Advanced Search

Show simple item record

dc.contributor.authorDuzenli, S.
dc.contributor.authorSurer, J.
dc.contributor.authorTabak, A.F.
dc.date.accessioned2023-10-19T15:05:37Z
dc.date.available2023-10-19T15:05:37Z
dc.date.issued2021
dc.identifier.isbn9781665449304
dc.identifier.urihttps://doi.org/10.1109/ISMSIT52890.2021.9604622
dc.identifier.urihttps://hdl.handle.net/20.500.12469/4968
dc.description5h International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2021 --21 October 2021 through 23 October 2021 -- --174473en_US
dc.description.abstractIn micro-robotics, micromanipulation can be utilized via diverse strategies for the trapping, selection, and manipulation of microparticles especially in biomedical applications. One of the most encountered problems in the research studies is the deformation or damage that might be caused by the micro object. The non-contact micromanipulation methods that are proposed in the literature aim to suggest efficient solutions to limit the deforming effects. These methods can be categorized based on the technique used in the system. The utilization of hydrodynamic forces is one of the most promising techniques in the literature. However, the numerical analysis and the dynamic performance predictions of these systems are often omitted. This study tries a new approach with a robotic-modeling-based comprehensive mathematical model to hydrodynamic interaction and the performance simulation of the orbital characterization of a hydrodynamic micro-tweezers system. Furthermore, we demonstrate the performance of a micro tweezers system on a particular active particle, i.e., E. Coli minicell. The system consists of a magnetic spherical particle submerged in an aqueous environment, rotating by the effects of the external magnetic field resulting in a free vortex. In return, the vortex is employed to trap the said active particle. © 2021 IEEE.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofISMSIT 2021 - 5th International Symposium on Multidisciplinary Studies and Innovative Technologies, Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcollusionen_US
dc.subjectE. col minicelien_US
dc.subjectfree-vortexen_US
dc.subjectmicromanipulationen_US
dc.subjectorbital stabilityen_US
dc.subjectDeformationen_US
dc.subjectEscherichia colien_US
dc.subjectHydrodynamicsen_US
dc.subjectMedical applicationsen_US
dc.subjectMicromanipulatorsen_US
dc.subjectRoboticsen_US
dc.subjectActive particlesen_US
dc.subjectCharacterization studiesen_US
dc.subjectCollusionen_US
dc.subjectE col minicelien_US
dc.subjectFree vorticesen_US
dc.subjectMicro manipulationen_US
dc.subjectMicro roboticsen_US
dc.subjectOrbital stabilityen_US
dc.subjectOrbitalsen_US
dc.subjectSimulated performanceen_US
dc.subjectVortex flowen_US
dc.titleOrbital Characterization Study for the Hydrodynamic Micro Tweezers: Simulated Performance with an Active Particleen_US
dc.typeconferenceObjecten_US
dc.identifier.startpage153en_US
dc.identifier.endpage158en_US
dc.departmentN/Aen_US
dc.identifier.doi10.1109/ISMSIT52890.2021.9604622en_US
dc.identifier.scopus2-s2.0-85123287349en_US
dc.institutionauthorN/A
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.authorscopusid57422420100
dc.authorscopusid57422131400
dc.authorscopusid16239623800
dc.khas20231019-Scopusen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record