Jafari Navimipour, Nima
Loading...
Name Variants
Jafari Navimipour,Nima
JAFARI NAVIMIPOUR, Nima
N. Jafari Navimipour
Jafari Navimipour, Nima
Jafari Navimipour,N.
J.,Nima
JAFARI NAVIMIPOUR, NIMA
Jafari Navimipour, N.
Nima Jafari Navimipour
Nima JAFARI NAVIMIPOUR
Jafari Navimipour, NIMA
Jafari Navimipour N.
NIMA JAFARI NAVIMIPOUR
J., Nima
Nima, Jafari Navimipour
Navimipour, Nima Jafari
Navimipour, N.J.
Navimpour, Nima Jafari
Navımıpour, Nıma Jafarı
JAFARI NAVIMIPOUR, Nima
N. Jafari Navimipour
Jafari Navimipour, Nima
Jafari Navimipour,N.
J.,Nima
JAFARI NAVIMIPOUR, NIMA
Jafari Navimipour, N.
Nima Jafari Navimipour
Nima JAFARI NAVIMIPOUR
Jafari Navimipour, NIMA
Jafari Navimipour N.
NIMA JAFARI NAVIMIPOUR
J., Nima
Nima, Jafari Navimipour
Navimipour, Nima Jafari
Navimipour, N.J.
Navimpour, Nima Jafari
Navımıpour, Nıma Jafarı
Job Title
Doç. Dr.
Email Address
nima.navimipour@khas.edu.tr
Main Affiliation
Computer Engineering
Status
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Sustainable Development Goals Report Points
SDG data could not be loaded because of an error. Please refresh the page or try again later.

Scholarly Output
98
Articles
79
Citation Count
32
Supervised Theses
1
98 results
Scholarly Output Search Results
Now showing 1 - 10 of 98
Review Citation - WoS: 4Citation - Scopus: 4Blockchain Systems in Embedded Internet of Things: Systematic Literature Review, Challenges Analysis, and Future Direction Suggestions(Mdpi, 2022) Darbandi, Mehdi; Jafari Navimipour, Nima; Al-Khafaji, Hamza Mohammed Ridha; Nasab, Seyed Hamid Hosseini; AlHamad, Ahmad Qasim Mohammad; Ergashevich, Beknazarov Zafarjon; Navimipour, Nima Jafari; Computer EngineeringInternet of Things (IoT) environments can extensively use embedded devices. Without the participation of consumers; tiny IoT devices will function and interact with one another, but their operations must be reliable and secure from various threats. The introduction of cutting-edge data analytics methods for linked IoT devices, including blockchain, may lower costs and boost the use of cloud platforms. In a peer-to-peer network such as blockchain, no one has to be trusted because each peer is in charge of their task, and there is no central server. Because blockchain is tamper-proof, it is connected to IoT to increase security. However, the technology is still developing and faces many challenges, such as power consumption and execution time. This article discusses blockchain technology and embedded devices in distant areas where IoT devices may encounter network shortages and possible cyber threats. This study aims to examine existing research while also outlining prospective areas for future work to use blockchains in smart settings. Finally, the efficiency of the blockchain is evaluated through performance parameters, such as latency, throughput, storage, and bandwidth. The obtained results showed that blockchain technology provides security and privacy for the IoT.Article Citation - WoS: 0A New Nano-Scale Authentication Architecture for Improving the Security of Human-Computer Interaction Systems Based on Quantum Computing(Springer, 2025) Jafari Navimipour, Nima; Zohaib, Muhammad; Navimipour, Nima Jafari; Misra, Neeraj Kumar; Rasmi, Hadi; Salahov, Huseyn; Hosseinzadeh, Mehdi; Computer EngineeringHuman-Computer Interaction (HCI) is an interdisciplinary area of study focusing on the interaction of users and computers by scheming interactive computer interfaces. In addition, HCI systems need security to confirm user authentication, which is a crucial issue in these systems. Hence, user authentication is vital, allowing only authorized users to access data. Authentication is critical to the digital world since it provides security and safety for digital data. Moreover, a digital signature is an authentication method to confirm the accuracy and reliability of digital documents or communications. In addition, designing the circuit based on the complementary metal-oxide semiconductor (CMOS) technology can affect the security and safety of digital data due to the excessive heat dissipation of circuits. On the other hand, quantum-dot cellular automata (QCA) and reversible logic as alternative technologies to CMOS address these problems. Since QCA and reversible logic circuits have minimal energy dissipation, which is considered nearly zero, approaching these technologies proves extremely difficult for any hacker. This work presents an effective structure for the authenticator and human-computer interaction using QCA and IBM quantum computing with Qiskit simulations. The proposed structure has outperformed current circuits in terms of area, cell count, and latency. The paper demonstrates the QCA reversible logic layout of the proposed HCI authenticator and integrates IBM quantum computing simulations using Qiskit for validation. The implementation and testing of results are performed utilizing QCADesigner-2.0.3 and Qiskit simulation tools. The accuracy and efficiency of the proposed design are validated through simulation-derived comparison values, and energy dissipation simulations prove that the suggested circuit dissipates minimal energy.Editorial Citation - WoS: 1Citation - Scopus: 1The role of new ICT-based systems in modern management special issue editors(Cambridge Univ Press, 2023) Jafari Navimipour, Nima; Wan, Shaohua; Pasumarti, Srinivas Subbarao; Fazio, Maria; Computer EngineeringIn this special issue, we have collected eight articles that offer new points for research on information and communications technology (ICT)-based systems. We focused on the intuitive nature of the relationship between new ICT-based systems and contemporary management, forming an integrative unit of analysis instead of focusing solely on new ICT-based systems and leaving contemporary management as a moderating or mediating factor. This special issue promoted interdisciplinary research at the intersection of new ICT-based systems and contemporary management, including cybernetics systems and knowledge management, service managing and the Internet of things, cloud and marketing management, business process re-engineering and management, knowledge management, and strategic business management, among others.Article Citation - WoS: 6Citation - Scopus: 6A Radio Frequency Identification Reader Collision Avoidance Protocol for Dense Reader Environments in the Context of Industry 4.0(Wiley, 2023) Rezaie, Hadiseh; Jafari Navimipour, Nima; Golsorkhtabaramiri, Mehdi; Navimipour, Nima Jafari; Computer EngineeringIn the new industrial revolution known as Industry 4.0, radio frequency identification (RFID) systems are a key component of automatic detection. These systems have two main elements, namely Reader and Tag. In many Internet of Things (IoT) applications, the RFID system is used with lots of readers working together in a dense environment to read tags. The simultaneous operation of readers with a common sensory range increases the likelihood of reader-to-tag collision and reader-to-reader collision and reduces the number of successful reading and as a result, reduces network performance and average waiting time for each reader increased. Collisions happen when readers are in the interference range and start reading tags simultaneously, so it is necessary to use the right solution to control channel access in these systems. So far, various solutions have been proposed to control readers' access to the communication channel. Some of them have not considered the existing standards for this type of system or have not been efficient enough to be used in the IoT. In this study, we propose a method that, by considering the distance between readers and the number of neighbourhoods, and the possibility of information sharing, allows readers to successfully read more tags with fewer collisions in a certain time frame. The results of the performance study in a real-world environment showed that the suggested method outperformed similar methods in terms of network performance and has much better throughput, making it a superior choice for usage in IoT-based RFID systems.Article Citation - Scopus: 0A Nano-Scale Design of Arithmetic and Logic Unit for Energy-Efficient Signal Processing Devices Based on a Quantum-Based Technology(Springer, 2025) Jafari Navimipour, Nima; Aydemir, Mehmet Timur; Aydemir, M.T.; Ahmadpour, S.-S.; Computer Engineering; Electrical-Electronics EngineeringSignal processing had a significant impact on the development of many elements of modern life, including telecommunications, education, healthcare, industry, and security. The semiconductor industry is the primary driver of signal processing innovation, producing ever-more sophisticated electronic devices and circuits in response to global demand. In addition, the central processing unit (CPU) is described as the “brain” of a computer or all electronic devices and signal processing. CPU is a critical electronic device that includes vital components such as memory, multiplier, adder, etc. Also, one of the essential components of the CPU is the arithmetic and logic unit (ALU), which executes the arithmetic and logical operations within all types of CPU operations, such as addition, multiplication, and subtraction. However, delay, occupied areas, and energy consumption are essential parameters in ALU circuits. Since the recent ALU designs experienced problems like high delay, high occupied area, and high energy consumption, implementing electronic circuits based on new technology can significantly boost the performance of entire signal processing devices, including microcontrollers, microprocessors, and printed devices, with high-speed and low occupied space. Quantum dot cellular automata (QCA) is an effective technology for implementing all electronic circuits and signal processing applications to solve these shortcomings. It is a transistor-less nanotechnology being explored as a successor to established technologies like CMOS and VLSI due to its ultra-low power dissipation, high device density, fast operating speed in THz, and reduced circuit complexity. This research proposes a ground-breaking ALU that upgrades electrical devices such as microcontrollers by applying cutting-edge QCA nanotechnology. The primary goal is to offer a novel ALU architecture that fully utilizes the potential of QCA nanotechnology. Using a new and efficient approach, the fundamental gates are skillfully utilized with a coplanar layout based on a single cell not rotated. Furthermore, this work presents an enhanced 1-bit and 2-bit arithmetic logic unit in quantum dot cellular automata. The recommended design includes logic, arithmetic operations, full adder (FA) design, and multiplexers. Using the powerful simulation tools QCADesigner, all proposed designs are evaluated and verified. The simulation outcomes indicates that the suggested ALU has 42.48 and 64.28% improvements concerning cell count and total occupied area in comparison to the best earlier single-layer and multi-layer designs. © The Author(s) 2025.Article Citation - WoS: 3Citation - Scopus: 8Quantum-based serial-parallel multiplier circuit using an efficient nano-scale serial adder(Soc Microelectronics, Electron Components Materials-midem, 2024) Jafari Navimipour, Nima; Jiang, Shuai; Seyedi, Saeid; Navimipour, Nima Jafari; Computer EngineeringQuantum dot cellular automata (QCA) is one of the newest nanotechnologies. The conventional complementary metal oxide semiconductor (CMOS) technology was superbly replaced by QCA technology. This method uses logic states to identify the positions of individual electrons rather than defining voltage levels. A wide range of optimization factors, including reduced power consumption, quick transitions, and an extraordinarily dense structure, are covered by QCA technology. On the other hand, the serialparallel multiplier (SPM) circuit is an important circuit by itself, and it is also very important in the design of larger circuits. This paper defines an optimized circuit of SPM circuit using QCA. It can integrate serial and parallel processing benefits altogether to increase efficiency and decrease computation time. Thus, all these mentioned advantages make this multiplier framework a crucial element in numerous applications, including complex arithmetic computations and signal processing. This research presents a new QCAbased SPM circuit to optimize the multiplier circuit's performance and enhance the overall design. The proposed framework is an amalgamation of highly performance architecture with efficient path planning. Other than that, the proposed QCA-based SPM circuit is based on the majority gate and 1-bit serial adder (BSA). BCA circuit has 34 cells and a 0.04 mu m2 area and uses 0.5 clock cycles. The outcomes showed the suggested QCA-based SPM circuit occupies a mere 0.28 mu m 2 area, requires 222 QCA cells, and demonstrates a latency of 1.25 clock cycles. This work contributes to the existing literature on QCA technology, also emphasizing its capabilities in advancing VLSI circuit layout via optimized performance.Review Citation - WoS: 41Citation - Scopus: 49Resilient and Dependability Management in Distributed Environments: a Systematic and Comprehensive Literature Review(Springer, 2023) Amiri, Zahra; Jafari Navimipour, Nima; Heidari, Arash; Navimipour, Nima Jafari; Unal, Mehmet; Computer EngineeringWith the galloping progress of the Internet of Things (IoT) and related technologies in multiple facets of science, distribution environments, namely cloud, edge, fog, Internet of Drones (IoD), and Internet of Vehicles (IoV), carry special attention due to their providing a resilient infrastructure in which users can be sure of a secure connection among smart devices in the network. By considering particular parameters which overshadow the resiliency in distributed environments, we found several gaps in the investigated review papers that did not comprehensively touch on significantly related topics as we did. So, based on the resilient and dependable management approaches, we put forward a beneficial evaluation in this regard. As a novel taxonomy of distributed environments, we presented a well-organized classification of distributed systems. At the terminal stage, we selected 37 papers in the research process. We classified our categories into seven divisions and separately investigated each one their main ideas, advantages, challenges, and strategies, checking whether they involved security issues or not, simulation environments, datasets, and their environments to draw a cohesive taxonomy of reliable methods in terms of qualitative in distributed computing environments. This well-performed comparison enables us to evaluate all papers comprehensively and analyze their advantages and drawbacks. The SLR review indicated that security, latency, and fault tolerance are the most frequent parameters utilized in studied papers that show they play pivotal roles in the resiliency management of distributed environments. Most of the articles reviewed were published in 2020 and 2021. Besides, we proposed several future works based on existing deficiencies that can be considered for further studies.Article Citation - WoS: 58Citation - Scopus: 80A new lung cancer detection method based on the chest CT images using Federated Learning and blockchain systems(Elsevier, 2023) Jafari Navimipour, Nima; Javaheri, Danial; Toumaj, Shiva; Navimipour, Nima Jafari; Rezaei, Mahsa; Unal, Mehmet; Computer EngineeringWith an estimated five million fatal cases each year, lung cancer is one of the significant causes of death worldwide. Lung diseases can be diagnosed with a Computed Tomography (CT) scan. The scarcity and trustworthiness of human eyes is the fundamental issue in diagnosing lung cancer patients. The main goal of this study is to detect malignant lung nodules in a CT scan of the lungs and categorize lung cancer according to severity. In this work, cutting-edge Deep Learning (DL) algorithms were used to detect the location of cancerous nodules. Also, the real-life issue is sharing data with hospitals around the world while bearing in mind the organizations' privacy issues. Besides, the main problems for training a global DL model are creating a collaborative model and maintaining privacy. This study presented an approach that takes a modest amount of data from multiple hospitals and uses blockchain-based Federated Learning (FL) to train a global DL model. The data were authenticated using blockchain technology, and FL trained the model internationally while maintaining the organization's anonymity. First, we presented a data normalization approach that addresses the variability of data obtained from various institutions using various CT scanners. Furthermore, using a CapsNets method, we classified lung cancer patients in local mode. Finally, we devised a way to train a global model cooperatively utilizing blockchain technology and FL while maintaining anonymity. We also gathered data from real-life lung cancer patients for testing purposes. The suggested method was trained and tested on the Cancer Imaging Archive (CIA) dataset, Kaggle Data Science Bowl (KDSB), LUNA 16, and the local dataset. Finally, we performed extensive experiments with Python and its well-known libraries, such as Scikit-Learn and TensorFlow, to evaluate the suggested method. The findings showed that the method effectively detects lung cancer patients. The technique delivered 99.69 % accuracy with the smallest possible categorization error.Review Citation - WoS: 8Citation - Scopus: 24Fault-Tolerant Load Balancing in Cloud Computing: a Systematic Literature Review(IEEE-Inst Electrical Electronics Engineers Inc, 2022) Mohammadian, Vahid; Jafari Navimipour, Nima; Navimipour, Nima Jafari; Hosseinzadeh, Mehdi; Darwesh, Aso; Computer EngineeringNowadays, cloud computing is growing daily and has been developed as an effective and flexible paradigm in solving large-scale problems. It has been known as an Internet-based computing model in which computing and virtual resources, such as services, applications, storage, servers, and networks, are shared among numerous cloud users. Since the number of cloud users and their requests are increasing rapidly, the loads on the cloud systems may be underloaded or overloaded. These situations cause different problems, such as high response time and power consumption. To handle the mentioned problems and improve the performance of cloud servers, load balancing methods have a significant impact. Generally, a load balancing method aims to identify under-loaded and overloaded nodes and balance the load among them. In the recent decade, this problem has attracted a lot of interest among researchers, and several solutions have been proposed. Considering the important role of fault-tolerant in load balancing algorithms, there is a lack of an organized and in-depth study in this field yet. This gap prompted us to provide the current study aimed to collect and review the available papers in the field of fault tolerance load balancing methods in cloud computing. The existing algorithms are divided into two categories, namely, centralized and distributed, and reviewed based on vital qualitative parameters, such as scalability, makespan, reliability, resource utilization, throughput, and overhead. In this regard, other criteria such as the type of detected faults and adopted simulation tools are taken into account.Article Citation - WoS: 12Citation - Scopus: 13A New Nano-Design of 16-Bit Carry Look-Ahead Adder Based on Quantum Technology(Iop Publishing Ltd, 2023) Ahmadpour, Seyed-Sajad; Jafari Navimipour, Nima; Navimipour, Nima Jafari; Computer EngineeringThere is a requirement and a desire to develop reliable and energy-efficient circuit designs that adapt to the expanding field of low-power circuit engineering in the VLSI domain based on nanotechnology. The quantum-dot cellular automata (QCA) technology possesses the potential to supplant the conventional, complementary metal-oxide-semiconductor (CMOS) technology in low-power nano-scale applications due to its diminutive cell dimensions, dependable circuitry architecture, and robust structural integrity. On the other hand, the carry look-ahead adder (CLA) is one of the vital circuits in digital processing utilized in diverse digital applications. In addition, for the design of this essential circuit, the occupied area and the delay play the primary role because using a simple formulation can reduce the occupied area, energy consumption, and the number of gates count. In the previous structures, high delay and use of traditional technology (like CMOS) caused an increase in the number of gate counts and occupied areas. Using QCA technology, simple quantum cells, and a low delay, all the previous shortcomings can be resolved to reduce the number of gate counts and low occupied area in the CLA circuit. This paper proposes a new method that helps the propagation characteristics generate suitable signals to reduce the number of gate counts based on adders in QCA technology. Several new blocks are used to design fast binary adders. Finally, an optimal four and 16-bit CLA circuit will be proposed based on the adder circuit. Furthermore, the execution and experimentation of outcomes are carried out utilizing QCADesigner-2.0.3. The simulation-based comparison of values justified the proposed design's accuracy and efficiency. The simulation results demonstrate that the proposed circuit has a low area and quantum cell.