Eşsiz, Şebnem

Loading...
Profile Picture
Name Variants
Eşsiz, Şebnem
Eşsiz, Sebnem
E., Sebnem
Sebnem Eşsiz
Eşsiz, Ş.
Essiz, Sebnem
Essiz,Sebnem
Şebnem Eşsiz
S. Eşsiz
Essiz,Ş.
E., Şebnem
Eşsiz, S.
DAVUTYAN N.
Eşsiz, ŞEBNEM
Ş. Eşsiz
Şebnem EŞSIZ
Eşsiz,Ş.
EŞSIZ, Şebnem
E.,Sebnem
Essiz,S.
ŞEBNEM EŞSIZ
Sebnem, Essiz
Davutyan N.
EŞSIZ, ŞEBNEM
Gökhan, Şebnem Eşsiz
Eşsiz, Şebnem
Eşsiz Gökhan, Şebnem
Gökhan Eşsiz, Şebnem
Gökhan, Şebnem Eşsiz
Essız, Sebnem
Eşsiz, Şebnem
Essız, Sebnem
Eşsiz Gökhan, Şebnem
Job Title
Dr. Öğr. Üyesi
Email Address
sebnem.gokhan@khas.edu.tr
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output

23

Articles

13

Citation Count

135

Supervised Theses

7

Scholarly Output Search Results

Now showing 1 - 10 of 22
  • Article
    Modelling of C-Terminal Tail of Human Sting and Its Interaction With Tank-Binding Kinase 1
    (Tubitak Scientific & Technical Research Council Turkey, 2022) Ata Ouda Al-Masri, Rahaf; Eşsiz, Şebnem; Audu-Bida, Hajara; Essiz, Sebnem
    Stimulator of interferon genes (STING) plays a significant role in a cell's intracellular defense against pathogens or self DNA by inducing inflammation or apoptosis through a pathway known as cGAS-cGAMP-STING. STING uses one of its domains, the C-terminal tail (CTT) to recruit the members of the pathway. However, the structure of this domain has not been solved experimentally. STING conformation is open and more flexible when inactive. When STING gets activated by cGAMP, its conformation changes to a closed state covered by 4 beta-sheets over the binding site. This conformational change leads to its binding to Tank-binding kinase 1 (TBK1). TBK1 then phosphorylates STING aiding its entry to the cell's nucleus. In this study, we focused on the loop modeling of the CTT domain in both the active and inactive STING conformations. After the modeling step, the active and inactive STING structures were docked to one of the cGAS-cGAMP-STING pathway members, TBK1, to observe the differences of binding modes. CTT loop stayed higher in the active structure, while all the best-scored models, active or inactive, ended up around the same position with respect to TBK1. However, when the STING poses are compared with the cryo-EM image of the complex structure, the models in the active structure chain B displayed closer results to the complex structure.
  • Master Thesis
    Structural Study of Gaba Type a Receptor : the Effect of Intrasubunit Disulphide Bridges on Dynamics
    (Kadir Has Üniversitesi, 2014) Ayan, Meral; Eşsiz, Şebnem; Gökhan Eşsiz, Şebnem
    In the mammalian brain the gamma-aminobutyric acid type A receptor is the most commonly expressed subtype of receptor family. Although there is a rich pharmacological activity of R, specific molecular features are still not well known. In this study, we developed a new homology model based on a recently available X-Ray structure of the glutamate-gated chloride channel. When it is compared with previous homology models of the based on lower sequence identity templates, there are three additional disulphide bridges occurring in between membrane spanning alpha helices namely two in the alpha and one in the gamma subunits. These new disulphide bridges are occurring due to the differences in the sequence alignments of template and target structures. Additionally, we performed molecular dynamics simulations with two models, one with the disulphide bridges in the transmembrane domanin, and the other without disulphide bridges. To analyze simulation results, minimum pore radius along the pore, root-mean-square deviation of proteins and root mean square fluctuation of alpha are analyzed. Finally principal component analysis of the 100 nanosecond long trajectory is calculated to compare the differences in the correlated motions of two models
  • Article
    Computational Analysis of a Zn-Bound Tris(imidazolyl) Calix[6]arene Aqua Complex: Toward Incorporating Second-Coordination Sphere Effects Into Carbonic Anhydrase Biomimetics
    (Amer Chemical Soc, 2013) Koziol, Lucas; Eşsiz, Şebnem; Eşsiz, Şebnem; Wong, Sergio E.; Lau, Edmond Y.; Valdez, Carlos A.; Satcher, Joe H. Jr.; Aines, Roger D.; Lightstone, Felice C.
    Molecular dynamics simulations and quantum-mechanical calculations were performed to characterize a supra-molecular tris(imidazolyl) calix[6]arene Zn2+ aqua complex as a biomimetic model for the catalyzed hydration of carbon dioxide to bicarbonate H2O + CO2 -> H+ + HCO3-. On the basis of potential-of-mean-force (PMF) calculations stable conformations had distorted 3-fold symmetry and supported either one or zero encapsulated water molecules. The conformation with an encapsulated water molecule is calculated to be lower in free energy than the conformation with an empty cavity (Delta G = 1.2 kcal/mol) and is the calculated free-energy minimum in solution. CO2 molecule partitioning into the cavity is shown to be very facile proceeding with a barrier of 1.6 kcal/mol from a weak encounter complex which stabilizes the species by about 1.0 kcal/mol. The stabilization energy of CO2 is calculated to be larger than that of H2O (Delta Delta G = 1.4 kcal/mol) suggesting that the complex will preferentially encapsulate CO2 in solution. In contrast the PMF for a bicarbonate anion entering the cavity is calculated to be repulsive in all nonbonding regions of the cavity due to the diameter of the calix[6]arene walls. Geometry optimization of the Zn-bound hydroxide complex with an encapsulated CO2 molecule showed that multiple noncovalent interactions direct the reactants into optimal position for nucleophilic addition to occur. The calixarene complex is a structural mimic of the hydrophilic/hydrophobic divide in the enzyme providing a functional effect for CO2 addition in the catalytic cycle. The results show that Zn-binding calix[6]arene scaffolds can be potential synthetic biomimetics for CO2 hydration catalysis both in terms of preferentially encapsulating CO2 from solution and by spatially fixing the reactive species inside the cavity.
  • Article
    Sustainable production of formic acid from CO2 by a novel immobilized mutant formate dehydrogenase
    (Elsevier, 2023) Eşsiz, Şebnem; Servili, Burak; Servili, Burak; Essiz, Sebnem; Binay, Baris; Yildirim, Deniz
    Formate dehydrogenase (NAD+-dependent FDH) is an enzyme that catalyzes the reversible oxidation of formate to CO2 while reducing NAD+ to NADH. The enzyme has been used in industrial and chemical applications for NADH regeneration for a long time. However, discovering the unique ability of FDHs, which is to reduce CO2 and produce formic acid, leads studies focusing on discovering or redesigning FDHs. Despite using various protein engineering techniques, these studies mostly target the same catalytic site amino acids of FDHs. Here, for the first time, the effect of an Asp188 mutation on a potential allosteric site in NAD+-dependent CtFDH around its subunit-subunit interface was studied by molecular modelling and simulation in the presence of bicarbonate and formate. Biochemical and kinetic characterization of this Asp188Arg mutant and wild type CtFDH enzymes were performed in detail. Both enzymes were also immobilized on newly synthesized MWCNT-Ni-O-Si/Ald and MWCNT-Ni-O-Si/Glu supports designed to overcome well-known CtFDH stability problems including thermostability and reuse resistance. Integrating mutation and immobilization provided about a 25-fold increase in catalytic efficiency for carbonate activity. The one-way ANOVA analysis also ensured significant effect of the mutation and immobilization on kinetic constants. After characterizing the immobilization of highly purified wild type and mutant enzyme with instrumental analysis techniques, the thermal stability of MWCNT-Ni-Si@wtCtFDH and MWCNT-Ni-Si@mt-CtFDH was found to increase about 11-and 18-fold, respectively, compared to their free counterparts at 50 degrees C. The mutant CtFDH and its immobilized counterpart produced around 2-fold more formic acid than those of wild type CtFDH and its immobilized counterpart under the same conditions. MWCNT-Ni-Si@wt-CtFDH and MWCNT-Ni-Si@mt-CtFDH remained around 82 % and 86 % of their initial activities respectively after lots of recycling. Integration of subunit interface amino acid position of NAD+ dependent FDHs engineering and immobilization provides a new insight can be scientifically and rationally employed for this current application FDHs as a solution to produce formic acids from renewable sources.
  • Conference Object
    Soman as a Wrench in the Works of Human Acetylcholinesterase: Soman Induced Conformational Changes Revealed by Molecular Dynamics Simulations
    (Amer Chemical Soc, 2014) Bennion, Brian J.; Eşsiz, Şebnem; Eşsiz, Şebnem; Lau, Edmond Y.; Fattebert, Jean-Luc; Emigh, Aiyana; Lightstone, Felice C.
    [Abstract Not Available]
  • Article
    Correlated conformational dynamics of the human GluN1-GluN2A type N-methyl-D-aspartate (NMDA) receptor
    (SPRINGER, 2021) Eşsiz, Şebnem; Servili, Burak; Aktolun, Muhammed; Demir, Ayhan; Carpenter, Timothy S.; Servili, Burak
    N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels found in the nerve cell membranes. As a result of overexcitation of NMDARs, neuronal death occurs and may lead to diseases such as epilepsy, stroke, Alzheimer's disease, and Parkinson's disease. In this study, human GluN1- GluN2A type NMDAR structure is modeled based on the X-ray structure of the Xenopus laevis template and missing loops are added by ab-initio loop modeling. The final structure is chosen according to two different model assessment scores. To be able to observe the structural changes upon ligand binding, glycine and glutamate molecules are docked into the corresponding binding sites of the receptor. Subsequently, molecular dynamics simulations of 1.3 mu s are performed for both apo and ligand-bound structures. Structural parameters, which have been considered to show functionally important changes in previous NMDAR studies, are monitored as conformational rulers to understand the dynamics of the conformational changes. Moreover, principal component analysis (PCA) is performed for the equilibrated part of the simulations. From these analyses, the differences in between apo and ligand-bound simulations can be summarized as the following: The girdle right at the beginning of the pore loop, which connects M2 and M3 helices of the ion channel, partially opens. Ligands act like an adhesive for the ligand-binding domain (LBD) by keeping the bi-lobed structure together and consequently this is reflected to the overall dynamics of the protein as an increased correlation of the LBD with especially the amino-terminal domain (ATD) of the protein.
  • Article
    New Azole Derivatives Showing Antimicrobial Effects and Their Mechanism of Antifungal Activity by Molecular Modeling Studies
    (Elsevier France-Editions Scientifiques Medicales Elsevier, 2017) Doğan, İnci Selin; Eşsiz, Şebnem; Saraç, Selma; Sarı, Suat; Kart, Didem; Eşsiz, Şebnem; Vural, İmran; Dalkara, Sevim
    Azole antifungals are potent inhibitors of fungal lanosterol 14 alpha demethylase (CYP51) and have been used for eradication of systemic candidiasis clinically. Herein we report the design synthesis and biological evaluation of a series of 1-phenyl/1-(4-chlorophenyl)-2-(1H-imidazol-1-yl) ethanol esters. Many of these derivatives showed fungal growth inhibition at very low concentrations. Minimal inhibition concentration (MIC) value of 15 was 0.125 mu g/mL against Candida albicans. Additionally some of our compounds such as 19 (MIC: 0.25 mu g/mL) were potent against resistant C. glabrata a fungal strain less susceptible to some first-line antifungal drugs. We confirmed their antifungal efficacy by antibiofilm test and their safety against human monocytes by cytotoxicity assay. To rationalize their mechanism of action we performed computational analysis utilizing molecular docking and dynamics simulations on the C. albicans and C. glabrata CYP51 (CACYP51 and CGCYP51) homology models we built. Leu130 and T131 emerged as possible key residues for inhibition of CGCYP51 by 19. (C) 2017 Elsevier Masson SAS. All rights reserved.
  • Correction
    Discovery of New Azoles With Potent Activity Against Candida Spp. and Candida Albicans Biofilms Through Virtual Screening
    (Elsevier, 2020) Karakurt, Arzu; Eşsiz, Şebnem; Kart, Didem; Öztürk, Naile; Kaynak, F. Betül; Gencel, Melis; Taşkor, Gülce; Karakurt, Arzu; Saraç, Selma; Eşsiz, Şebnem; Dalkara, Sevim
    Systemic candidiasis is a rampant bloodstream infection ofCandidaspp. andC. albicansis the majorpathogen isolated from infected humans. Azoles, the most common class of antifungals which sufferfrom increasing resistance, and especially intrinsically resistant non-albicans Candida(NAC) species, actby inhibiting fungal lanosterol 14a-demethylase (CYP51). In this study we identified a number of azolecompounds in 1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethanol/ethanone oxime ester structurethrough virtual screening using consensus scoring approach, synthesized and tested them for theirantifungal properties. We reached several hits with potent activity against azole-susceptible and azole-resistantCandidaspp. as well as biofilms ofC. albicans.5i's minimum inhibitor concentration (MIC) was0.125mg/ml againstC. albicans, 0.5mg/ml againstC. kruseiand 1mg/ml against azole-resistantC. tropicalisisolate. Considering the MIC values offluconazole against these fungi (0.5, 32 and 512mg/ml, respec-tively),5iemerged as a highly potent derivative. The minimum biofilm inhibitor concentration (MBIC) of5c,5j, and5pwere 0.5mg/ml (and5iwas 2mg/ml) againstC. albicansbiofilms, lower than that ofamphotericin B (4mg/ml), afirst-line antifungal with antibiofilm activity. In addition, the active com-pounds showed neglectable toxicity to human monocytic cell line. We further analyzed the dockingposes of the active compounds inC. albicansCYP51 (CACYP51) homology model catalytic site andidentified molecular interactions in agreement with those of known azoles with fungal CYP51s andmutagenesis studies of CACYP51. We observed the stability of CACYP51 in complex with5iin moleculardynamics simulations.©2019 Elsevier Masson SAS. All rights reserved.1. IntroductionSystemic candidiasis is a major public health issue, especiallywith immune-suppressed cases reaching high mortality rates. Themembers of the genusCandidaare the most frequently recoveredfrom human fungal infection andCandida albicans, so far, is theleading pathogen identified in nosocomial candidiasis [1]. Inaddition to increasing drug-resistant strains ofC. albicans, emer-gence of non-albicans Candidaspp. (NAC) complicate the treatmentof mycoses [2].C. tropicalisis among the NACs that show reducedsusceptibility tofirst-line antifungals reportedly leading to break-through fungemia among high-risk patients [3,4]. Also,C. kruseiisknown to be intrinsically resistant to a number of azoles includingfluconazole [5]. One of the several mechanisms of therapy-resistance is formation of biofilms, which are complex microor-ganism colonies enclosed in an exopolysaccharide matrix on bioticand non-biotic surfaces. Persistent biofilms make fungi much lesssusceptible to antifungal drugs compared to their planktonic formsfor a number of reasons [6e8]. Therefore it is essential to design*Corresponding author. Hacettepe University Faculty of Pharmacy, Departmentof Pharmaceutical Chemistry, 06100, Sihhiye, Ankara, Turkey.E-mail addresses:suat.sari@hacettepe.edu.tr,suat1039@gmail.com(S. Sari).Contents lists available atScienceDirectEuropean Journal of Medicinal Chemistryjournal homepage:http://www.elsevier.com/locate/ejmechhttps://doi.org/10.1016/j.ejmech.2019.06.0830223-5234/©2019 Elsevier Masson SAS. All rights reserved.European Journal of Medicinal Chemistry 179 (2019) 634e648
  • Master Thesis
    Effects of Nerve Agents on Conformational Dynamics of Acetylcholinesterase
    (Kadir Has Üniversitesi, 2021) Güleşen, Sevilay; Güleşen, Sevilay; Eşsiz, Şebnem; Gökhan, Şebnem Eşsiz
    Human acetylcholinesterase (hAChE), an essential enzyme in the central and peripheral nervous system, hydrolyses acetylcholine (ACh) at the cholinergic synapses. Organophosphorus pesticides (OPs), also called nerve agents, can inactivate the hAChE irreversibly and leads to serious morbidity (such as paralysis, cognitive deficiencies, and seizures) and even mortality consequences based on the amount of exposure and rapidness of treatment. Therefore, understanding the inhibition mechanism of hAChE by OPs, such as soman and sarin, is critical since it may guide developing a new and efficient treatment for poisoning by the nerve agents. The effects of soman inhibition on the dynamics of the hAChE were investigated in comparison with the results of the molecular dynamics study of the apo form and another OP adducted, i.e. soman adducted, form of hAChE in 2005. To understand the changes in the protein structure of hAChE after binding soman, 40 MD data were published. In this thesis, we aimed to find how sarin phosphorylation of the active site Ser203 residue of the hAChE affects the protein dynamics and to compare the result with the previously discovered results of the apo and soman-adducted hAChE. First, 40 classical MD simulations for the sarin adducted hAChE were run with the exact parameters of the apo and soman-adducted hAChE simulations. The sarin adducted hAChE was used for the MD simulations. Resulting trajectories were analyzed with RMSD analysis, principal component analysis (PCA), and K-means clustering algorithm calculations to understand the differences between collective motions of the apo, soman adducted, and sarin adducted hAChE. According to the results, the sarin molecule has an alternative pathway for entering and leaving from the active site of the hAChE like the soman molecule. The back door area when it is calculated from the backbone atoms versus the sidechain atoms shows a significant different behavior. The backbone atoms calculation of the sarin-adducted gives similar results with the apo simulation. However, there is a significant third peak at much larger value observed in the calculation of the sarin-adducted sidechain. That might be an alternative pathway for entrance to the molecule. Also, the gorge entrance and back door motion correlation is affected when hAChE is adducted by sarin, depending on correlation analysis. This disruption and the previous mentioned above area results support the hypothesis about alternative pathways for entrance and exit in the protein. All these motions and alternative pathways are critical for the development of the treatment of sarin poisoning. Keywords: Molecular dynamic simulation, acetylcholinesterase, sarin, soman, principal component analysis
  • Article
    Synthesis, Biological Evaluation and Molecular Docking Studies of Bis-Chalcone Derivatives as Xanthine Oxidase Inhibitors and Anticancer Agents
    (Elsevier, 2019) Burmaoğlu, Serdar; Eşsiz, Şebnem; Özcan, Şeyda; Balcıoğlu, Sevgi; Gencel, Melis; Noma, Samir Abbas Ali; Eşsiz, Şebnem; Ateş, Burhan; Algül, Öztekin
    In this study, a series of B-ring fluoro substituted bis-chalcone derivatives were synthesized by Claisen-Schmidt condensation reactions and evaluated for their ability to inhibit xanthine oxidase (XO) and growth inhibitory activity against MCF-7 and Caco-2 human cancer cell lines, in vitro. According to the results obtained, the bis-chalcone with fluoro group at the 2 (4b) or 2,5-position (4g) of B-ring were found to be potent inhibitors of the enzyme with IC50 values in the low micromolar range. The effects of these compounds were about 7 fold higher than allopurinol. The binding modes of the bis-chalcone derivatives in the active site of xanthine oxidase were explained using molecular docking calculations. Also, compound 4g and 4h showed in vitro growth inhibitory activity against a panel of two human cancer cell lines 1.9 and 6.8 μM of IC50 values, respectively.