Aydemir, Mehmet Timur
Loading...
Profile URL
Name Variants
A.,Mehmet Timur
A., Mehmet Timur
Aydemir, Mehmet Timur
AYDEMIR, MEHMET TIMUR
Aydemir M.
MEHMET TIMUR AYDEMIR
AYDEMIR, Mehmet Timur
Mehmet Timur AYDEMIR
M. Aydemir
Mehmet Timur, Aydemir
Aydemir,Mehmet Timur
Aydemir,M.T.
Aydemir, M. T.
M. T. Aydemir
Mehmet Timur Aydemir
Aydemir, M.
Aydemir, MEHMET TIMUR
Aydemir T.
AydemIr, M. Timur
Aydemir, M.T.
Aydemir, M.Timur
Aydemir, M. Timur
A., Mehmet Timur
Aydemir, Mehmet Timur
AYDEMIR, MEHMET TIMUR
Aydemir M.
MEHMET TIMUR AYDEMIR
AYDEMIR, Mehmet Timur
Mehmet Timur AYDEMIR
M. Aydemir
Mehmet Timur, Aydemir
Aydemir,Mehmet Timur
Aydemir,M.T.
Aydemir, M. T.
M. T. Aydemir
Mehmet Timur Aydemir
Aydemir, M.
Aydemir, MEHMET TIMUR
Aydemir T.
AydemIr, M. Timur
Aydemir, M.T.
Aydemir, M.Timur
Aydemir, M. Timur
Job Title
Prof. Dr.
Email Address
Main Affiliation
Electrical-Electronics Engineering
Status
Current Staff
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Sustainable Development Goals
7
AFFORDABLE AND CLEAN ENERGY

5
Research Products
9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

1
Research Products
11
SUSTAINABLE CITIES AND COMMUNITIES

1
Research Products
13
CLIMATE ACTION

1
Research Products

Documents
71
Citations
979
h-index
14

Documents
63
Citations
749

Scholarly Output
21
Articles
15
Views / Downloads
252/1832
Supervised MSc Theses
0
Supervised PhD Theses
0
WoS Citation Count
176
Scopus Citation Count
230
WoS h-index
6
Scopus h-index
8
Patents
0
Projects
0
WoS Citations per Publication
8.38
Scopus Citations per Publication
10.95
Open Access Source
8
Supervised Theses
0
Google Analytics Visitor Traffic
| Journal | Count |
|---|---|
| Electrical Engineering | 2 |
| 2021 14th Ieee International Conference on Industry Applications (Induscon) | 1 |
| 2021 8th International Conference on Electrical and Electronics Engineering (Iceee 2021) | 1 |
| 2023 IEEE Energy Conversion Congress and Exposition, ECCE 2023 -- 2023 IEEE Energy Conversion Congress and Exposition, ECCE 2023 -- 29 October 2023 through 2 November 2023 -- Nashville -- 195932 | 1 |
| Cluster Computing | 1 |
Current Page: 1 / 4
Scopus Quartile Distribution
Competency Cloud

Scholarly Output Search Results
Now showing 1 - 10 of 21
Article A Novel Multiscale Graph Signal Processing and Network Dynamics Approach to Vibration Analysis for Stone Size Discrimination via Nonlinear Manifold Embeddings and a Convolutional Self-Attention Model(Springer Wien, 2025) Mirza, Fuat Kaan; Oz, Usame; Hekimoglu, Mustafa; Aydemir, Mehmet Timur; Pural, Yusuf Enes; Baykas, Tuncer; Pekcan, OnderUnderstanding nonlinear dynamics is critical for analyzing the hidden complexities of vibrational behavior in real-world systems. This study introduces a graph-theoretic approach to analyze the complex nonlinear temporal patterns in vibrational signals, utilizing the Tri-Axial Vibro-Dynamic Stone Classification dataset. This dataset captures high-resolution acceleration signals from controlled stone-crushing experiments, providing a unique opportunity to investigate temporal dynamics associated with distinct stone sizes. A 12-level Maximal Overlap Discrete Wavelet Transform is employed to perform multiscale signal decomposition, enabling the construction of transition graphs that encode transient and stable structural characteristics. Conceptually, transition graphs are analyzed as dynamic networks to uncover the interactions and temporal patterns embedded within vibrational signals. These networks are studied using a comprehensive suite of complexity metrics derived from information theory, graph theory, network science, and dynamical systems analysis. Metrics such as Shannon and Von Neumann's entropy evaluate signal dynamics' stochasticity and information retention. At the same time, the spectral radius measures the network's stability and structural robustness. Lyapunov exponents and fractal dimensions, informed by chaos theory and fractal geometry, further capture the degree of nonlinearity and temporal complexity. Complementing these dynamic measures, static network metrics-including the clustering coefficient, modularity, and the static Kuramoto index-offer critical discernment into the network's community structures, synchronization phenomena, and connectivity efficiency. Manifold learning techniques address the high-dimensional feature space derived from complexity metrics, with UMAP outperforming ISOMAP, Spectral Embedding, and PCA in preserving critical data structures. The reduced features are input into a convolutional self-attention model, combining localized feature extraction with long-term sequence modeling, achieving 100% classification accuracy across stone-size categories. This study presents a comprehensive framework for vibrational signal analysis, integrating multiscale graph-based representations, nonlinear dynamics quantification, and UMAP-based dimensionality reduction with a convolutional self-attention classifier. The proposed approach supports accurate classification and contributes to the development of data-driven tools for automated diagnostics and predictive maintenance in industrial and engineering contexts.Article Citation - WoS: 6Citation - Scopus: 9A New Capacitive Coupler Design for Wireless Capacitive Power Transfer Applications(Elsevier - Division Reed Elsevier India Pvt Ltd, 2023) Erel, Mehmet Zahid; Bayindir, Kamil Cagatay; Aydemir, Mehmet TimurCapacitive power transfer (CPT) technology has become a promising alternative solution for wireless charging applications. This paper proposes a novel coupler design to form a resonant capacitor by inserting dielectric material between two bent metal plates for each primary and secondary circuit. The main purpose of the proposed coupler is to eliminate the external capacitors and solve the low coupling capacitance for CPT applications. A comparison to the conventional four-plate coupler is presented, which shows specifically higher coupling capacitance, lower required inductance, and lower cost. Finally, the effectiveness of the proposed coupler structure is verified by simulation and experimental results. (c) 2023 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Article Citation - WoS: 18Citation - Scopus: 19A Nano-Scale Design of Arithmetic and Logic Unit for Energy-Efficient Signal Processing Devices Based on a Quantum-Based Technology(Springer, 2025) Zohaib, Muhammad; Navimipour, Nima Jafari; Aydemir, Mehmet Timur; Ahmadpour, Seyed-SajadSignal processing had a significant impact on the development of many elements of modern life, including telecommunications, education, healthcare, industry, and security. The semiconductor industry is the primary driver of signal processing innovation, producing ever-more sophisticated electronic devices and circuits in response to global demand. In addition, the central processing unit (CPU) is described as the "brain" of a computer or all electronic devices and signal processing. CPU is a critical electronic device that includes vital components such as memory, multiplier, adder, etc. Also, one of the essential components of the CPU is the arithmetic and logic unit (ALU), which executes the arithmetic and logical operations within all types of CPU operations, such as addition, multiplication, and subtraction. However, delay, occupied areas, and energy consumption are essential parameters in ALU circuits. Since the recent ALU designs experienced problems like high delay, high occupied area, and high energy consumption, implementing electronic circuits based on new technology can significantly boost the performance of entire signal processing devices, including microcontrollers, microprocessors, and printed devices, with high-speed and low occupied space. Quantum dot cellular automata (QCA) is an effective technology for implementing all electronic circuits and signal processing applications to solve these shortcomings. It is a transistor-less nanotechnology being explored as a successor to established technologies like CMOS and VLSI due to its ultra-low power dissipation, high device density, fast operating speed in THz, and reduced circuit complexity. This research proposes a ground-breaking ALU that upgrades electrical devices such as microcontrollers by applying cutting-edge QCA nanotechnology. The primary goal is to offer a novel ALU architecture that fully utilizes the potential of QCA nanotechnology. Using a new and efficient approach, the fundamental gates are skillfully utilized with a coplanar layout based on a single cell not rotated. Furthermore, this work presents an enhanced 1-bit and 2-bit arithmetic logic unit in quantum dot cellular automata. The recommended design includes logic, arithmetic operations, full adder (FA) design, and multiplexers. Using the powerful simulation tools QCADesigner, all proposed designs are evaluated and verified. The simulation outcomes indicates that the suggested ALU has 42.48 and 64.28% improvements concerning cell count and total occupied area in comparison to the best earlier single-layer and multi-layer designs.Review Citation - WoS: 37Citation - Scopus: 50Inductive Power Transfer for Electric Vehicle Charging Applications: a Comprehensive Review(Mdpi, 2022) Aydin, Emrullah; Aydemir, Mehmet Timur; Aksoz, Ahmet; El Baghdadi, Mohamed; Hegazy, OmarNowadays, Wireless Power Transfer (WPT) technology is receiving more attention in the automotive sector, introducing a safe, flexible and promising alternative to the standard battery chargers. Considering these advantages, charging electric vehicle (EV) batteries using the WPT method can be an important alternative to plug-in charging systems. This paper focuses on the Inductive Power Transfer (IPT) method, which is based on the magnetic coupling of coils exchanging power from a stationary primary unit to a secondary system onboard the EV. A comprehensive review has been performed on the history of the evolution, working principles and phenomena, design considerations, control methods and health issues of IPT systems, especially those based on EV charging. In particular, the coil design, operating frequency selection, efficiency values and the preferred compensation topologies in the literature have been discussed. The published guidelines and reports that have studied the effects of WPT systems on human health are also given. In addition, suggested methods in the literature for protection from exposure are discussed. The control section gives the common charging control techniques and focuses on the constant current-constant voltage (CC-CV) approach, which is usually used for EV battery chargers.Conference Object Design and Thermal Analysis of a High-Voltage High-Frequency Transformer(IEEE Computer Society, 2025) Shan, A.; Ozdemir, M.A.; Tamyürek, B.; Aydin, E.; Aydemir, M.T.High-voltage high-frequency (HVHF) transformers are one of the crucial components in HVDC power supplies. However, they occupy more space, and compared to other components in the system, they experience more energy losses. HVHF transformers need special attention to both thermal and electrical properties, mainly because of the use of ferrite cores. Ferrite materials show temperature-dependent properties, and transformer efficiency, reliability, and safety are enormously affected by the thermal behavior of ferrite cores. At high operating temperatures, the core performance may be reduced, leading to an increase in total losses and a decrease in the insulation life. Therefore, for optimal transformer design, it is very crucial to select an appropriate core material and predict its thermal behavior accurately. This article focuses on the thermal analysis and modeling of a 10 kVA, 500V/11 kV HVHF transformer using ANSYS simulation tools. Finite element analysis (FEA) is used to calculate the core losses and temperature distribution, enabling a deeper understanding of thermal limitations and design choices. © 2025 IEEE.Conference Object Citation - Scopus: 1Dual Side Control Design for a 600w Lcc Compensated Wireless Power Transfer System(Institute of Electrical and Electronics Engineers Inc., 2022) Pashaei, A.; Aydin, E.; Aydemir, M.T.The purpose of this paper is to design a dual side control for a 600 W LCC resonant WPT electrical bicycle with an 85 kHz resonant frequency. Primary side control use inverter voltage and current to determine mutual inductance and load value in coils misalignment case. The secondary side control uses a DC-DC converter that has two voltage and current feedback with a PI controller to achieve CC/CV charging in the battery. Additionally, with primary side control the high-frequency inverter operates in ZVS mode. Optimal design parameters are obtained and results and control method feasibility validated by simulations. © 2022 IEEE.Conference Object Citation - WoS: 7Citation - Scopus: 12Design and Practical Implementation of a Parallel-Switched Power Factor Correction Boost Converter(IEEE, 2021) Rahman, Showrov; Kosesoy, Yusuf; Ozdemir, Mehmet Akif; Simsek, Oguz; Aydemir, M. Timur; Chub, AndriiIn the past years, applications of Power Factor Correction (PFC) boost converter have increased significantly. One recent application field that requires an efficient PFC boost converter is the Wireless Power Transfer system (WPT). In this paper, the design of a single-phase PFC boost converter is presented. The proposed converter comprises three parallel switches to reduce the component stress and ensuring safe circuit operation. It utilizes FAN6982 Continuous Conduction Mode (CCM) controller. The design of the controller circuit and the controller parameter specifications are presented. Design guidelines for components are provided. The designed PFC boost converter is first validated in PSIM simulation software and then a 1.5 kW/ 350 V-dc prototype is implemented. The experimental results verify that the PFC boost converter achieves the power factor of 0.99 at the full load.Article Citation - WoS: 6Citation - Scopus: 8High-Speed and Area-Efficient Arithmetic and Logic Unit Architecture Using Quantum-Dot Cellular Automata for Digital Signal Processing(Elsevier, 2025) Zohaib, Muhammad; Navimipour, Nima Jafari; Aydemir, Mehmet Timur; Ahmadpour, Seyed-SajadSignal processing has significantly influenced our lives in many domains, including telecommunications, education, healthcare, industry, and security. The efficiency of signal processing heavily relies on the Arithmetic and Logic Unit (ALU), which stands as an essential hardware component. In addition, ALU is a fundamental part of a central processing unit (CPU), leading to fundamental operations inside the processor. However, the growing demand for small, robust hardware systems has led researchers to create nano-electronic technologies under consideration. One of the leading technologies in this field is Quantum-dot cellular automata (QCA), which demonstrates promising value as a possible alternative to complementary metal-oxide-semiconductor (CMOS) designs since it enables compact circuit designs with minimal power consumption. The existing QCA-based ALU designs face limitations in cell count density together with high occupied area and high delay, which reduces their performance for real-time signal processing. This research presents a 1-bit ALU through a QCA-optimized approach for DSP applications. QCADesigner is used to validate and verify all proposed designs. Results show a statistically significant improvement in cell count reduction of 46.84 % and a total occupied area of 64.28 % lower than the most advanced version published to date.Conference Object Parallel-Input Series-Output Z-Source Converters for High Voltage Dc Power Supplies(Institute of Electrical and Electronics Engineers Inc., 2023) Ozdemir,M.A.; Aydin,E.; Dag,B.; Tamyurek,B.; Aydemir,M.T.High Voltage DC power supplies typically employ a high voltage high frequency transformer to step-up the voltage generated by a high frequency inverter. Generally, the step-up ratio of the transformers is high and therefore the effect of the stray capacitance and inductance values is amplified, deteriorating the inverter operation. LCC converters utilizing these stray capacitors are suggested to generate soft switching for better efficiency, but this increases the complexity. Also, the varying nature of the stray capacitance may complicate the control. In this paper, a modular, Parallel-Input Series-Output converter utilizing two z-source dc-dc converters is proposed to step a 350V input to generate 2-kV, 2-kW output. Simulation and experimental results prove that impedance source converters which are generally used in renewable energy applications can also be used at high voltage applications. © 2023 IEEE.Article Citation - WoS: 2Citation - Scopus: 5Design and Implementation of a 10 Kv/10 Kw High-Frequency Center-Tapped Transformer(Springer, 2022) Rahman, Showrov; Candan, Muhammed Yusuf; Tamyurek, Bunyamin; Aydin, Emrullah; Mese, Huseyin; Aydemir, M. TimurHigh voltage high-frequency (HVHF) transformers have a crucial part in the realization of high voltage direct current (HVDC) isolated power supplies. Nevertheless, they are the bulkiest component in the system besides being one of the major contributors to the power losses. Special care is therefore required to design HVHF transformers. The main objective of this paper is to design and implement a high voltage (10 kV), high-frequency (50 kHz) center-tapped transformer with high efficiency, small size, and low cost. The proposed transformer is designed as part of a 100 kV, 10 kW DC/DC converter for supplying power to a particle accelerator. The proposed transformer steps up the input voltage (500 V) to 10 kV. Then, a five-stage full-wave Cockcroft-Walton voltage multiplier (CWVM) is used for boosting the voltage to 100 kV. A detailed step-by-step design guideline for designing an HVHF transformer is also presented. To reduce the transformer's parasitic capacitance, the secondary windings are wrapped in segments. This taken approach has been illustrated in the paper and later verified through finite element analysis (FEA). The FEA analysis shows that the transformer parasitic capacitance has reduced significantly. Following the presented design guideline, the implemented prototype transformer has been built and later tested with a single-stage CWVM. The experimental results demonstrate that the prototype transformer has successfully met the design requirements including the small size, less weight, and low-cost objectives.
- «
- 1 (current)
- 2
- 3
- »

