Advanced Search

Show simple item record

dc.contributor.authorAli, Mohsin
dc.contributor.authorBathaei, Mohammad Javad
dc.contributor.authorIstif, Emin
dc.contributor.authorKarimi, Seyed Nasir Hosseini
dc.contributor.authorBeker, Levent
dc.date.accessioned2023-10-19T15:13:03Z
dc.date.available2023-10-19T15:13:03Z
dc.date.issued2023
dc.identifier.issn2192-2640
dc.identifier.issn2192-2659
dc.identifier.urihttps://doi.org/10.1002/adhm.202300318
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5595
dc.description.abstractRecent materials, microfabrication, and biotechnology improvements have introduced numerous exciting bioelectronic devices based on piezoelectric materials. There is an intriguing evolution from conventional unrecyclable materials to biodegradable, green, and biocompatible functional materials. As a fundamental electromechanical coupling material in numerous applications, novel piezoelectric materials with a feature of degradability and desired electrical and mechanical properties are being developed for future wearable and implantable bioelectronics. These bioelectronics can be easily integrated with biological systems for applications, including sensing physiological signals, diagnosing medical problems, opening the blood-brain barrier, and stimulating healing or tissue growth. Therefore, the generation of piezoelectricity from natural and synthetic bioresorbable polymers has drawn great attention in the research field. Herein, the significant and recent advancements in biodegradable piezoelectric materials, including natural and synthetic polymers, their principles, advanced applications, and challenges for medical uses, are reviewed thoroughly. The degradation methods of these piezoelectric materials through in vitro and in vivo studies are also investigated. These improvements in biodegradable piezoelectric materials and microsystems could enable new applications in the biomedical field. In the end, potential research opportunities regarding the practical applications are pointed out that might be significant for new materials research.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [2232, 118C295, 2244, 118C155, 3501, 120M363, H2020-MSCA-IF-2018-840786]; (Brain Watch)en_US
dc.description.sponsorshipM.A and L.B. are supported by The Scientific and Technological Research Council of Turkey (TUBITAK) 2232 (funding #118C295), 2244 (#118C155), and 3501 (120M363) programs. L.B. acknowledges the support through a Marie Sklodowska-Curie Individual Fellowship (H2020-MSCA-IF-2018-840786, Brain Watch).en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.ispartofAdvanced Healthcare Materialsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectIn-Vivo DegradationEn_Us
dc.subjectFerroelectric PropertiesEn_Us
dc.subjectDiphenylalanine PeptideEn_Us
dc.subjectElectromagnetic GeneratorEn_Us
dc.subjectCellulose NanocrystalsEn_Us
dc.subjectEnzymatic DegradationEn_Us
dc.subjectMechanical-PropertiesEn_Us
dc.subjectPoly(L-Lactic Acid)En_Us
dc.subjectCrystal-StructureEn_Us
dc.subjectRecent ProgressEn_Us
dc.subjectbiodegradablesen_US
dc.subjectbiomedical devicesen_US
dc.subjectpiezoelectric polymersen_US
dc.titleBiodegradable Piezoelectric Polymers: Recent Advancements in Materials and Applicationsen_US
dc.typereviewen_US
dc.authoridIstif, Emin/0000-0003-4700-7050
dc.authoridali, Mohsin/0000-0001-8626-6122
dc.departmentN/Aen_US
dc.identifier.wosWOS:001004497500001en_US
dc.identifier.doi10.1002/adhm.202300318en_US
dc.identifier.scopus2-s2.0-85161434827en_US
dc.institutionauthorN/A
dc.relation.publicationcategoryDiğeren_US
dc.authorwosidIstif, Emin/JGM-0202-2023
dc.identifier.pmid37235849en_US
dc.khas20231019-WoSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record