• English
    • Türkçe
  • English 
    • English
    • Türkçe
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları / Scopus
  • Araştırma Çıktıları / Scopus
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları / Scopus
  • Araştırma Çıktıları / Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine learning model for maternal quality in sheep

Thumbnail
Date
2019
Author
Ödevci, Bahadır
Emsen, Ebru
Abstract
This paper aims to identify determinant traits of ewes by measuring their impact on lamb survival. For that, we devised a machine learning model that correlates ewe traits to lamb survival, and figured out as to which ewe traits explain the correlation and hence help us to identify the better mother. In this study, we kept pregnant ewes under 24 h observation by two researchers starting approximately three days before expected parturition dates. We conducted the study using native and crossbreed lambs produced in high altitude and cold climate region. It is critical to note that parturation took place with minimum interruption unless there is a birth difficulty. Independent variables used in the machine learning model pertain to mother's behaviours during parturation, however, we also took into consideration factors like dam breed, dam body weight at lambing, age of dam, litter size at birth, lamb breed and sex. Lamb survival is a nominal output variable, hence we tried out several classification algorithms like Bayesian Methods, Artificial Neural Networks, Support Vector Machine and Tree Based Algorithms. Classification algorithms applied for lamb survival were Bayesian Methods, Artificial Neural Networks, Support Vector Machine and Trees. RandomForest algorithm was found best performer among tree algorithms. We were able to present tree visualisation for mothering ability with 80% accuracy rate and 0.43 Kappa Statistics. The result of the study shows that grooming behaviour is the first determinant mothering ability. If the grooming duration is longer than 15 minutes, then it is a good mother.

Source

Precision Livestock Farming 2019 - Papers Presented at the 9th European Conference on Precision Livestock Farming,

Pages

69-73

URI

https://hdl.handle.net/20.500.12469/3966

Collections

  • Araştırma Çıktıları / Scopus [1565]

Keywords

Lamb survival
Machine learning
Maternal quality

Share


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateBy AuthorsBy TitlesBy SubjectsBy TypesBy LanguagesBy DepartmentsBy PublishersBy KHAS AuthorsBy Access TypesThis CollectionBy Issue DateBy AuthorsBy TitlesBy SubjectsBy TypesBy LanguagesBy DepartmentsBy PublishersBy KHAS AuthorsBy Access Types

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV