Bayesian Estimation of Discrete-Time Cellular Neural Network Coefficients

Loading...
Thumbnail Image

Date

2017

Authors

Özer, Hakan Metin
Özmen, Atilla
Şenol, Habib

Journal Title

Journal ISSN

Volume Title

Publisher

TUBITAK Scientific & Technical Research Council Turkey

Open Access Color

GOLD

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

A new method for finding the network coefficients of a discrete-time cellular neural network (DTCNN) is proposed. This new method uses a probabilistic approach that itself uses Bayesian learning to estimate the network coefficients. A posterior probability density function (PDF) is composed using the likelihood and prior PDFs derived from the system model and prior information respectively. This posterior PDF is used to draw samples with the help of the Metropolis algorithm a special case of the Metropolis--Hastings algorithm where the proposal distribution function is symmetric and resulting samples are then averaged to find the minimum mean square error (MMSE) estimate of the network coefficients. A couple of image processing applications are performed using these estimated parameters and the results are compared with those of some well-known methods.

Description

Keywords

Bayesian learning, Cellular neural networks, Metropolis Hastings, Estimation, Bayesian learning, Metropolis Hastings, Cellular neural networks, Estimation, Metropolis–Hastings

Turkish CoHE Thesis Center URL

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, 0101 mathematics, 01 natural sciences

Citation

WoS Q

Q3

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES

Volume

25

Issue

3

Start Page

2363

End Page

2374
PlumX Metrics
Citations

Scopus : 1

Captures

Mendeley Readers : 2

SCOPUS™ Citations

1

checked on Feb 09, 2026

Web of Science™ Citations

1

checked on Feb 09, 2026

Page Views

11

checked on Feb 09, 2026

Downloads

247

checked on Feb 09, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

SDG data is not available