Browsing by Author "Alamin, Mohamed"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference Object Citation Count: 0Power Consumption Estimation using In-Memory Database Computation(Ieee, 2016) Dağ, Hasan; Alamin, MohamedIn order to efficiently predict electricity consumption, we need to improve both the speed and the reliability of computational environment. Concerning the speed, we use inmemory database, which is taught to be the best solution that allows manipulating data many times faster than the hard disk. For reliability, we use machine learning algorithms. Since the model performance and accuracy may vary depending on data each time, we test many algorithms and select the best one. In this study, we use SmartMeter Energy Consumption Data in London Households to predict electricity consumption using machine learning algorithms written in Python programming language and in-memory database computation package, Aerospike. The test results show that the best algorithm for our data set is Bagging algorithm. We also emphatically prove that R-squared may not always be a good test to choose the best algorithm.Master Thesis Power consumption estimation using in-memory database computation(Kadir Has Üniversitesi, 2016) Dağ, Hasan; Dağ, HasanSon elektrik tüketimini tahmin etmek amacıyla, hız ve güvenilirliği artırmak gerekir. hız ile ilgili olarak, birçok kat daha hızlı HDD den veri manipüle sağlar en iyi çözümdür IN-Bellek veritabanını kullanır. Bu amaçla, biz "en iyi" açık kaynak In-Memory veritabanı gibi YCSB gibi standart bir kriter kullanarak seçmeniz gerekir. güvenilirlik için, makine öğrenimi algoritmalarını kullanmaktadır. Model performans ve doğruluk verilerine her zaman bağlı olarak değişebilir bu yana, birçok algoritmalar test etmek ve en iyisini seçmek. Bu tezde, Python ve Aerospike bellek veritabanında öğrenme makinesi kullanılarak elektrik tüketimini tahmin etmek Londra Hanehalkı SmartMeter Enerji Tüketimi Verileri kullanın. Çalışma veri seti için en iyi algoritma Torbalama olduğunu göstermektedir. Biz de Ar-kare her zaman en iyi algoritma seçmek için iyi bir test olmadığını kanıtlamak. Son olarak, biz belirli bir zamanda tüketimini tahmin etmek deneyimli olmayan kullanıcılar tarafından kullanılabilir Python kullanarak makine öğrenimi, bir grafiksel kullanıcı arabirimi öneriyoruz