Advanced Search

Show simple item record

dc.contributor.authorExarchos, I.
dc.contributor.authorWang, K.
dc.contributor.authorDo, B.H.
dc.contributor.authorStroppa, F.
dc.contributor.authorCoad, M.M.
dc.contributor.authorOkamura, A.M.
dc.contributor.authorLiu, C.K.
dc.date.accessioned2023-10-19T15:05:15Z
dc.date.available2023-10-19T15:05:15Z
dc.date.issued2022
dc.identifier.isbn9781728196817
dc.identifier.issn1050-4729
dc.identifier.urihttps://doi.org/10.1109/ICRA46639.2022.9811611
dc.identifier.urihttps://hdl.handle.net/20.500.12469/4775
dc.descriptionIEEE;IEEE Robotics and Automation Society (RA)en_US
dc.description39th IEEE International Conference on Robotics and Automation, ICRA 2022 --23 May 2022 through 27 May 2022 -- --180851en_US
dc.description.abstractSoft robot serial chain manipulators with the capability for growth, stiffness control, and discrete joints have the potential to approach the dexterity of traditional robot arms, while improving safety, lowering cost, and providing an increased workspace, with potential application in home environments. This paper presents an approach for design optimization of such robots to reach specified targets while minimizing the number of discrete joints and thus construction and actuation costs. We define a maximum number of allowable joints, as well as hardware constraints imposed by the materials and actuation available for soft growing robots, and we formulate and solve an optimization problem to output a planar robot design, i.e., the total number of potential joints and their locations along the robot body, which reaches all the desired targets, avoids known obstacles, and maximizes the workspace. We demonstrate a process to rapidly construct the resulting soft growing robot design. Finally, we use our algorithm to evaluate the ability of this design to reach new targets and demonstrate the algorithm's utility as a design tool to explore robot capabilities given various constraints and objectives. © 2022 IEEE.en_US
dc.description.sponsorshipNational Science Foundation, NSF: 1953008, 2024247; Achievement Rewards for College Scientists Foundation, ARCSen_US
dc.description.sponsorshipThis work was supported in part by National Science Foundation grants 1953008 and 2024247, a National Science Foundation Graduate Research Fellowship, and an ARCS Foundation Fellowship.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - IEEE International Conference on Robotics and Automationen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMachine designen_US
dc.subjectDesign optimizationen_US
dc.subjectHome environmenten_US
dc.subjectInflated beamsen_US
dc.subjectJoint constrainten_US
dc.subjectMinimizing the number ofen_US
dc.subjectRobot armsen_US
dc.subjectRobot designsen_US
dc.subjectSerial chainsen_US
dc.subjectSoft roboten_US
dc.subjectStiffness controlen_US
dc.subjectManipulatorsen_US
dc.titleTask-Specific Design Optimization and Fabrication for Inflated-Beam Soft Robots with Growable Discrete Jointsen_US
dc.typeconferenceObjecten_US
dc.identifier.startpage7145en_US
dc.identifier.endpage7151en_US
dc.departmentN/Aen_US
dc.identifier.doi10.1109/ICRA46639.2022.9811611en_US
dc.identifier.scopus2-s2.0-85136336896en_US
dc.institutionauthorN/A
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.authorscopusid56692824600
dc.authorscopusid57295990500
dc.authorscopusid57220397579
dc.authorscopusid54891556200
dc.authorscopusid57197734607
dc.authorscopusid7103344370
dc.authorscopusid10140418300
dc.khas20231019-Scopusen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record