Browsing by Author "Pisica, Ioana"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Conference Object Citation - WoS: 1Citation - Scopus: 2Analysis of Local and Centralized Control of Pv Inverters for Voltage Support in Distribution Feeders(IEEE, 2021) Ceylan, Oguzhan; Ceylan, Oğuzhan; Paudyal, Sumit; Pisica, IoanaHigher photovoltaic penetration on distribution system brings operational challenges including overvoltage issues. With smart inverters, efficient voltage control can be achieved through adjusting active/reactive powers of inverters. However, reactive power may not be as effective as active power in regulating voltage due to high R/X ratio of distribution networks. Thus, active power curtailment (APC) techniques in coordination with reactive power control are required in distribution networks. In this study, we aim to evaluate the performances of a sensitivity based method and an optimal power flow (OPF) based centralized method of reactive power control (in coordination with APC) from inverters in managing voltage profile on distribution networks. We performed simulations on a 730-node MV/LV system upto 100% PV penetration. Based on the case studies using different penetration levels of PVs, we observed that: a) sensitivity based method is not always able to solve overvoltage issues and energy curtailments are high, and b) OPF-based method can ensure that voltage remains within the operational bound with significantly less energy curtailment.Conference Object Citation - WoS: 0Citation - Scopus: 1Multi-Agent Model of Electricity Networks - a Perspective on Distribution Network Charges(Institute of Electrical and Electronics Engineers Inc., 2019) Pisica, Ioana; Ceylan, Oğuzhan; Ceylan, OğuzhanIn the UK, DNOs are regulated by Ofgem to use two common distribution use of system charging methodologies: Common Distribution Charging Methodology and Extra-High Voltage Distribution Charging Methodology. To account for the changing landscape of the energy sector, Ofgem has recently published a consultation paper on changes to DUoS charging structure. This paper looks into the implications of distribution network charging in consumer-level adoption of low carbon technologies and vice-versa, using an agent-based model approach.Article Citation - WoS: 2Citation - Scopus: 2Multi-Criteria Decision Making in Optimal Operation Problem of Unbalanced Distribution Networks Integrated With Photovoltaic Units(Ieee-inst Electrical Electronics Engineers inc, 2024) Ebadi, Ramin; Ceylan, Oğuzhan; Aboshady, F. M.; Ceylan, Oguzhan; Pisica, Ioana; Ozdemir, AydoganThe use of renewable energy sources is increasing day by day due to their economic and environmental benefits. However, improper penetration of renewable energy into power grids can lead to problems such as over-voltages and higher active power losses. Therefore, the voltage regulation problem in distribution networks is critical due to the increasing integration of renewable energy sources. On the other hand, an increase in renewable energy penetration leads to lower operational costs due to decreased energy purchases from the overhead grid. Therefore, it can be challenging for distribution system operators (DSOs) to decide the trade-off between more Photovoltaic (PV) integration for cost minimization or less penetration to minimize voltage deviation from a rated value. In this study, we formulated this trade-off as a novel multi-objective optimization framework, aiming to minimize operating costs and voltage deviations from a rated value in an unbalanced distribution grid. The proposed formulation is applied to the modified IEEE 34-bus unbalanced distribution network, where the epsilon-constraint method is utilized for solving the resulting multi-objective optimization problem along with the Exterior Penalty Functions (EPF) method. The simulation results show that the proposed approach provides the DSO with a better view of decision-making in the optimal operation of the distribution networks.Conference Object Citation - WoS: 0Citation - Scopus: 1Semi-Centralized Control of Distributed Generation in Smart Grids(IEEE, 2018) Ceylan, Oğuzhan; Ceylan, Oğuzhan; Pisica, Ioana; Paudyal, SumitThis paper proposes a semi-centralized intelligent control approach for voltage regulation in distribution grids based on sensitivity calculations. The model checks the voltage magnitudes of each end of each lateral in the system one by one then if any of these violates the allowed voltage magnitudes each node in a single lateral sends its reactive power capability and sensitivity information to the sensor located at the beginning node of that lateral. This information is sorted at the sensor and required voltage is computed and assigned to the bids one by one. This paper tests this approach on a modified 33 Node Distribution Test system with several renewable energy sources: photovoltaics (PVs) and wind turbines (WTs) and presents the numerical results based on a 15 minute resolution load data PV outputs and WT outputs.Conference Object Citation - WoS: 0Citation - Scopus: 0A Topology Detector Based Power Flow Approach for Radial and Weakly Meshed Distribution Networks(Ieee, 2024) Yetkin, Emrullah Fatih; Yetkin, E. Fatih; Ceylan, Oguzhan; Ceylan, Oğuzhan; Pisica, Ioana; Ozdemir, AydoganPower distribution networks may need to be switched from one radial configuration to another radial structure, providing better technical and economic benefits. Or, they may also need to switch from a radial configuration to a meshed one and vice-versa due to operational purposes. Thus the detection of the structure of the grid is important as this detection will improve the operational efficiency, provide technical benefits, and optimize economic performance. Accurate detection of the grid structure is needed for effective load flow analysis, which becomes increasingly computationally expensive as the network size increases. To perform a proper load flow analysis, one has to build the distribution load flow (DLF) matrix from scratch cost of which is unavoidable with the growing size of the network. This will considerably increase the computation time when the system size increases, compromising applicability in online implementations. In this study we introduce a novel graph-based model designed to rapidly detect transitions between radial and weakly meshed systems. By leveraging the characteristic properties of Sparse Matrix-Vector product (SpMV) operations, we accelerate power flow calculations without necessitating the complete reconstruction of the DLF matrix. With this approach we aim to reduce the computational costs and to improve the feasibility of near-online implementations.Conference Object Citation - WoS: 1Citation - Scopus: 1Voltage Control of Unbalanced Distribution Systems With Penetration of Renewable Sources: a Gradient-Based Optimization Approach(IEEE, 2022) Ebadi, Ramin; Ceylan, Oğuzhan; Senyuz, Hande; Aboshady, Fathy; Ceylan, Oguzhan; Pisica, Ioana; Ozdemir, AydoganThe penetration of distributed energy resources (DERs), including renewable energy sources (RES), into electric power systems has led to several challenges for the system operators. Despite various economic and environmental benefits offered by RES, the issue of voltage rise due to active power injection from RES is still an open problem. On the other hand, voltage decrease due to high load in distribution systems is another challenge faced by operators. In this study, we investigated the problem of over-voltage and under-voltage in the operation of unbalanced 3-phase distribution systems with penetration of RES. Moreover, We utilize derivative-based Exterior Penalty Function (EPF) optimization to solve the voltage deviation problem. The results of the tests conducted on a modified IEEE 13 Bus Test System have confirmed that the use of the tap changer voltage regulators and reactive power from PVs connected close to inverters can effectively contribute to the voltage control problem.Conference Object Citation - WoS: 0Citation - Scopus: 0Voltage Profile Improvement in Unbalanced Distribution Networks for Probabilistic Generation and Consumption(Ieee, 2024) Bamatraf, Mohammed; Ceylan, Oğuzhan; Ceylan, Oguzhan; Pisica, Ioana; Ozdemir, AydoganDue to their technical, economical, and environmental advantages, active distribution networks implement renewable energy resources (RERs) such as photovoltaic (PV) units in distribution networks DNs. However, some drawbacks may arise due to the intermittent nature of RERs, such as voltage fluctuations and increased system losses. This paper presents an optimization problem that is solved by sequential linear programming (SLP) to improve the voltage profile of the unbalanced distribution network. A probabilistic approach was applied to both the load profile and the active power generation of the PV units. SLP is applied to the modified IEEE 34 Bus Test system. The method optimizes the voltage deviations by changing the taps of the voltage regulators and the reactive power injected by the inverters of the PV systems and, in some cases, by switching a shunt capacitor. MATLAB simulations are done at different times of the day with different loads and PV outputs to compare base case and optimal case voltage profiles. The results show better voltage profiles after applying the presented approach.