Hekimoğlu, Mustafa

Loading...
Profile Picture
Name Variants
Hekimoğlu, Mustafa
M.,Hekimoğlu
M. Hekimoğlu
Mustafa, Hekimoğlu
Hekimoglu, Mustafa
M.,Hekimoglu
M. Hekimoglu
Mustafa, Hekimoglu
Hekimoglu,M.
Hekimoglu, M.
Hekimoğlu, M.
Job Title
Doç. Dr.
Email Address
Mustafa.hekımoglu@khas.edu.tr
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output

30

Articles

21

Citation Count

0

Supervised Theses

3

Scholarly Output Search Results

Now showing 1 - 10 of 29
  • Master Thesis
    Demand classification for spare parts supply chains in the presence of three dimensional printers
    (Kadir Has Üniversitesi, 2022) Hekimoğlu, Mustafa; Hekimoğlu, Mustafa
    Three-dimensional printers (3DPs) are currently the source of the supply chain and are used to ensure spare parts supply in case of shortages. However, the reliability of the part produced in 3DP is lower than the original part supplied by the original equipment manufacturer (OEM). Failure of parts creates demand and the failure probability of original and printed part is different than each other. Thus, knowing the total demand distribution have great importance in optimizing the order quantity given to the OEM in the presence of 3DPs. In this study, the demand distribution of system failures has been determined by using the distribution classification methods put forward by Ord (1967) and Adan et al. (1995). In line with the results, according to study of Ord(1967), demand distribution is found as Hypergeometric and Binomial distribution. Discrete distribution family of Adan et al. (1995) gives Binomial distribution for the system demand. All results are tested with chi-square test and likelihood ratio test.
  • Article
    Citation Count: 2
    Modeling repair demand in existence of a nonstationary installed base
    (Elsevier, 2023) Hekimoğlu, Mustafa; Karli, Deniz
    Life cycles of products consist of 3 phases, namely growth, maturity, and decline phases. Modeling repair demand is particularly difficult in the growth and decline stages due to nonstationarity. In this study, we suggest respective stochastic models that capture the dynamics of repair demand in these two phases. We apply our theory to two different operations management problems. First, using the moments of spare parts demand, we suggest an algorithm that selects a parametric distribution from the hypergeometric family (Ord, 1967) for each period in time. We utilize the algorithm in a single echelon inventory control problem. Second, we focus on investment decisions of Original Equipment Manufacturers (OEMs) to extend economic lifetimes of products with technology upgrades. Our results indicate that the second moment is sufficient for growing customer bases, whereas using the third moment doubles the approximation quality of theoretical distributions for a declining customer base. From a cost minimization perspective, using higher moments of demand leads to savings up to 13.6% compared to the single-moment approach. Also, we characterize the optimal investment policy for lifetime extension decisions from risk-neutral and risk-averse perspectives. We find that there exists a critical level of investment cost and installed base size for profitability of lifetime extension for OEMs. From a managerial point of view, we find that a risk-neutral decision maker finds the lifetime extension problem profitable. In contrast, even a slight risk aversion can make the lifetime extension decision economically undesirable.
  • Article
    Citation Count: 7
    Markov-modulated analysis of a spare parts system with random lead times and disruption risks
    (Elsevier Science Bv, 2018) Hekimoğlu, Mustafa; van der Laan, Ervin; Dekker, Rommert
    Spare parts supply chains are highly dependent on the dynamics of their installed bases. A decreasing number of capital products in use increases the nonstationary supply-side risk especially towards the end-of-life of capital products. This supply-side risk appears to present itself through varying lead times coupled with supply disruptions. To model the nonstationary supply-side risk we consider an exogenous Markov chain that modulates random lead times and disruption probabilities. Assuming that order crossovers do not occur we prove the optimality of a state-dependent base stock policy. Later we conduct an impact study to understand the value of considering stochastic lead times and supply disruption risk in spare parts inventory control. Our results indicate that the coupled effect of random lead times and disruptions can be larger than the summation of individual effects even for moderate lead time variances. Also the effect of nonstationarity on total cost can be as large as the summation of all risk factors combined. In addition to this managerial insight we present a procedure for supply risk mitigation based on an empirical model and our mathematical model. Experiments on a real business case indicate that the procedure is capable of reducing costs while making the inventory system more prepared for disruptions. (C) 2018 Elsevier B.V. All rights reserved.
  • Article
    Citation Count: 21
    Evaluation Of Water Supply Alternatives For Istanbul Using Forecasting And Multi-Criteria Decision Making Methods
    (Elsevier Ltd, 2020) Hekimoğlu, Mustafa; Erbay, Barbaros; Hekimoğlu, Mustafa; Burak, Selmin
    Water scarcity is one of the most serious problems of the future due to increasing urbanization and water demand. Urban water planners need to balance increasing water demand with water resources that are under increasing pressure due to climate change and water pollution. Decision makers are forced to select the most appropriate water management alternative with respect to multiple, conflicting criteria based on short and long term projections of water demand in the future. In this paper, we consider water management in Istanbul, a megacity with a population of 15 million. Purpose: The purpose of this paper is to develop a method combining demand forecasting with multi-criteria decision making (MCDM) methods to evaluate five different water supply alternatives with respect to seven criteria using opinions of experts and stakeholders from different sectors. Methodology: To combine forecasting with MCDM, we design a data collection method in which we share our demand forecasts with our experts. For demand forecasting, we compare Holt-Winters, Seasonal Autoregressive Integrated Moving Average (S-ARIMA), and feedforward Artificial Neural Network (ANN) models and select S-ARIMA as the best forecasting model for monthly water consumption data. Generated demand projections are shared with experts from different sectors and collected data is evaluated with Fuzzy Theory using two distinct MCDM models: Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE). Also our analyses are complemented with two sensitivity analyses. Findings: Our results indicate that greywater reuse is the best alternative to satisfy the growing water demand of the city whereas all experts find desalination and inter-basin water transfer as the least attractive solutions. In addition, we adopt the PROMETHEE GDSS procedure to obtain a GAIA plane indicating consensus among experts. Furthermore, we find that our results are moderately sensitive to the number of experts and they are insensitive to changes in experts’ evaluations. Novelty: To the best of our knowledge, our study is the first one incorporating water demand and supply management concepts into the evaluation of alternatives. From a methodological perspective, water demand projections have never been used in an MCDM study in the literature. Also, this paper contributes to the literature with a mathematical construction of consensus and Monte Carlo simulations for the sufficiency of experts consulted in a study.
  • Article
    Citation Count: 0
    Yedek Parçaların Talebe Yönelik Eklemeli Üretiminde Lazer Cilalamanın Optimum Karar Verme Politikası Üzerinde Etkisi
    (2020) Hekimoğlu, Mustafa; Ulutan, Durul
    Eklemeli imalatın yakınlarda bulunan bir 3D yazıcı kullanılarak sermaye ürünlerinin yedek parça ihtiyaçlarını karşılamak için kullanılması giderek yaygınlaşmaktadır. Böyle bir teknoloji, talebe-binaen parça üretimini mümkün kılarak arızaların rassallığı nedeniyle tutulan yedek parça envanterinin önemli bir kısmını ortadan kaldırma imkânı sunmaktadır. 3D yazıcı kullanımının en büyük sorunlarından biri olan basılı ve orijinal parçalar arasındaki kalite farkı, yüzey pürüzlülüğünü hafifleten ve ek maliyet terimi karşılığında parçaların güvenilirliğini artıran lazer parlatma kullanılarak azaltılabilir. Farklı parametreler kullanılarak, parçaların güvenilirliği, sermaye ürünlerinin ihtiyaçlarına ve sistemlerin durumuna göre değiştirilebilir. Bu çalışmada, basılı parçaların yüzey pürüzlülüğü ve güvenilirliğinin orijinal yedek parçaların envanter seviyeleri ile birlikte optimize edilmesi sorunu ele alınmıştır. Çalışmada, sınırlı bir planlama ufku üzerinde rastgele arızalara maruz kalan sabit sayıda özdeş makinadan oluşan bir üretim tesisi dikkate alınmıştır. Matematiksel analiz ve ayrıntılı sayısal deneyler kullanılarak, sistemin uygun maliyetli yönetimi için kritik olabilecek optimum kontrol politikası ve maliyet parametreleri arasındaki ilişki gösterilmiştir.
  • Article
    Citation Count: 0
    Residual LSTM neural network for time dependent consecutive pitch string recognition from spectrograms: a study on Turkish classical music makams
    (Springer, 2023) Baykaş, Tunçer; Hekimoğlu, Mustafa; Baykas, Tuncer; Hekimoglu, Mustafa; Pekcan, Onder
    Turkish classical music, characterized by 'makam', specific melodic configurations delineated by sequential pitches and intervals, is rich in cultural significance and poses a considerable challenge in identifying a musical piece's particular makam. This identification complexity remains an issue even for experienced musical experts, emphasizing the need for automated and accurate classification techniques. In response, we introduce a residual LSTM neural network model that classifies makams by leveraging the distinct sequential pitch patterns discerned within various audio segments over spectrogram-based inputs. This model's design uniquely merges the spatial capabilities of two-dimensional convolutional layers with the temporal understanding of one-dimensional convolutional and LSTM mechanisms embedded within a residual framework. Such an integrated approach allows for detailed temporal analysis of shifting frequencies, as revealed in logarithmically scaled spectrograms, and is adept at recognizing consecutive pitch patterns within segments. Employing stratified cross-validation on a comprehensive dataset encompassing 1154 pieces spanning 15 unique makams, we found that our model demonstrated an accuracy of 95.60% for a subset of 9 makams and 89.09% for all 15 makams. Our approach demonstrated consistent precision even when distinguishing makam pairs known for their closely related pitch sequences. To further validate our model's prowess, we conducted benchmark tests against established methodologies found in current literature, providing a comparative assessment of our proposed workflow's abilities.
  • Master Thesis
    Optimum spare parts inventory control in existence of a non-stationary installed base
    (Kadir Has Üniversitesi, 2021) Hekimoğlu, Mustafa; Hekimoğlu, Mustafa
    In spare parts supply chains, demand is profoundly dependent on the life cycle of the product. Thus, MROs should incorporate installed base information in demand forecasting to prevent production/service interruptions and high holding costs. MROs also try to exploit secondary markets as a cheap and expedited source of spare parts apart from the OEM. However, the secondary markets are not reliable since they have a limited and stochastic spare parts capacity. Therefore, MROs need to determine when and how much to order from two supply sources. Under the assumption of stationary demand, a mathematical model is developed for an inventory control model in a dual sourcing setup. Then, this model is extended by assuming a non-stationary demand by employing Hekimoğlu and Karlı (2021)'s demand model. Optimal ordering policies are derived when the lead time difference of suppliers is one period, under both stationarity assumptions. Heuristics policies are utilized when the lead time difference is more than one period. It is found that the Dual Index policy outperforms other considered heuristics, resulting in a satisfactory cost deviation from the optimum cost. The value of higher moment information in demand forecasting is measured by simulation studies. Information of the first two and three moments are found to be superior over the other for declining and growing installed bases, respectively. The same simulation study is conducted by presenting an estimation error to the first moment. Results showed that the information of higher moments could save costs up to 14.2% and 9.26% for growth and decline phases, respectively. Finally, empirical analyses are conducted on a company from the Turkish automotive sector by performing statistical tests. It is concluded that Hekimoğlu and Karlı (2021)'s demand model could be practical to model spare parts demand of automobiles in the growth phase.
  • Article
    Citation Count: 9
    Optimization of wastewater treatment systems for growing industrial parks
    (Elsevier, 2023) Hekimoğlu, Mustafa; Yücekaya, Ahmet Deniz; Ediger, Şevket Volkan; Burak, Selmin; Karli, Deniz; Yucekaya, Ahmet; Ediger, Volkan S.
    Wastewater treatment is one of the crucial functions of industrial parks as wastewater from industrial facilities usually contains toxic compounds that can cause damage to the environment. To control their environmental loads, industrial parks make investment decisions for wastewater treatment plants. For this, they need to consider technical and economic factors as well as future growth projections as substantial construction and operational costs of wastewater treatment plants have to be shared by all companies in an industrial park. In this paper, we consider the long-term capacity planning problem for wastewater treatment facilities of a stochastically growing industrial park. By explicitly modeling randomness in the arrival of new tenants and their random wastewater discharges, our model calculates the future mean and variance of wastewater flow in the industrial park. Mean and variance are used in a Mixed Integer Programming Model to optimize wastewater treatment plant selection over a long planning horizon (30 years). By fitting our first model to empirical data from an industrial park in Turkey, we find that considering the variance of wastewater load is critical for long-term planning. Also, we quantify the economic significance of lowering wastewater discharges which can be achieved by water recycling or interplant water exchange.
  • Conference Object
    Citation Count: 0
    Blockchain Technology In Loyalty Program Applications
    (Association for Computing Machinery, 2022) Hekimoğlu, Mustafa; Gemici,S.; Yucekaya,A.; Hekimoglu,M.
    Loyalty programs provide income to the user as a result of their expenditures. It helps businesses if the customer ensures continuity. A loyalty program is based on the bilateral relationship between the customer and the business. It is important to be sure of the reliability of this bilateral relationship and to be able to follow it. Today, many companies are trying to incorporate Blockchain technology into their systems because they pay attention to reliability and transparency. In this study, a loyalty ecosystem based on Blockchain technology, which will include member businesses, change the shopping and reward experience, and encourage employees is explained. We propose an application named Decentralized Loyalty Token (DLOT) to be used by entities where the community is together and the spending potential is high such as restaurants, cafes, and e-commerce platforms that want to be included in this structure. Users will earn rewards while spending DLOT Tokens and can store and accumulate the rewards indefinitely or use them for any payment. In addition, users will be able to convert the loyalty Tokens into a digital value in other businesses included in Wallet. The details of the proposed Blockchain-based loyalty system are explained along with benefits to customers and entities. © 2022 ACM.
  • Article
    Citation Count: 17
    Maintenance optimization for a single wind turbine component under time-varying costs
    (Elsevier, 2022) Hekimoğlu, Mustafa; Dekker, Rommert; Hekimoglu, Mustafa; Eruguz, Ayse Sena
    In this paper, we introduce a new, single-component model for maintenance optimization under timevarying costs, specifically oriented at offshore wind turbine maintenance. We extend the standard age replacement policy (ARP), block replacement policy (BRP) and modified block replacement policy (MBRP) to address time-varying costs. We prove that an optimal maintenance policy under time-varying costs is a time-dependent ARP policy. Via a discretization of time, the optimal time-dependent ARP can be found using a linear programming formulation. We also present mixed integer linear programming models for parameter optimization of BRP and MBRP. We present a business case and apply our policies for maintenance planning of a wind turbine gearbox and show that we can achieve savings up-to 23%.(c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )