Voltage Profile Improvement in Unbalanced Distribution Networks for Probabilistic Generation and Consumption

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers Inc.

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Due to their technical, economical, and environmental advantages, active distribution networks implement renewable energy resources (RERs) such as photovoltaic (PV) units in distribution networks DNs. However, some drawbacks may arise due to the intermittent nature of RERs, such as voltage fluctuations and increased system losses. This paper presents an optimization problem that is solved by sequential linear programming (SLP) to improve the voltage profile of the unbalanced distribution network. A probabilistic approach was applied to both the load profile and the active power generation of the PV units. SLP is applied to the modified IEEE 34 Bus Test system. The method optimizes the voltage deviations by changing the taps of the voltage regulators and the reactive power injected by the inverters of the PV systems and, in some cases, by switching a shunt capacitor. MATLAB simulations are done at different times of the day with different loads and PV outputs to compare base case and optimal case voltage profiles. The results show better voltage profiles after applying the presented approach. © 2024 IEEE.

Description

100% Pure New Zealand; AUT; Centre for Future Power and Energy Research; et al.; IEEE New Zealand North Section; New Zealand Tourism

Keywords

distributed generation, PV systems, sequential linear programming, Unbalanced distribution networks

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

N/A

Scopus Q

N/A

Source

PMAPS 2024 - 18th International Conference on Probabilistic Methods Applied to Power Systems -- 18th International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2024 -- 24 June 2024 through 26 June 2024 -- Auckland -- 202553

Volume

Issue

Start Page

End Page