• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları / WOS
  • Araştırma Çıktıları / WOS
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları / WOS
  • Araştırma Çıktıları / WOS
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ginkgo biloba extract regulates differentially the cell death induced by hydrogen peroxide and simvastatin

Thumbnail
View/Open
Ginkgo biloba extract regulates differentially the cell death induced by hydrogen peroxide and simvastatin.pdf (397.8Kb)
Date
2006
Author
Altıok, Nedret
Ersöz, Melike
Karpuz, Vildan
Koyutürk, Meral
Abstract
Several human diseases have been associated with the overproduction of reactive oxygen species (ROS) and subsequently various antioxidants emerged as potential therapeutic agents that scavenge ROS. As an oxidative stress model of human disease we used hydrogen peroxide (11202) to study effect of ROS on C6 glioma cells as a surrogate for astrocytes. H2O2 induced dose- and time-dependent apoptotic cell death which was preceded by growth arrest and transiently activated the signalling proteins ATF-2 ERK1/2 and AKT in C6 glioma cells. While several antioxidants failed to block H2O2-induced apoptosis of these cells Ginkgo biloba extract (EGb) totally prevented the cell death and growth inhibition induced by H2O2. Interestingly EGb did not prevent the activation of ATF-2 ERK1/2 and AKT induced by H2O2 excluding the role of these factors in the pro-apoptotic effect of H2O2. We have previously shown that the lipid-lowering drug simvastatin causes apoptotic cell death in C6 glioma cells [Koyuturk M Ersoz M Altiok N. Simvastatin induces proliferation inhibition and apoptosis in C6 glioma cells via c-jun N-terminal kinase. Neurosci Lett 2004
 
370(2-3):212-7]. However in parallel experiments with H2O2 EGb was unable to prevent cell death induced by simvastatin suggesting the involvement of separate signalling pathways between H2O2 and simvastatin. Thus EGb and other plant flavonoids might have potential as protective agents against apoptosis through scavenging ROS upon cerebral or myocardial diseases associated with free radical generation. (c) 2005 Elsevier Inc. All rights reserved.
 

Source

Neurotoxicology

Issue

2

Volume

27

Pages

158-163

URI

https://hdl.handle.net/20.500.12469/1235
https://dx.doi.org/10.1016/j.neuro.2005.08.004

Collections

  • Araştırma Çıktıları / PubMed [194]
  • Araştırma Çıktıları / Scopus [1565]
  • Araştırma Çıktıları / WOS [1518]

Keywords

Apoptosis
ATF-2
ERK
Ginkgo biloba
Glioma
Hydrogen peroxide

Share


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateBy AuthorsBy TitlesBy SubjectsBy TypesBy LanguagesBy DepartmentsBy PublishersBy KHAS AuthorsBy Access TypesThis CollectionBy Issue DateBy AuthorsBy TitlesBy SubjectsBy TypesBy LanguagesBy DepartmentsBy PublishersBy KHAS AuthorsBy Access Types

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV