Power consumption estimation using in-memory database computation

Loading...
Thumbnail Image

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Kadir Has Üniversitesi

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Son elektrik tüketimini tahmin etmek amacıyla, hız ve güvenilirliği artırmak gerekir. hız ile ilgili olarak, birçok kat daha hızlı HDD den veri manipüle sağlar en iyi çözümdür IN-Bellek veritabanını kullanır. Bu amaçla, biz "en iyi" açık kaynak In-Memory veritabanı gibi YCSB gibi standart bir kriter kullanarak seçmeniz gerekir. güvenilirlik için, makine öğrenimi algoritmalarını kullanmaktadır. Model performans ve doğruluk verilerine her zaman bağlı olarak değişebilir bu yana, birçok algoritmalar test etmek ve en iyisini seçmek. Bu tezde, Python ve Aerospike bellek veritabanında öğrenme makinesi kullanılarak elektrik tüketimini tahmin etmek Londra Hanehalkı SmartMeter Enerji Tüketimi Verileri kullanın. Çalışma veri seti için en iyi algoritma Torbalama olduğunu göstermektedir. Biz de Ar-kare her zaman en iyi algoritma seçmek için iyi bir test olmadığını kanıtlamak. Son olarak, biz belirli bir zamanda tüketimini tahmin etmek deneyimli olmayan kullanıcılar tarafından kullanılabilir Python kullanarak makine öğrenimi, bir grafiksel kullanıcı arabirimi öneriyoruz
In order to re ciently predict electricity consumption, we need to improve the speed and the reliability. Concerning the speed, we use IN-Memory database, which is the best solution that allows manipulating data many times faster than HDD. For this purpose, we need to choose "the best" open-source In-Memory database using a standard benchmark, such as YCSB. For reliability, we use machine learning algorithms. Since the model performance and accuracy may vary depending on data each time, we test many algorithms and select the best one. In this thesis, we use SmartMeter Energy Consumption Data in London Households to predict electricity consumption using machine learning in Python and Aerospike in-memory database. The study shows that the best algorithm for our data set is Bagging. We also prove that R-squared is not always a good test to choose the best algorithm. Finally, we propose a graphical user interface for machine learning using Python, that can be used by non-experienced users to predict the consumption at a certain time.

Description

Keywords

Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

1

End Page

62

Collections