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Abstract—Spatial modulation (SM), in which multiple anten-
nas are used to convey information besides the conventional
𝑀 -ary signal constellations, is a new multiple-input multiple-
output (MIMO) transmission technique, which has recently been
proposed as an alternative to V-BLAST (vertical Bell Labs
layered space-time). In this paper, a novel MIMO transmission
scheme, called spatial modulation with trellis coding (SM-TC), is
proposed. Similar to the conventional trellis coded modulation
(TCM), in this scheme, a trellis encoder and an SM mapper are
jointly designed to take advantage of the benefits of both. A soft
decision Viterbi decoder, which is fed with the soft information
supplied by the optimal SM decoder, is used at the receiver.
A pairwise error probability (PEP) upper bound is derived for
the SM-TC scheme in uncorrelated quasi-static Rayleigh fading
channels. From the PEP upper bound, code design criteria are
given and then used to obtain new 4-, 8- and 16-state SM-TC
schemes using quadrature phase-shift keying (QPSK) and 8-ary
phase-shift keying (8-PSK) modulations for 2, 3 and 4 bits/s/Hz
spectral efficiencies. It is shown via computer simulations and
also supported by a theoretical error performance analysis that
the proposed SM-TC schemes achieve significantly better error
performance than the classical space-time trellis codes and coded
V-BLAST systems at the same spectral efficiency, yet with
reduced decoding complexity.

Index Terms—Trellis coding, trellis coded modulation, MIMO
systems, spatial modulation.

I. INTRODUCTION

EMERGING generations of wireless communication sys-
tems mostly rely on the use of multiple-input multiple-

output (MIMO) transmission technologies, which offer signif-
icant improvements in channel capacity and reliability com-
pared to single antenna transmission systems [1]. Therefore,
MIMO transmission techniques have attracted considerable at-
tention during the past decade and several MIMO transmission
schemes have been proposed. One of the most encouraging
MIMO techniques is V-BLAST (vertical Bell Labs layered
space-time) [2] whose basic principle is the multiplexing
of the input data stream onto the transmit antennas of a
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MIMO link. Despite the high spectral efficiency provided
by V-BLAST, a major drawback is its very high maximum
likelihood (ML) decoding complexity which is caused by
inter-channel interference (ICI) at the receiver. Instead of a
high complexity ML decoder, one can use a low complex-
ity suboptimum decoder such as a minimum mean square
error (MMSE) decoder; however this results in a significant
degradation in error performance. As an alternative to V-
BLAST transmission, a novel MIMO transmission scheme
known as spatial modulation (SM) has been introduced by
Mesleh et al. in [3,4] to remove the ICI completely between
the transmit antennas of a MIMO link. The basic principle
of SM is to use the indices of multiple antennas to convey
information in addition to the conventional two dimensional
signal constellations such as M-ary phase shift keying (M-
PSK) and M-ary quadrature amplitude modulation (M-QAM),
where M is the constellation size. Consequently, the task of an
optimal SM decoder [5] is to jointly search for all of the M-ary
constellation points and transmit antennas to decide on both
the transmitted symbol and the index of the transmit antenna
over which this symbol is transmitted. SM provides some
advantages compared to classical MIMO transmission systems
in which all antennas transmit simultaneously. Since only one
transmit antenna is active during each symbol transmission,
ICI is completely eliminated in SM and this results in much
lower (linear) decoding complexity. Furthermore, SM does not
require synchronization between the transmit antennas of the
MIMO link and only one radio frequency (RF) chain is needed
at the transmitter.

In recent studies, inspired by SM, a space-shift keying
(SSK) modulation scheme in which only antenna indices
are used to transmit information has been proposed [6]. In
addition to the advantages of SM over V-BLAST, SM has
been combined with space-time block coding (STBC) [7] to
provide transmit diversity.

The inventors of SM have proposed a trellis coded spatial
modulation scheme in [8,9], where the key idea of trellis coded
modulation (TCM) [10] is partially applied to SM to improve
its performance in correlated channels. In this scheme, a
group of information bits is first split into two sequences,
where the second sequence directly enters the SM mapper
while the first sequence enters the SM mapper after passing
through a four-state convolutional encoder and then a random
block interleaver. The SM mapper chooses the active transmit
antenna by modulating the coded bits of the first sequence
and the constellation symbol by modulating the uncoded bits
of the second sequence. In other words, the TCM technique is
used in conjunction with SM to partition the transmit antennas
into subsets by maximizing the spacing between antennas of
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the same subset and only the information bits that determine
the transmit antenna number are convolutionally encoded. At
the receiver, with an optimal SM decoder, a hard decision
Viterbi decoder is employed for the coded bits; then combining
with the demodulated uncoded bits gives an estimate of the
original information bit sequence. It has been shown in [8]
that this scheme does not provide any error performance
advantage compared to uncoded SM in uncorrelated channel
conditions; on the other hand, the scheme of [8] does exhibit
improved performance in correlated channels. The reason for
this behavior can be explained by the trellis coding gain
which does not have an impact on the performance when
all the channel paths are uncorrelated. Here, we propose a
different design method to construct a trellis coded SM scheme
which benefits from the advantages of trellis coding in both
uncorrelated and correlated channels.

In this paper, a novel MIMO transmission scheme, called
spatial modulation with trellis coding (SM-TC), which directly
combines trellis coding and SM, is proposed. Similarly to
conventional TCM, the trellis encoder and the SM mapper
are jointly designed and a soft decision Viterbi decoder which
is fed with the soft information supplied by the optimal SM
decoder, is used at the receiver. The SM-TC mechanism, which
switches between transmit antennas of a MIMO link, provides
a type of virtual interleaving and offers an additional diversity
gain, known as time diversity [11]. First, we derive the general
conditional pairwise error probability (CPEP) for SM-TC and
then, for quasi-static Rayleigh fading channels, by averaging
over channel coefficients, we obtain the unconditional pairwise
error probability (UPEP) of SM-TC for error events with path
lengths two and three. Code design criteria are given for
the SM-TC scheme, which are then used to obtain the best
codes with optimized distance spectra for error events with
path lengths two and three. New SM-TC schemes with 4, 8
and 16 states are proposed for 2, 3 and 4 bits/s/Hz spectral
efficiencies. It is shown via computer simulations that the
proposed SM-TC schemes for uncorrelated and correlated
Rayleigh fading channels provide significant error perfor-
mance improvements over space-time trellis codes (STTCs),
coded V-BLAST systems and the scheme given in [8] in terms
of bit error rate (BER) and frame error rate (FER) yet with
a lower decoding complexity. In addition to this, from an
implementation point of view, unlike the STTCs, our scheme
requires only one RF chain at the transmitter, even if we
have a higher number of transmit antennas, and requires no
synchronization between them.

The organization of the paper is as follows. In Section II, we
give our system model and introduce the new SM-TC scheme.
In Section III, the PEP upper bound for the SM-TC scheme is
derived. Design criteria and design examples for SM-TC are
presented in Section IV. Bit error probability (BEP) analysis
of the new scheme is given in Section V. Simulation results
and performance comparisons are given in Section VI. Finally,
Section VII includes the main conclusions of the paper.

Notation: Bold, lowercase and capital letters are used for
column vectors and matrices, respectively. (.)∗, (.)𝑇 and
(.)

𝐻 denote complex conjugation, transposition and Hermitian
transposition, respectively. A (𝑝, 𝑞) represents the entry on the
𝑝th row and 𝑞th column of A. det (A) and rank (A) denote

the determinant and rank of A, respectively. 𝐶 (A) represents
the column space of A and 𝜆A

𝑖 denotes 𝑖th eigenvalue of A.
ℝ and ℂ denote the fields of real and imaginary numbers,
respectively. For a complex variable 𝑥, ℜ{𝑥} denotes the
real part of 𝑥. The probability of an event is denoted by
Pr(⋅). The probability density function (p.d.f.) of a random
variable (r.v.) 𝑋 is denoted by 𝑓 (𝑥). 𝐸 {⋅} stands for expec-
tation. 𝑋 ∼ 𝒩 (

𝑚𝑋 , 𝜎2
𝑋

)
denotes that the real r.v. 𝑋 has

the Gaussian distribution with mean 𝑚𝑋 and variance 𝜎2
𝑋 .

𝑋 ∼ 𝒞𝒩 (
0, 𝜎2

𝑋

)
represents the distribution of a circularly

symmetric complex Gaussian r.v. 𝑋 . 𝑄 (⋅) denotes the tail
probability of the standard Gaussian distribution. The number
of elements in a set 𝜂 is denoted as 𝑛 (𝜂). 𝜒 represents a
complex signal constellation of size 𝑀 .

II. SYSTEM MODEL

The considered SM-TC system model is shown in Fig.
1. The independent and identically distributed (i.i.d.) binary
information sequence u is encoded by a rate 𝑅 = 𝑘/𝑛 trellis
(convolutional) encoder whose output sequence v enters the
SM mapper. The spatial modulator is designed in conjunc-
tion with the trellis encoder to transmit 𝑛 coded bits in a
transmission interval by means of the symbols selected from
an 𝑀 -level signal constellation such as 𝑀 -ary phase-shift
keying (𝑀 -PSK), 𝑀 -ary quadrature amplitude modulation
(𝑀 -QAM), etc., and of the antenna selected from a set of
𝑛𝑇 transmit antennas such that 𝑛 = log2 (𝑀𝑛𝑇 ). The SM
mapper first specifies the identity of the transmit antenna
determined by the first log2𝑛𝑇 bits of the coded sequence v.
It than maps the remaining log2𝑀 bits of the coded sequence
onto the signal constellation employed for transmission of
the data symbols. Due to trellis coding, the overall spectral
efficiency of the SM-TC would be 𝑘 bits/s/Hz. The new signal
generated by the SM is denoted by 𝑥 = (𝑖, 𝑠) where 𝑠 ∈ 𝜒
is the data symbol transmitted over the antenna labeled by
𝑖 ∈ {1, 2, ⋅ ⋅ ⋅ , 𝑛𝑇 }. That is, the spatial modulator generates an
1×𝑛𝑇 signal vector

[
0 0 ⋅ ⋅ ⋅ 𝑠 0 ⋅ ⋅ ⋅ 0

]
whose 𝑖th entry is 𝑠

at the output of the 𝑛𝑇 transmit antennas for transmission. The
MIMO channel over which the spatially modulated symbols
are transmitted, is characterized by an 𝑛𝑇 × 𝑛𝑅 matrix H,
whose entries are i.i.d. r.v.’s having the 𝒞𝒩 (0, 1) distribution,
where 𝑛𝑅 denotes the number of receive antennas. We assume
that H remains constant during the transmission of a frame
and takes independent values from one frame to another. We
further assume that H is perfectly known at the receiver,
but is not known at the transmitter. The transmitted signal is
corrupted by an 𝑛𝑅-dimensional additive complex Gaussian
noise vector with i.i.d. entries distributed as 𝒞𝒩 (0, 𝑁0). At
the receiver, a soft decision Viterbi decoder, which is fed with
the soft information supplied by the optimal SM decoder, is
employed to provide an estimate û of the input bit sequence.

Let us introduce the concept of SM-TC by an example for
𝑘 = 2 bits/s/Hz with 𝑛𝑇 = 4. Consider an 𝑅 = 2/4 trellis
encoder [12] with the octal generator matrix [ 0 3 0 1

1 0 2 0 ], followed
by the SM mapper. At each coding step, the first two coded
bits determine the active transmit antenna over which the
quadrature phase-shift keying (QPSK) symbol determined by
the last two coded bits is transmitted. The corresponding trellis
diagram is depicted in Fig. 2, where each branch is labeled
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Fig. 1. SM-TC system model.
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Fig. 2. Trellis diagram of the SM-TC scheme with 𝑅 = 2/4 trellis encoder,
four transmit antennas and QPSK symbols given by exp(𝑗2𝜋𝑠/4).

by the corresponding output bits and SM symbol (𝑖, 𝑠), where
𝑖 ∈ {1, 2, 3, 4} and 𝑠 ∈ {0, 1, 2, 3}. Although this scheme can
be considered as a generalization of [8], it differs from that of
[8] in three basic ways. Firstly, to provide coding as well as
diversity gain, all information bits are convolutionally encoded
unlike in [8], in which only the information bits determining
the corresponding antenna index are encoded. Thus, our joint
encoding allows the operation of an optimum soft decoder at
the receiver, and consequently improves the error performance
of the system significantly. Secondly, an interleaver is not
included in our scheme; however, we benefit from the SM-TC
mechanism which acts as a virtual interleaver by switching
between transmit antennas of a MIMO link to provide addi-
tional time diversity. Finally, a soft decision Viterbi decoder
is employed at the receiver opposite to the hard decision
Viterbi decoder of [8]. From these major differences in the
operation of two schemes, we conclude that our scheme can
be considered as being more directly inspired by Ungerboeck’s
TCM, in which the conventional 𝑀 -PSK or 𝑀 -QAM mapper
of TCM is replaced by an SM mapper.

III. PAIRWISE-ERROR PROBABILITY (PEP) DERIVATION

OF THE SM-TC SCHEME

In this section, first, the CPEP of the SM-TC scheme is
derived, and then for quasi-static Rayleigh fading channels, by
averaging over channel fading coefficients, the UPEP of the
SM-TC scheme is obtained for error events with path lengths
two and three. For the sake of simplicity, one receive antenna
is assumed; however, all results can be easily extended to any
number of receive antennas. A pairwise error event of length

𝑁 occurs when the Viterbi decoder decides in favor of the spa-
tially modulated symbol sequence x̂ = (𝑥1, 𝑥̂2, . . . , 𝑥𝑁 ) when
x = (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) is transmitted, where 𝑥𝑛 = (𝑖𝑛, 𝑠𝑛),
𝑠𝑛 ∈ 𝜒 is the transmitted symbol over the 𝑖𝑛th antenna
(1 ≤ 𝑖𝑛 ≤ 𝑛𝑇 ) at the 𝑛th transmission interval.

Let the received signal is given by

𝑦𝑛 = 𝛼𝑛𝑠𝑛 + 𝑤𝑛 (1)

for 1 ≤ 𝑛 ≤ 𝑁 , where 𝛼𝑛 is the complex fading coefficient
from the 𝑖𝑛th transmit antenna to the receiver at the 𝑛th
transmission interval, and 𝑤𝑛 is the noise sample with the
𝒞𝒩 (0, 𝑁0) distribution. Let 𝜶 = (𝛼1, 𝛼2, . . . , 𝛼𝑁 ) and 𝜷 =
(𝛽1, 𝛽2, . . . , 𝛽𝑁 ) denote the sequences of fading coefficients
corresponding to transmitted and erroneously detected SM
symbol sequences, x and x̂, respectively. The CPEP for this
case is given by

Pr (x → x̂∣𝜶,𝜷) = Pr {𝑚 (y, x̂;𝜷) ≥ 𝑚 (y,x;𝜶)∣x} (2)

where 𝑚 (y,x;𝜶) =
∑𝑁

𝑛=1 𝑚 (𝑦𝑛, 𝑠𝑛;𝛼𝑛) =

−∑𝑁
𝑛=1 ∣𝑦𝑛 − 𝛼𝑛𝑠𝑛∣2 is the decision metric for x, since 𝑦𝑛

is Gaussian when conditioned on 𝛼𝑛 and 𝑠𝑛. Then, (2) can
be expressed as

Pr (x → x̂∣𝜶,𝜷)

= Pr

{
𝑁∑

𝑛=1

∣𝑦𝑛 − 𝛼𝑛𝑠𝑛∣2 ≥
𝑁∑

𝑛=1

∣𝑦𝑛 − 𝛽𝑛𝑠𝑛∣2
∣∣∣∣∣x
}
.

(3)

With simple manipulation (3) takes the form

Pr (x → x̂∣𝜶,𝜷) = Pr

{
𝑁∑

𝑛=1

∣𝛼𝑛∣2 ∣𝑠𝑛∣2 − 2ℜ{𝑦𝑛𝛼∗
𝑛𝑠

∗
𝑛} ≥

𝑁∑
𝑛=1

∣𝛽𝑛∣2 ∣𝑠𝑛∣2 − 2ℜ{𝑦𝑛𝛽∗
𝑛𝑠

∗
𝑛}
∣∣∣∣∣x
}

= Pr

{
𝑁∑

𝑛=1

− ∣𝛼𝑛𝑠𝑛 − 𝛽𝑛𝑠𝑛∣2 + 2ℜ{𝑤̃𝑛} ≥ 0

∣∣∣∣∣x
}

(4)

where 𝑤̃𝑛 = 𝑤𝑛 (𝛽
∗
𝑛𝑠

∗
𝑛 − 𝛼∗

𝑛𝑠
∗
𝑛). Denoting the 𝑛th term

of the sum in (4) by 𝑑𝑛, we obtain Pr (x → x̂∣𝜶,𝜷) =

Pr
{∑𝑁

𝑛=1 𝑑𝑛 ≥ 0
∣∣∣x}. Let 𝑑 =

∑𝑁
𝑛=1 𝑑𝑛 be the decision

variable to be compared with the zero threshold. Since, 𝑤̃𝑛

is Gaussian with distribution 𝒞𝒩
(
0, 𝑁0∣𝛽∗

𝑛𝑠
∗
𝑛 − 𝛼∗

𝑛𝑠
∗
𝑛∣2

)
, it

is straightforward to show that 𝑑 is also Gaussian with dis-
tribution 𝒩 (

𝑚𝑑, 𝜎
2
𝑑

)
where, 𝑚𝑑 = −∑𝑁

𝑛=1 ∣𝛼𝑛𝑠𝑛 − 𝛽𝑛𝑠𝑛∣2
and 𝜎2

𝑑 = 2𝑁0

∑𝑁
𝑛=1 ∣𝛼𝑛𝑠𝑛 − 𝛽𝑛𝑠𝑛∣2. Finally, the CPEP of

the SM-TC scheme is calculated from (4) as

Pr (x → x̂∣𝜶,𝜷) = 𝑄

(−𝑚𝑑

𝜎𝑑

)
= 𝑄

⎛
⎝
√∑𝑁

𝑛=1𝐴𝑛

2𝑁0

⎞
⎠ (5)

where 𝐴𝑛 = ∣𝛼𝑛𝑠𝑛 − 𝛽𝑛𝑠𝑛∣2. An error event with path length
𝑁 is defined as an error event satisfying 𝐴𝑛 ∕= 0 and 𝐴𝑛 ∕=
𝐴𝑚 for 1 ≤ 𝑛,𝑚 ≤ 𝑁 , where it is possible to have 𝛼𝑛 = 𝛽𝑛
or 𝑠𝑛 = 𝑠𝑛 for some values of 𝑛 due to the use of SM. Note
that, during the SM-TC code design, for considered 𝑁 values,
we allow only the error events satisfying these conditions. This
constraint, which will be explained in the sequel, is crucial
for good code design. Using the bound 𝑄 (𝑥) ≤ 1

2𝑒
−𝑥2/2, the
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CPEP of the SM-TC scheme can be upper bounded by

Pr (x → x̂∣𝜶,𝜷) ≤ 1

2
exp

(
−𝛾

4

∑𝑁

𝑛=1
∣𝛼𝑛𝑠𝑛 − 𝛽𝑛𝑠𝑛∣2

)
(6)

where 𝛾 = 𝐸𝑠/𝑁0 = 1/𝑁0 is the average received signal-to-
noise ratio (SNR). Note that, if 𝛼𝑛 = 𝛽𝑛 for all 𝑛, 1 ≤ 𝑛 ≤ 𝑁 ,
the term in the sum of (6) reduces to ∣𝛼𝑛∣2∣𝑠𝑛 − 𝑠𝑛∣2, which
yields the CPEP of the conventional TCM scheme [13]. For
an interleaver with infinite depth which transforms the quasi-
static fading channel into a fast fading channel, the UPEP
of TCM can be easily derived by averaging over the p.d.f.
of ∣𝛼𝑛∣2, and the resulting design criteria for TCM are to
maximize the effective length and the product distance of the
TCM code [14]. However, the derivation of the UPEP for
the considered SM-TC scheme in which an interleaver is not
included, is quite complicated because of the varying statistical
dependence between 𝜶 and 𝜷 through error events of path
length 𝑁 .

The CPEP upper bound of the SM-TC scheme, which is
given in (6), can be alternatively rewritten in matrix form as

Pr (x → x̂∣𝜶,𝜷) ≤ 1

2
exp

(
−𝛾

4
h𝐻Sh

)
(7)

where h =
[
ℎ1 ℎ2 ⋅ ⋅ ⋅ ℎ𝑛𝑇

]𝑇
is the 𝑛𝑇 × 1 channel

vector with ℎ𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛𝑇 representing the channel
fading coefficient from 𝑖th transmit antenna to the receiver,
which is assumed to be constant through the error event.
S =

∑𝑁
𝑛=1 S𝑛 where S𝑛 is an 𝑛𝑇 × 𝑛𝑇 Hermitian matrix

representing a realization of 𝛼𝑛 and 𝛽𝑛 which are related
to the channel coefficients as 𝛼𝑛 = ℎ𝑖𝑛 , 𝛽𝑛 = ℎ𝑗𝑛 , 𝑖𝑛
and 𝑗𝑛 ∈ {1, 2, ⋅ ⋅ ⋅ , 𝑛𝑇 } being the transmitted and detected
antenna indices, respectively. The entries of the matrix S𝑛,
𝑛 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 are given as follows:
For 𝑖𝑛 ∕= 𝑗𝑛

S𝑛 (𝑝, 𝑞) =

⎧⎨
⎩

∣𝑠𝑛∣2 , if 𝑝 = 𝑞 = 𝑖𝑛

∣𝑠𝑛∣2 , if 𝑝 = 𝑞 = 𝑗𝑛

−𝑠∗𝑛𝑠𝑛, if 𝑝 = 𝑖𝑛, 𝑞 = 𝑗𝑛

−𝑠𝑛𝑠
∗
𝑛, if 𝑝 = 𝑗𝑛, 𝑞 = 𝑖𝑛

0, otherwise

(8)

and for 𝑖𝑛 = 𝑗𝑛

S𝑛 (𝑝, 𝑞) =

{
𝑑2𝐸𝑛

, if 𝑝 = 𝑞 = 𝑖𝑛

0, otherwise
(9)

where 𝑑2𝐸𝑛
= ∣𝑠𝑛 − 𝑠𝑛∣2. As an example, for 𝑛𝑇 = 4 with

𝛼𝑛 = ℎ1 and 𝛽𝑛 = ℎ3 (i.e., 𝑖𝑛 = 1 and 𝑗𝑛 = 3) S𝑛 is obtained
as

S𝑛 =

⎡
⎢⎢⎣

∣𝑠𝑛∣2 0 −𝑠∗𝑛𝑠𝑛 0
0 0 0 0

−𝑠𝑛𝑠
∗
𝑛 0 ∣𝑠𝑛∣2 0

0 0 0 0

⎤
⎥⎥⎦ . (10)

In order to obtain the UPEP of the SM-TC scheme, (7)
should be averaged over the multivariate complex Gaussian
p.d.f. of h which is given as [15] 𝑓(h) = (1/𝜋𝑛𝑇 ) 𝑒−h𝐻h

since the entries of h are i.i.d. with p.d.f. 𝒞𝒩 (0, 1). The UPEP

upper bound of the SM-TC is calculated from (7) as

Pr (x → x̂) ≤ 1

2

∫
h

𝜋−𝑛𝑇 exp
(
−𝛾

4
h𝐻Sh

)
exp

(−h𝐻h
)
𝑑h

=
1

2

∫
h

𝜋−𝑛𝑇 exp
(−h𝐻Σ−1h

)
𝑑h (11)

where Σ−1 =
[
𝛾
4S+ I

]
and I is the 𝑛𝑇 × 𝑛𝑇 identity

matrix. Since Σ is a Hermitian and positive definite complex
covariance matrix, the integrand of the multivariate complex
Gaussian p.d.f. given in (11) yields the following result [15]:

Pr (x → x̂) ≤ 1

2
det (Σ) =

1

2 det
(
𝛾
4S+ I

) . (12)

Although (12) gives an effective and simple way to evaluate
the UPEP upper bound of the SM-TC scheme in closed form,
for an error event with path length 𝑁 , the matrix S has
(𝑛𝑇 )

2𝑁 possible realizations which correspond to all of the
possible transmitted and detected antenna indices along this
error event. However, as we will show in the sequel, due to
the special structure of S, these (𝑛𝑇 )

2𝑁 possible realizations
can be grouped into a small number of distinct types having
the same UPEP upper bound, and the resulting upper bound
calculated from (12) is mainly determined by the number of
degrees of freedom of the error event which is defined as
follows:
Definition 1: For an error event with path length 𝑁 , the number
of degrees of freedom (DOF) is defined as the total number
of different channel fading coefficients in 𝜶 and 𝜷 sequences.
It can be easily shown that DOF ≤ 2𝑁.

For example, for 𝑁 = 2, 𝜶 = (𝛼1, 𝛼2) and 𝜷 = (𝛽1, 𝛽2),
DOF = 3 if 𝛼1 = 𝛽1 ∕= 𝛼2 ∕= 𝛽2. Besides the DOF, a second
fact, which is explained as follows, determines the result of
(12). Let us rewrite (6) as

Pr (x → x̂∣𝜶,𝜷) ≤ 1

2
exp

(
−𝛾

4

[∑
𝜂
∣𝛼𝑛∣2∣𝑠𝑛 − 𝑠𝑛∣2

+
∑

𝜂
∣𝛼𝑛𝑠𝑛 − 𝛽𝑛𝑠𝑛∣2

])
(13)

where 𝜂 and 𝜂 are the sets of all 𝑛 for which 𝛼𝑛 = 𝛽𝑛 and
𝛼𝑛 ∕= 𝛽𝑛, respectively, and 𝑛 (𝜂) + 𝑛 (𝜂) = 𝑁 . The first term
in (13) corresponds to the TCM term while the second term
corresponds to the SM term. Note that in some cases, the
same DOF value can be supported with different 𝑛 (𝜂) and
𝑛 (𝜂) values, and this also affects the result of (12).

In the following, for the aforementioned distinct cases, we
calculate the UPEP upper bound of the SM-TC scheme from
(12), for error event path lengths 𝑁 = 2 and 3. For the
sake of simplicity, we assume a constant envelope 𝑀 -PSK
constellation such that ∣𝑠𝑛∣2 = ∣𝑠𝑛∣2 = 1; however, all results
can be easily extended to varying envelope constellations.

A. Error Events with Path Length Two

We consider the distinct types of S for 𝑁 = 2 and we
present the UPEP upper bound of the SM-TC from (12) for
the following seven different types of error events. Without
loss of generality, we assume 𝑛𝑇 = 4 which supports the
maximum DOF value for 𝑁 = 2. However, all results are
also valid for 𝑛𝑇 > 4.
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Type 1: DOF = 1, 𝑛 (𝜂) = 2, 𝑛 (𝜂) = 0. For this type, the
matrix S has only one non-zero element S (𝑖1, 𝑖1) = 𝑑2𝐸1

+
𝑑2𝐸2

, and the resulting UPEP is calculated from (12) as

Pr (x → x̂)1 ≤ 2

4 + 𝛾
(
𝑑2𝐸1

+ 𝑑2𝐸2

) . (14)

Type 2: DOF = 2 and 𝑛 (𝜂) = 2, 𝑛 (𝜂) = 0. For this type,
the matrix S has two non-zero elements S (𝑖1, 𝑖1) = 𝑑2𝐸1

and
S (𝑖2, 𝑖2) = 𝑑2𝐸2

, and the resulting UPEP is calculated from
(12) as

Pr (x → x̂)2 ≤ 8(
4 + 𝛾𝑑2𝐸1

) (
4 + 𝛾𝑑2𝐸2

) . (15)

Type 3: DOF = 2 and 𝑛 (𝜂) = 1, 𝑛 (𝜂) = 1. For
representational simplicity, without loss of generality, let us
assume 𝑖1 = 𝑗1 = 𝑖2 = 1, 𝑗2 = 2. Then, we obtain

S =

⎡
⎢⎢⎣
1 + 𝑑2𝐸1

−𝑠∗2𝑠2 0 0
−𝑠2𝑠

∗
2 1 0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ . (16)

Simple manipulation gives the UPEP upper bound of SM-TC
from (12) as

Pr (x → x̂)3 ≤ 8

16 + 4
(
2 + 𝑑2𝐸1

)
𝛾 + 𝑑2𝐸1

𝛾2
(17)

which can easily shown to be independent of the values of
𝑖1, 𝑗1, 𝑖2 and 𝑗2 if 𝑖1 = 𝑗1 = 𝑖2 ∕= 𝑗2 or 𝑖1 = 𝑗1 = 𝑗2 ∕= 𝑖2
due to the special structure of S. Note that, for 𝑖2 = 𝑗2 =
𝑖1 ∕= 𝑗1 or 𝑖2 = 𝑗2 = 𝑗1 ∕= 𝑖1, 𝑑2𝐸1

should be replaced by
𝑑2𝐸2

in (17). The matrix of (16) is only one of 48 possible
realizations of S for this type of error events, however, since
DOF and 𝑛 (𝜂) values remains unchanged for all realizations,
the resulting UPEP bound is unique and given by (17). It is
straightforward to show that for the case of 𝑛𝑇 > 4 the UPEP
bound remains unchanged for the same type of error events
due to the structure of S.

Type 4: DOF = 3 and 𝑛 (𝜂) = 1, 𝑛 (𝜂) = 1. Without loss
of generality, let us assume 𝑖1 = 𝑗1 = 1, 𝑖2 = 2, 𝑗2 = 3. For
this case, we obtain

S =

⎡
⎢⎢⎣
𝑑2𝐸1

0 0 0
0 1 −𝑠∗2𝑠2 0
0 −𝑠2𝑠

∗
2 1 0

0 0 0 0

⎤
⎥⎥⎦ . (18)

With simple manipulation, we obtain the UPEP upper bound
of SM-TC from (12) as

Pr (x → x̂)4 ≤ 4

8 + 2
(
2 + 𝑑2𝐸1

)
𝛾 + 𝑑2𝐸1

𝛾2
(19)

which is the generic UPEP bound for 48 possible realizations
of S for this type of error event.

Type 5: DOF = 2, 𝑛 (𝜂) = 0, 𝑛 (𝜂) = 2 and we always have
𝑖𝑛 ∕= 𝑗𝑛 for 𝑛 = 1, 2. With the assumption 𝑖1, 𝑗1, 𝑖2, 𝑗2 ∈
{1, 2}, the entries of the matrix S are obtained as follows:

S (1, 1) = S (2, 2) = 2,

S (1, 2) =

⎧⎨
⎩
−𝑠∗1𝑠1 − 𝑠∗2𝑠2 if 𝑖1 < 𝑗1 and 𝑖2 < 𝑗2

−𝑠∗1𝑠1 − 𝑠2𝑠
∗
2 if 𝑖1 < 𝑗1 and 𝑖2 > 𝑗2

−𝑠1𝑠
∗
1 − 𝑠∗2𝑠2 if 𝑖1 > 𝑗1 and 𝑖2 < 𝑗2

−𝑠1𝑠
∗
1 − 𝑠2𝑠

∗
2 if 𝑖1 > 𝑗1 and 𝑖2 > 𝑗2.

(20)

and S (2, 1) = S∗ (1, 2). After much simplification, we obtain
the UPEP upper bound from (12) as

Pr (x → x̂)5 ≤ 4

8 + 8𝛾 + (1− cos 𝜃) 𝛾2
(21)

where 𝜃 = ±Δ𝜃1 ± Δ𝜃2,Δ𝜃𝑛 = 𝜃𝑛 − 𝜃𝑛, 𝑛 = 1, 2
and 𝑠1 = 𝑒𝑗𝜃1 , 𝑠1 = 𝑒𝑗𝜃1 , 𝑠2 = 𝑒𝑗𝜃2 , 𝑠2 = 𝑒𝑗𝜃2 , with
𝜃1, 𝜃1, 𝜃2, 𝜃2 ∈ {

2𝜋𝑟
𝑀 , 𝑟 = 0, ⋅ ⋅ ⋅ ,𝑀 − 1

}
. Interestingly, we

observe from (21) that the UPEP bound is dependent on the
transmitted and detected 𝑀 -PSK symbols along the error
event. This can be explained by the cross terms coming
from S (1, 2) and S (2, 1) which results from this type of
error events, of which there are a total of 24. Note that our
previous error event definition ensures that cos 𝜃 ∕= 1.

Type 6: DOF = 3 and 𝑛 (𝜂) = 0, 𝑛 (𝜂) = 2. If we assume
that 𝑖1 = 𝑖2 = 1, 𝑗1 = 2 and 𝑗2 = 3, we have

S =

⎡
⎢⎢⎣

2 −𝑠∗1𝑠1 −𝑠∗2𝑠2 0
−𝑠1𝑠

∗
1 1 0 0

−𝑠2𝑠
∗
2 0 1 0

0 0 0 0

⎤
⎥⎥⎦ . (22)

Simple manipulation gives the UPEP bound for this type
error events from (12) as

Pr (x → x̂)6 ≤ 8

16 + 16𝛾 + 3𝛾2
(23)

which is the generic UPEP upper bound for 96 different
realizations of S for this case.

Type 7: DOF = 4 and 𝑛 (𝜂) = 0, 𝑛 (𝜂) = 2. Let us assume
𝑖1 = 1, 𝑗1 = 2, 𝑖2 = 3 and 𝑗2 = 4, then we obtain

S =

⎡
⎢⎢⎣

1 −𝑠∗1𝑠1 0 0
−𝑠1𝑠

∗
1 1 0 0

0 0 1 −𝑠∗2𝑠2
0 0 −𝑠2𝑠

∗
2 1

⎤
⎥⎥⎦ . (24)

The UPEP upper bound for this type of error events is found
from (12) as

Pr (x → x̂)7 ≤ 2

4 + 4𝛾 + 𝛾2
(25)

which is the generic UPEP upper bound for 24 different
realizations of S for this case.

The seven different types of error events presented above
cover all possible 256 realizations of S for 𝑁 = 2 and 𝑛𝑇 = 4.
We observe from the UPEP bounds obtained above that for
given 𝑛 (𝜂) and 𝑛 (𝜂) values, the UPEP bound decreases with
increasing DOF, which should be considered in SM-TC code
design. We also observe that, for small 𝜃 values, Type 5
provides the worst UPEP bound for DOF = 2, while we have
to avoid the error events of Type 1 to maintain the diversity
order of the SM-TC scheme, which is two for 𝑁 = 2 when
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TABLE I
UPEP VALUES FOR ERROR EVENTS WITH PATH LENGTH THREE

𝑛(𝜂)DOF PEP

0 2∗ 4
8+12𝛾+(3−𝑐)𝛾2

0 3 16

32+48𝛾+18𝛾2+(1−cos 𝜃)𝛾3

0 3∗ 16
32+48𝛾+4(4−cos 𝜃)𝛾2+(1−cos 𝜃)𝛾3

0 4 8
16+24𝛾+9𝛾2+𝛾3

0 4∗ 8
16+24𝛾+2(5−cos 𝜃)𝛾2+(1−cos 𝜃)𝛾3

0 5 16
32+48𝛾+22𝛾2+3𝛾3

0 6 4
8+12𝛾+6𝛾2+𝛾3

1 2∗ 4

8+2
(
4+𝑑2

𝐸𝑛

)
𝛾+

(
1+𝑑2

𝐸𝑛
−cos 𝜃

)
𝛾2

1 3 32

64+16
(
4+𝑑2

𝐸𝑛

)
𝛾+4

(
3+2𝑑2

𝐸𝑛

)
𝛾2+𝑑2

𝐸𝑛
𝛾3

1 3∗ 16

32+8
(
4+𝑑2

𝐸𝑛

)
𝛾+4

(
1+2𝑑2

𝐸𝑛
−cos 𝜃

)
𝛾2+(1−cos 𝜃)𝑑2

𝐸𝑛
𝛾3

1 4 32

64+16
(
4+𝑑2

𝐸𝑛

)
𝛾+4

(
3+4𝑑2

𝐸𝑛

)
𝛾2+3𝑑2

𝐸𝑛
𝛾3

1 5 8

16+4
(
4+𝑑2

𝐸𝑛

)
𝛾+4

(
1+𝑑2

𝐸𝑛

)
𝛾2+𝑑2

𝐸𝑛
𝛾3

2 2 8
16+8𝛾+4𝑑1𝛾+𝑑1𝛾2

2 3 32

64+32𝛾+16𝑑1𝛾+4(𝑑2
𝐸𝑛

+2𝑑2
𝐸𝑚

+𝑑2
𝐸𝑛

𝑑2
𝐸𝑚

)𝛾2+𝑑2
𝐸𝑛

𝑑2
𝐸𝑚

𝛾3

2 4 16
32+16𝛾+8𝑑1𝛾+4𝑑1𝛾2+3𝑑2

𝐸𝑛
𝑑2
𝐸𝑚

𝛾3

3 1 2
4+𝑑2𝛾

3 2 8

16+4𝑑2𝛾+𝑑2
𝐸3

(
𝑑2
𝐸1

+𝑑2
𝐸2

)
𝛾2

3 3 32

64+16𝑑2𝛾+4
(
𝑑2
𝐸1

𝑑2
𝐸2

+𝑑2
𝐸1

𝑑2
𝐸3

+𝑑2
𝐸2

𝑑2
𝐸3

)
𝛾2+𝑑2

𝐸1
𝑑2
𝐸2

𝑑2
𝐸3

𝛾3

DOF ≥ 2. This could be simply verified from the UPEP
bounds given above in which UPEP is proportional to 𝛾−2

for 𝛾 ≫ 1.

B. Error Events with Path Length Three

In this subsection, we deal with error events with path length
𝑁 = 3. Considering DOF with 𝑛 (𝜂) and 𝑛 (𝜂) values, we
observe 18 different types of error events. In Table I, we give
resulting UPEP upper bounds of SM-TC from (12), for these
different types where 𝑐 = cos(±Δ𝜃1 ±Δ𝜃2) + cos(±Δ𝜃1 ±
Δ𝜃3) + cos(±Δ𝜃2 ± Δ𝜃3), 𝜃 = ±Δ𝜃1 ± Δ𝜃2 ± Δ𝜃3, 𝑑1 =
𝑑2𝐸𝑛

+ 𝑑2𝐸𝑚
, 𝑑2 = 𝑑2𝐸1

+ 𝑑2𝐸2
+ 𝑑2𝐸3

and 𝑛,𝑚 ∈ {1, 2, 3}, 𝑛 ∕=
𝑚. The asterisk for DOF values means the considered error
event includes a sub-error event with length two of Type 5, and
therefore, the resulting UPEP upper bound is dependent on 𝜃
which is defined in (21). As seen from Table I, a diversity order
of three is achieved by the SM-TC scheme when DOF ≥ 3.
We give the following theorem, which generalizes the concepts
developed above.
Theorem 1: In case of an error event with path length 𝑁 , in
order to achieve a diversity order of 𝑁 (a UPEP upper bound
of 𝑎/𝛾𝑁 for 𝛾 ≫ 1 and 𝑎 ∈ ℝ+), a necessary condition is
DOF ≥ 𝑁 .
Proof: Let us define A = Σ−1 =

[
𝛾
4S+ I

]
= [B+ I]; then

from (12), we obtain Pr (x → x̂) ≤ 1/ (2 det (A)). Since A
is a positive definite Hermitian matrix with all real and positive
eigenvalues, det (A) =

∏𝑛𝑇

𝑖=1 𝜆
A
𝑖 . However, B is not generally

of full rank, i.e., rank (B) = 𝑏 ≤ 𝑛𝑇 . Since A = B+ I, from

the properties of eigenvalues, we obtain 𝜆A
𝑖 = 𝜆B

𝑖 +1, for 𝑖 =
1, ⋅ ⋅ ⋅ , 𝑏 and 𝜆A

𝑖 = 1, for 𝑖 > 𝑏, which yields det (A) =∏𝑏
𝑖=1

(
𝜆B
𝑖 + 1

)
=
∏𝑏

𝑖=1

(
𝛾
4𝜆

S
𝑖 + 1

)
. Ignoring the second term

at high SNR values, we obtain the UPEP upper bound of SM-

TC as Pr (x → x̂) ≤
(
2
(
𝛾
4

)𝑏∏𝑏
𝑖=1 𝜆

S
𝑖

)−1

which states that
the diversity order of the system is determined by the rank
of S since 𝛾 decays with −𝑏. According to the subadditivity
of rank [16], 𝑏 = rank (S) ≤ ∑𝑁

𝑖=1 rank (S𝑖) = 𝑁 , since
rank (S𝑖) = 1 for all 𝑖. Since DOF is the total number of
columns (or rows) of S with not all zero entries, we also have
𝑏 ≤ DOF. In order to prove the theorem, we have to show
that 𝑏 = 𝑁 only for DOF ≥ 𝑁 . To satisfy 𝑏 = 𝑁 , we have to
show that the rank subadditivity inequality given above holds.
It can be shown that only for DOF ≥ 𝑁 , can the intersection of
column (or equivalently row) spaces of S̃ =

∑𝑀
𝑖=1 S𝑖 and S𝑗 ,

𝑗 = 𝑀 +1, ⋅ ⋅ ⋅ , 𝑁 be the null space, i.e., 𝐶(S̃)∩𝐶 (S𝑗) = ∅
for all 𝑀 < 𝑁 (see the example below), which is a sufficient
condition for rank additivity [16]. This completes the proof.

Note that if an error event of path length 𝑁 includes a
critical sub-error event, which is defined as an error event
with path length 𝑁

′ ≤ 𝑁 and DOF
′ ≤ DOF such that

𝑛 (𝜂) = 𝑁
′
= DOF

′
, then the UPEP is upper bounded by

𝑎/[(1 − cos 𝜃)𝛾𝑁 ] for 𝛾 ≫ 1 where 𝜃 = ±Δ𝜃1 ± Δ𝜃2 ±
⋅ ⋅ ⋅ ±Δ𝜃𝑁 ′ . Therefore, for the values of 𝜃 = 0, the diversity
order 𝑏 becomes smaller than 𝑁 (which can be shown to be
𝑏 = 𝑁 − 1) since the rank additivity does not hold. This is
why the condition in Theorem 1 is only necessary but not
sufficient. Type 5 of Section III.A and the second type given
in Table I are the critical error events for 𝑁 = 2 and 𝑁 = 3,
respectively. Our code design ensures 𝜃 ∕= 0 for 𝑁

′
= 2 and 3

since we deal with error events with path lengths 𝑁 = 2 and
3, while it is rare to have such error events including critical
sub-error events with higher 𝑁

′
and 𝑁 values, for which even

if 𝜃 = 0 could not destroy the overall diversity order of the
SM-TC system. Therefore, in our code design, we always aim
to guarantee DOF ≥ 𝑁 .

According to Theorem 1, to achieve a diversity order of 𝑁 ,
DOF could not be smaller than 𝑁 . The following example
illustrates this fact.
Example 1: Suppose we have S1 and S2 for 𝑁 = 2 with
DOF = 2 and 𝑖1, 𝑗1, 𝑖2, 𝑗2 ∈ {1, 2}. Since rank (S1) =
rank (S2) = 1, the columns of S1 and S2 span two disjoint
subspaces of ℂ𝑛𝑇 with dimension one (when 𝜃 ∕= 0 if this
error event belongs to Type 5). Consequently, rank(S̃) = 2,
where S̃ = S1 + S2, and the columns of S̃ span a subspace
of ℂ𝑛𝑇 such that the vectors in this column space all have
the form (𝑥, 𝑦, 0, ⋅ ⋅ ⋅ , 0)𝑇 ∈ ℂ𝑛𝑇 . Therefore, to achieve a
diversity order of three, we not only need a third matrix S3,
but also this matrix must satisfy DOF ≥ 3 by using at least
one new row (and column) in ˜̃S where ˜̃S = S1+S2+S3, and
in this way, we ensure 𝐶 (S3) ∩ 𝐶(S̃) = ∅ and according to

the rank additivity we obtain rank(˜̃S) =
∑3

𝑖=1 rank (S𝑖) = 3.
If we assume that DOF = 3 with S3, the same procedure
is applied for S4, and so on. On the other hand, if we have
DOF = 4 with S3, with the matrix S4, we not need to increase
DOF, since the dimension of 𝐶(˜̃S) is again equal to three and
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therefore, 𝐶 (S4) ∩ 𝐶(˜̃S) = ∅ when 𝐶 (S4) ∩ 𝐶(S̃) = ∅ and
rank additivity holds.

The following remark generalizes the UPEP upper bound
of SM-TC for any number of receive antennas.
Remark 1: For 𝑛𝑅 receive antennas, with simple manipulation,
it can be shown that for 𝛾 ≫ 1, the UPEP upper bound of
SM-TC is given as

Pr (x → x̂) ≤ 1

2
(
𝛾
4

)𝑏𝑛𝑅
(∏𝑏

𝑖=1 𝜆
S
𝑖

)𝑛𝑅
(26)

which implies that the diversity order of the SM-TC is 𝑏𝑛𝑅

as expected.
For the analysis of the SM-TC scheme under correlated

channel conditions, we consider a spatial correlation (SC)
channel model [17] in which the correlated channel ma-
trix can be determined by H𝑐𝑜𝑟𝑟 = R

1/2
𝑡 HR

1/2
𝑟 where

R𝑡 = [𝑟𝑖𝑗 ]𝑛𝑇×𝑛𝑇
, R𝑟 = [𝑟𝑖𝑗 ]𝑛𝑅×𝑛𝑅

are the SC matrices at
the transmitter and the receiver, respectively, and H is the
MIMO channel coefficient matrix described earlier. Note that
in our computer simulations, we have taken an exponential
correlation matrix model in which 𝑟𝑖𝑗 = 𝑟∗𝑗𝑖 = 𝑟∣𝑗−𝑖∣ and
∣𝑟∣ < 1 where 𝑟 is the amount of correlation. The UPEP of
the SM-TC scheme can be obtained for the correlated case,
by averaging (7) over the correlated complex Gaussian p.d.f.
of h given by 𝑓(h) = (𝜋−𝑛𝑇 / det(K)) 𝑒−h𝐻K−1h, where
K = 𝐸

{
hh𝐻

}
is the full-rank channel correlation matrix,

assuming one receive antenna. Then, similar to the derivations
in (11-12), after some algebra, the UPEP of the SM-TC is
obtained as follows:

Pr (x → x̂) ≤ 1

2 det
(
𝛾
4KS+ I

) . (27)

Note that, rank (KS) = rank (S), since the rank of S is not
changed upon multiplication by a nonsingular matrix. Conse-
quently, we conclude that spatial correlation does not have any
effect on the diversity order of the SM-TC scheme. However,
it effects the asymptotic coding gain through eigenvalues of
the matrix KS.

IV. SM-TC CODE DESIGN CRITERIA AND DESIGN

EXAMPLES

In this section, we give design criteria for SM-TC and
provide some code design examples for spectral efficiencies
𝑘 = 2, 3 and 4 bits/s/Hz.

By considering the UPEP analysis of the previous section,
the following design criteria are derived for the SM-TC
scheme:

1) Diversity gain criterion: For a trellis code with minimum
error event length 𝑁 , to achieve a diversity order of 𝑁 ,
DOF must be greater than or equal to 𝑁 for all error
events with path length greater than or equal to 𝑁 .

2) Coding gain criterion: After ensuring maximum diver-
sity gain, the distance spectrum of the SM-TC should
be optimized by considering the UPEP values calculated
from (12).

As an application of the SM-TC design criteria, we consider
two 4-state trellis codes for 𝑘 = 2 bits/s/Hz. The first code,
called Code A, is chosen as the trellis code shown in Fig. 2

TABLE II
DISTANCE SPECTRA OF TWO SM-TC SCHEMES WITH 𝑁 = 2 (𝛾 ≫ 1)

1/𝛾2 2/𝛾2 8/3𝛾2 4/𝛾2

Code A 16 32 32 16
Code B 0 0 96 0

TABLE III
OCTAL GENERATOR MATRICES OF SM-TC SCHEMES WITH DIFFERENT

NUMBERS OF STATES

State 𝑘 = 2 bits/s/Hz 𝑘 = 3 bits/s/Hz 𝑘 = 4 bits/s/Hz

4

[
0 3 0 1

1 0 2 0

]
- -

8

[
0 2 4 2

3 4 0 1

] ⎡
⎣ 0 2 1 0 1 0

0 1 2 0 0 1

1 0 0 2 0 0

⎤
⎦ -

16

[
5 1 3 0

1 4 0 3

] ⎡
⎣ 0 4 2 0 2 0

0 2 0 4 0 2

3 0 5 0 1 1

⎤
⎦
⎡
⎢⎢⎣
0 2 0 1 0 0

1 0 2 0 0 0

0 1 0 0 2 0

0 0 1 0 0 2

⎤
⎥⎥⎦

with the generator matrix [ 0 3 0 1
1 0 2 0 ]. This code has 96 different

error events with 𝑁 = 2. The second code, called Code B, has
the generator matrix [ 3 1 1 0

1 2 0 1 ]. The distance spectra of these
two codes are given in Table II for 𝑁 = 2 for high SNR
values (𝛾 ≫ 1) with corresponding multiplicity values. Both
of the codes are designed to optimize the UPEP of the error
events with 𝑁 = 2. However, they cannot guarantee to satisfy
DOF ≥ 3 for 𝑁 = 3, while they always ensure DOF ≥ 2.
In Fig. 3, the BER and FER performance of these two codes,
obtained by Monte Carlo simulations, is compared for a frame
length of 40 bits with respect to the received SNR for one and
two receive antennas. As seen from Fig. 3, although the worst
case UPEP of Code A is higher than that of Code B, there is
substantial error performance gap between these two codes in
favor of Code A, due to its improved distance spectrum.

In Table III, we give the octal generator matrices of the SM-
TC codes for 𝑘 = 2, 3 and 4 bits/s/Hz spectral efficiencies and
different numbers of states. All codes are designed manually
according to the SM-TC design criteria given above. For 2
bits/s/Hz transmission, we use four transmit antennas with a
QPSK constellation, while for 3 and 4 bits/s/Hz, we use eight
transmit antennas with an 8-PSK constellation since, 𝑅 = 2/4,
𝑅 = 3/6 and 𝑅 = 4/6 trellis encoders are employed to obtain
𝑘 = 2, 3 and 4 bits/s/Hz, respectively. For 2 bits/s/Hz, we
extended our 4-state code to eight states and optimized its
distance spectrum to maximize the number of error events with
DOF > 2. On the other hand, our 16-state code is designed
such that the error events with 𝑁 ≥ 3 ensure DOF ≥ 3, and
therefore, diversity order of three is achieved. For 3 bits/s/Hz,
in the same manner as performed previously, we optimized the
distance spectra of 8- and 16-state codes, guaranteed DOF ≥ 2
and maximized the number of error events with DOF > 2.
Finally for 4 bits/s/Hz, we constructed a 16-state code that
also guarantees DOF ≥ 2. In all of our SM-TC constructions,
we assigned SM symbols to the branches of the trellis in such
a way that a catastrophic code is avoided. We also guarantee
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Fig. 3. Error performances of two 4-state SM-TC schemes (𝑘 = 2 bits/s/Hz).

DOF ≥ 2 for higher values of 𝑁 to maintain the diversity
order of the system.

V. EVALUATION OF BIT ERROR PROBABILITY

PERFORMANCE

In this section, we evaluate the approximate BEP perfor-
mance of our SM-TC scheme. Due to the dependence between
the terms of (6), the use of transfer function based upper
bounding techniques is not feasible for SM-TC. Therefore,
instead of using the transfer function technique which con-
siders error events with all lengths, we are restricted to an
approximation of the average BEP, which considers the error
events with lengths up to a finite value, given as [19]

𝑃𝑏 ≈ 1

𝑐

∑
x

[
1

𝑘

∑
x̂

x̂ ∕=x

𝑒 (x, x̂) Pr (x → x̂)

]
(28)

where 𝑘 is the number of input bits per trellis transition,
𝑒 (x, x̂) is the number of bit errors associated with each error
event, and 𝑐 is the total number of different realizations of x.
Because of the non-uniformity of SM-TC codewords (i.e., the
UPEP is dependent on the transmitted codeword) (28) takes
into account all possible codewords for a given error event path
length. As an example, consider the Code A of the previous
section. Due to the design symmetry, we consider only the path
pairs originating from the first state. If we consider 𝑁 = 2,
there are 16 error events of Types 3 and 6, and 8 error events
of Types 4 and 5, respectively. Each path-pair corresponding
to the error events of Types 3, 4 and 5 contributes one bit
error, while this value is equal to two for Type 6. From (28),
we obtain

𝑃𝑏 ≈ 1

32

[
16Pr (x → x̂)3 + 8Pr (x → x̂)4 +

8Pr (x → x̂)5 + 32Pr (x → x̂)6
] (29)

which is plotted in Fig. 4 and compared with the simulation
results for one receive antenna. In the same figure, we also
show the BEP approximation for an 8-state code at 2 bits/s/Hz
for 𝑁 = 2 and 3. As seen from Fig. 4, the BEP expressions
provide a reasonable approximation to the actual BEP of the
SM-TC schemes, and we conclude that (28) can be used as an
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Fig. 4. Comparison of theoretical BEP curves with simulation results for 4-
and 8-state codes at 2 bits/s/Hz.

effective tool to investigate the approximate BEP performance
behavior of our scheme for different configurations.

VI. SIMULATION RESULTS AND COMPARISONS

In this section, we present simulation results for the SM-TC
scheme with different configurations and make comparisons
with corresponding reference systems. The BER and FER
performance of these schemes was evaluated via Monte Carlo
simulations for various spectral efficiencies and numbers of
states as a function of the average SNR per receive antenna.
In all cases, we assumed that channel fading coefficients
remain unchanged for 20 consecutive transmissions, which
corresponds to a frame length of 20𝑘 bits for both the SM-TC
and the reference systems operating at 𝑘 = 2, 3 and 4 bits/s/Hz
spectral efficiencies.

A. Comparisons with the STTCs

In this subsection, we compare via computer simulations,
the error performance of the proposed SM-TC scheme with
that of STTCs for 2 and 3 bits/s/Hz spectral efficiencies. Note
that STTCs have been designed and optimized for quasi-static
fading channels and can be considered as TCM schemes for
MIMO systems [21]. We first performed simulations for 2
bits/s/Hz transmission with one and two receive antennas. In
Figs. 5 and 6, the BER and FER performance of the proposed
4-, 8- and 16-state SM-TC schemes is compared with 4-, 8-
and 16-state optimal QPSK STTCs with two transmit anten-
nas, respectively. As seen from Figs. 5 and 6, the SM-TC
schemes provide significant improvements in both BER and
FER performance compared to the STTCs. It is also observed
that with increasing number of states, the performance gap
between SM-TC and STTC schemes increases since SM-TC
provides higher coding gains with increasing complexity. Note
that our 16-state code offers the highest improvement in both
BER and FER performance over the 16-state STTC due to
its third order time diversity compared to the second order
diversity of the STTC. It can be seen from Fig. 6 that a
substantial amount of improvement is achieved in the FER
performance especially for 8 and 16 states. Although the
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Fig. 5. BER performance for 4-,8- and 16-state SM-TC and STTC schemes
at 2 bits/s/Hz.
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Fig. 6. FER performance for 4-,8- and 16-state SM-TC and STTC schemes
at 2 bits/s/Hz.

worst case UPEP values of STTCs given in [20], are lower
than those of SM-TC schemes for 4 and 8 states, the better
FER performance of the SM-TC may be explained by two
facts. First, we have optimized the distance spectra of SM-TC
schemes; then, we conclude from Theorem 1 that error events
with higher lengths can contribute UPEP values at higher time
diversity orders.

Second, we carried out our simulations for 3 bits/s/Hz
transmission. In Fig. 7, the BER performance of the proposed
8- and 16-state SM-TC schemes is compared with that of 8-
and 16-state optimal 8-PSK STTCs for two transmit antennas.
From Theorem 1 it follows that, for 3 bits/s/Hz transmission,
the error performance gap between SM-TC schemes and
STTCs becomes greater than that of the 2 bits/s/Hz case in
favor of the SM-TC, since we employ eight transmit antennas
in this case.
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Fig. 7. BER performance for 8- and 16-state SM-TC and STTC schemes at
3 bits/s/Hz.

B. Comparisons with the SM, coded V-BLAST and the scheme
of [8]

In this subsection, we compare the BER performance of
the proposed SM-TC scheme with that of uncoded SM, coded
V-BLAST and the scheme of [8]. We have considered two
types of coded V-BLAST systems. The first system, coded
V-BLAST-I, was the vertically encoded (single coded) V-
BLAST [22], where the incoming bits were first encoded
by a single convolutional encoder, then the coded bits were
demultiplexed into 𝑛𝑇 parallel substreams, and each substream
was interleaved and finally modulated. At the receiver, the
transmitted symbols for all layers were detected, demodulated
and deinterleaved. The bits of all layers were then multiplexed
and given to the hard decision Viterbi decoder. In the second
system, coded V-BLAST-II, we replaced the SM mapper block
of our SM-TC scheme by a V-BLAST encoder. Similar to
STTCs, a soft decision Viterbi decoder, which performs ML
decoding by using the corresponding branch metrics, was
considered. The scheme of [8] and coded V-BLAST-I employ
𝑅 = 1/2 convolutional codes with generator sequences [5, 2]
and [5, 7], respectively, while coded V-BLAST-II systems use
the same convolutional codes as that of SM-TC schemes. In all
simulations, we considered four receive antennas and the size
of interleavers was chosen equal to 10000. For the simulations
under correlated channel conditions, the SC model given in
Section III was considered.

In Fig. 8, simulation results are given for 3 bits/s/Hz
transmission. In order to reach this efficiency, the SM employs
four transmit antennas with binary phase-shift keying (BPSK),
coded V-BLAST-I and II systems employ three transmit
antennas with QPSK, and the scheme of [8] employs four
transmit antennas with QPSK. As seen from Fig. 8, when
compared with the reference systems, our 8-state SM-TC
scheme achieves the best BER performance for both uncor-
related (𝑟 = 0) and correlated (𝑟 = 0.7) channels due to its
high diversity and coding gains. Note that spatial correlation
only affects the asymptotic coding gain of our scheme which
is consistent with the result of (27). As reported in [8,9], the
scheme of [8] outperforms coded V-BLAST-I under correlated
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Fig. 8. BER comparison at 3 bits/s/Hz for uncorrelated and correlated
channels.

channel conditions, however it is outperformed by coded V-
BLAST-I and SM for uncorrelated case. Simulation results for
4 bits/s/Hz transmission are depicted in Fig. 9. For this spectral
efficiency, the SM and coded V-BLAST-I employ four transmit
antennas with QPSK, coded V-BLAST-II uses three transmit
antennas with QPSK, and the scheme of [8] uses four transmit
antennas with 8-QAM. Similarly to the 3 bits/s/Hz case, our
new 16-state code outperforms all of the reference systems.
From Figs. 8 and 9, we conclude that our scheme and coded
V-BLAST-II provide time diversity when compared with the
SM, the scheme of [8] and coded V-BLAST-I, at the price of
increased complexity.

For a given spectral efficiency and number of trellis states, it
is observed that the number of metric calculations performed
by the soft decision Viterbi decoder is the same as SM-TC
codes and STTCs. However, since only one transmit antenna
is active in our scheme, contrary to the reference STTCs
with the same trellis structure in which two antennas transmit
simultaneously, SM-TC provides 25% and 33% reductions in
the number of real multiplications and real additions per single
branch metric calculation of the Viterbi decoder, respectively,
for 2 bits/s/Hz, and these values increase to 30% and 37.5%
for 3 bits/s/Hz. Similarly, the trellis decoding complexities of
our scheme and coded V-BLAST-II are the same; however,
per single metric calculation, our scheme provides 30% and
37.5% reductions in the number of real multiplications and
real additions, respectively, for 3 and 4 bits/s/Hz. On the
other hand, comparison of our scheme with that of [8] in
terms of the computational complexity does not seem to be
fair, since as our scheme employs a soft decision decoder,
whereas [8] employs a hard decision decoder. As far as the
Viterbi decoding complexity is concerned, the complexity of
[8] is lower than our scheme because of the fact that the
uncoded bits are employed in [8] along with the coded bits,
whereas all the bits are encoded in our scheme. However, as
seen from the BER performance results shown in Figs. 8-
9, this complexity difference is compensated by a significant
performance improvement provided by our scheme.
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Fig. 9. BER comparison at 4 bits/s/Hz for uncorrelated and correlated
channels.

VII. CONCLUSIONS

In this paper, we have introduced a novel coded MIMO
transmission scheme that directly combines trellis coding
and SM. Although one transmit antenna is active during
transmission, for quasi-static fading channels, we benefit from
the time diversity provided by the SM-TC mechanism, which
is forced by our code design criteria to create a kind of virtual
interleaving by switching between the transmit antennas of a
MIMO link. We have derived a general expression for the
CPEP of the SM-TC scheme, and then, UPEP bounds for
the SM-TC scheme have been obtained and resulting design
criteria have been derived for quasi-static Rayleigh fading
channels. According to the SM-TC design criteria, we have
proposed some new SM-TC codes which offer significant error
performance improvements over alternatives while having a
lower decoding complexity for 2, 3 and 4 bits/s/Hz transmis-
sions.
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