are deformed in their ground state and K
exhibits a local minimum above the pairing transitions,
which we interpret as the decay of vibrational collectiv-
ity. The rapid increase of K above the pairing transi-
tions originates in rotational collectivity. This collectiv-
ity reaches a plateau as a function of excitation energy
and then decay gradually to K ∼ 1 in the vicinity of the
shape transition (thick arrow) when the nucleus becomes
spherical and no longer supports rotational bands.

Conclusions. We have carried out SMMC calculations
for isotopic families of the even-even rare-earth nuclei
148−154Sm and 144−152Nd. Using the observable 〈J2〉T ,
whose low-temperature behavior is sensitive to the spe-
cific type of nuclear collectivity, we have demonstrated
that a truncated spherical shell model approach can de-
scribe the crossover from vibrational to rotational collec-
tivity in heavy nuclei. We have also calculated the total
SMMC state densities and found them to be in very good
agreement with experimental data. We have extracted
microscopically a collective enhancement factor defined
as the ratio between the SMMC and HFB state densi-
ties. The damping of vibrational and rotational collec-
tivity seems to be correlated with the pairing and shape
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phase transitions, respectively.
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