The Ws(2)dependence on the Elasticity and Optical Band Gap Energies of Swollen Paam Composites

No Thumbnail Available

Date

2020

Authors

Evingür, Gülsen Akın
Sağlam, Nafia Alara
Çimen, Büşra
Uysal, Bengü Özuğur
Pekcan, Önder

Journal Title

Journal ISSN

Volume Title

Publisher

Sage Publications

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

New generation nano-filler polymer composites have many applications including biomedical, electronic and maritime related applications because of their mechanical, electronic and optical properties. The properties of composites were investigated as a function of nano-filler content. Among these, tungsten disulfide (WS2) has the potential to be used as a component in electronic devices owing to its high electron mobility and easily tunable optical band gap energy. Tungsten disulfide (WS2)- Polyacrylamide (PAAm) composite was prepared using free radical co-polymerization and wet laboratory methods with WS(2)content. Composites were characterized for mechanical and optical properties using an Elasticity Instrument and UV-vis Spectrophotometer, respectively. Elastic modulus was modeled by a statistical thermodynamics model. Tauc's and Urbach's Tail model for direct transition were used to model for the optical band gap. In this study, the swelling and WS(2)effect on the optical band gap and elasticity of WS2- PAAm composites were investigated. It was observed that the elasticity presented a reversed behavior of optical band gap energies with respect to WS(2)content. For the applications of nano-filler doped polymer composites in flexible electronic devices, WS(2)content strongly influences the mechanical and optical properties.

Description

Keywords

Tungsten disulfide (WS2), Polyacrylamide (PAAm), UV-vis absorbance, Modulus, Optical band gap, Optical band gap, Modulus, Polyacrylamide (PAAm), Tungsten disulfide (WS2), UV-vis absorbance

Turkish CoHE Thesis Center URL

Fields of Science

02 engineering and technology, 0210 nano-technology

Citation

WoS Q

Q3

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
9

Source

Journal of Composite Materials

Volume

55

Issue

Start Page

71

End Page

76
PlumX Metrics
Citations

CrossRef : 9

Scopus : 11

Captures

Mendeley Readers : 6

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.51700336

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

15

LIFE ON LAND
LIFE ON LAND Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo