Berker, Ahmet Nihat
Loading...
Name Variants
Nihat Berker A.
BERKER, Ahmet Nihat
Ahmet Nihat, Berker
Berker,Ahmet Nihat
Berker, AHMET NIHAT
A. Berker
B.,Ahmet Nihat
Berker,A.N.
Berker, A.
Berker, Ahmet Nihat
Berker N.
Ahmet Nihat Berker
Ahmet Nihat BERKER
Berker, A. N.
B., Ahmet Nihat
AHMET NIHAT BERKER
A. N. Berker
BERKER, AHMET NIHAT
Berker A.
Berker, A. Nihat
BERKER, Ahmet Nihat
Ahmet Nihat, Berker
Berker,Ahmet Nihat
Berker, AHMET NIHAT
A. Berker
B.,Ahmet Nihat
Berker,A.N.
Berker, A.
Berker, Ahmet Nihat
Berker N.
Ahmet Nihat Berker
Ahmet Nihat BERKER
Berker, A. N.
B., Ahmet Nihat
AHMET NIHAT BERKER
A. N. Berker
BERKER, AHMET NIHAT
Berker A.
Berker, A. Nihat
Job Title
Prof. Dr.
Email Address
nihatberker@khas.edu.tr
Main Affiliation
Electrical-Electronics Engineering
Status
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Scholarly Output
27
Articles
27
Citation Count
0
Supervised Theses
0
27 results
Scholarly Output Search Results
Now showing 1 - 10 of 27
Article Citation - WoS: 11Citation - Scopus: 11Phase Transitions Between Different Spin-Glass Phases and Between Different Chaoses in Quenched Random Chiral Systems(Amer Physical Soc., 2017) Çağlar, Tolga; Berker, Ahmet Nihat; Berker, A. NihatThe left-right chiral and ferromagnetic-antiferromagnetic double-spin-glass clock model with the crucially even number of states q = 4 and in three dimensions d = 3 has been studied by renormalization-group theory. We find for the first time to our knowledge four spin-glass phases including conventional chiral and quadrupolar spin-glass phases and phase transitions between spin-glass phases. The chaoses in the different spin-glass phases and in the phase transitions of the spin-glass phases with the other spin-glass phases with the non-spin-glass ordered phases and with the disordered phase are determined and quantified by Lyapunov exponents. It is seen that the chiral spin-glass phase is the most chaotic spin-glass phase. The calculated phase diagram is also otherwise very rich including regular and temperature-inverted devil's staircases and reentrances.Article Citation - WoS: 0Citation - Scopus: 0Axial, planar-diagonal, body-diagonal fields on the cubic-spin spin glass in d=3: A plethora of ordered phases under finite fields(Amer Physical Soc, 2024) Berker, Ahmet Nihat; Sarman, Deniz; Berker, A. NihatA nematic phase, previously seen in the d = 3 classical Heisenberg spin-glass system, occurs in the n-component cubic-spin spin-glass system, between the low-temperature spin-glass phase and the hightemperature disordered phase, for number of spin components n >= 3, in spatial dimension d = 3, thus constituting a liquid-crystal phase in a dirty (quenched-disordered) magnet. Furthermore, under application of a variety of uniform magnetic fields, a veritable plethora of phases is found. Under uniform magnetic fields, 17 different phases and two spin-glass phase diagram topologies (meaning the occurrences and relative positions of the many phases), qualitatively different from the conventional spin-glass phase diagram topology, are seen. The chaotic rescaling behaviors and their Lyapunov exponents are calculated in each of these spin-glass phase diagram topologies. These results are obtained from renormalization-group calculations that are exact on the d = 3 hierarchical lattice and, equivalently, approximate on the cubic spatial lattice. Axial, planar-diagonal, or body-diagonal finite-strength uniform fields are applied to n = 2 and 3 component cubic-spin spin-glass systems in d=3.Article Citation - WoS: 2Citation - Scopus: 2Driven and Non-Driven Surface Chaos in Spin-Glass Sponges(Pergamon-elsevier Science Ltd, 2023) Pektas, Yigit Ertac; Berker, Ahmet Nihat; Artun, E. Can; Berker, A. NihatA spin-glass system with a smooth or fractal outer surface is studied by renormalization-group theory, in bulk spatial dimension d = 3. Independently varying the surface and bulk random-interaction strengths, phase diagrams are calculated. The smooth surface does not have spin-glass ordering in the absence of bulk spin-glass ordering and always has spin-glass ordering when the bulk is spin-glass ordered. With fractal (d > 2) surfaces, a sponge is obtained and has surface spin-glass ordering also in the absence of bulk spin-glass ordering. The phase diagram has the only-surface-spin-glass ordered phase, the bulk and surface spin-glass ordered phase, and the disordered phase, and a special multicritical point where these three phases meet. All spin-glass phases have distinct chaotic renormalization-group trajectories, with distinct Lyapunov and runaway exponents which we have calculated.Article Citation - WoS: 1Citation - Scopus: 1Global Ashkin-Teller Phase Diagrams in Two and Three Dimensions: Multicritical Bifurcation Versus Double Tricriticality-Endpoint(Elsevier, 2023) Kecoglu, Ibrahim; Berker, Ahmet Nihat; Berker, A. NihatThe global phase diagrams of the Ashkin-Teller model are calculated in d = 2 and 3 by renormalization-group theory that is exact on the hierarchical lattice and approximate on the recently improved Migdal-Kadanoff procedure. Three different ordered phases occur in the dimensionally distinct phase diagrams that reflect three-fold order-parameter permutation symmetry, a closed symmetry line, and a quasi-disorder line. First- and second-order phase boundaries are obtained. In d = 2, second-order phase transitions meeting at a bifurcation point are seen. In d = 3, first- and second-order phase transitions are separated by tricritical and critical endpoints.Article Citation - WoS: 2Citation - Scopus: 2Renormalization-Group Theory of the Heisenberg Model in D Dimensions(Elsevier, 2022) Tunca, Egemen; Berker, Ahmet Nihat; Berker, A. NihatThe classical Heisenberg model has been solved in spatial d dimensions, exactly in d = 1 and by the Migdal-Kadanoff approximation in d > 1, by using a Fourier-Legendre expansion. The phase transition temperatures, the energy densities, and the specific heats are calculated in arbitrary dimension d. Fisher's exact result is recovered in d = 1. The absence of an ordered phase, conventional or algebraic (in contrast to the XY model yielding an algebraically ordered phase) is recovered in d = 2. A conventionally ordered phase occurs at d > 2. This method opens the way to complex-system calculations with Heisenberg local degrees of freedom.(c) 2022 Elsevier B.V. All rights reserved.Article Citation - WoS: 2Citation - Scopus: 2Maximally Random Discrete-Spin Systems With Symmetric and Asymmetric Interactions and Maximally Degenerate Ordering(Amer Physical Soc., 2018) Atalay, Bora; Berker, Ahmet Nihat; Berker, A. NihatDiscrete-spin systems with maximally random nearest-neighbor interactions that can be symmetric or asymmetric ferromagnetic or antiferromagnetic including off-diagonal disorder are studied for the number of states q = 34 in d dimensions. We use renormalization-group theory that is exact for hierarchical lattices and approximate (Migdal-Kadanoff) for hypercubic lattices. For all d > 1 and all nonmfimte temperatures the system eventually renormalizes to a random single state thus signaling q x q degenerate ordering. Note that this is the maximally degenerate ordering. For high-temperature initial conditions the system crosses over to this highly degenerate ordering only after spending many renormalization-group iterations near the disordered (infinite-temperature) fixed point. Thus a temperature range of short-range disorder in the presence of long-range order is identified as previously seen in underfrustrated Ising spin-glass systems. The entropy is calculated for all temperatures behaves similarly for ferromagnetic and antiferromagnetic interactions and shows a derivative maximum at the short-range disordering temperature. With a sharp immediate contrast of infinitesimally higher dimension 1 + epsilon the system is as expected disordered at all temperatures for d = 1.Article Citation - WoS: 1Citation - Scopus: 1Spin-S Spin-Glass Phases in the D=3 Ising Model(Amer Physical Soc, 2021) Artun, E. Can; Berker, Ahmet Nihat; Berker, A. NihatAll higher-spin (s >= 1/2) Ising spin glasses are studied by renormalization-group theory in spatial dimension d = 3, exactly on a d = 3 hierarchical model and, simultaneously, by the Migdal-Kadanoff approximation on the cubic lattice. The s-sequence of global phase diagrams, the chaos Lyapunov exponent, and the spin-glass runaway exponent are calculated. It is found that, in d = 3, a finite-temperature spin-glass phase occurs for all spin values, including the continuum limit of s -> infinity. The phase diagrams, with increasing spin s, saturate to a limit value. The spin-glass phase, for all s, exhibits chaotic behavior under rescalings, with the calculated Lyapunov exponent of lambda = 1.93 and runaway exponent of y(R) = 0.24, showing simultaneous strong-chaos and strong-coupling behavior. The ferromagnetic-spin-glass and spin-glass-antiferromagnetic phase transitions occurring, along their whole length, respectively at p(t) = 0.37 and 0.63 are unaffected by s, confirming the percolative nature of this phase transition.Article Citation - WoS: 3Citation - Scopus: 3Electric-field induced phase transitions in capillary electrophoretic systems(Aip Publishing, 2021) Berker, Ahmet Nihat; Erim, F. Bedia; Berker, A. NihatThe movement of particles in a capillary electrophoretic system under electroosmotic flow was modeled using Monte Carlo simulation with the Metropolis algorithm. Two different cases with repulsive and attractive interactions between molecules were taken into consideration. Simulation was done using a spin-like system, where the interactions between the nearest and second closest neighbors were considered in two separate steps of the modeling study. A total of 20 different cases with different rates of interactions for both repulsive and attractive interactions were modeled. The movement of the particles through the capillary is defined as current. At a low interaction level between molecules, a regular electroosmotic flow is obtained; on the other hand, with increasing interactions between molecules, the current shows a phase transition behavior. The results also show that a modular electroosmotic flow can be obtained for separations by tuning the ratio between molecular interactions and electric field strength.Article Citation - WoS: 13Citation - Scopus: 13Lower Lower-Critical Spin-Glass Dimension From Quenched Mixed-Spatial Spin Glasses(Amer Physical Soc., 2018) Atalay, Bora; Berker, Ahmet Nihat; Berker, A. NihatBy quenched-randomly mixing local units of different spatial dimensionalities we have studied Ising spin-glass systems on hierarchical lattices continuously in dimensionalities 1 <= d <= 3. The global phase diagram in temperature antiferromagnetic bond concentration and spatial dimensionality is calculated. We find that as dimension is lowered the spin-glass phase disappears to zero temperature at the lower-critical dimension d(c) = 2.431. Our system being a physically realizable system this sets an upper limit to the lower-critical dimension in general for the Ising spin-glass phase. As dimension is lowered towards d(c) the spin-glass critical temperature continuously goes to zero but the spin-glass chaos fully subsists to the brink of the disappearance of the spin-glass phase. The Lyapunov exponent measuring the strength of chaos is thus largely unaffected by the approach to d and shows a discontinuity to zero at d(c.)Article Citation - WoS: 1Citation - Scopus: 1Nematic Phase of the N-Component Cubic-Spin Spin Glass in D=3: Liquid-Crystal Phase in a Dirty Magnet(Elsevier, 2024) Artun, E. Can; Berker, Ahmet Nihat; Sarman, Deniz; Berker, A. NihatA nematic phase, previously seen in the n= 3 classical Heisenberg spin-glass system, occurs in the n-component cubic-spin spin-glass system, between the low-temperature spin-glass phase and the-high temperature disordered phase, for number of components n >= 3, in spatial dimension n= 3, thus constituting a liquid-crystal phase in a dirty (quenched-disordered) magnet. This result is obtained from renormalization-group calculations that are exact on the hierarchical lattice and, equivalently, approximate on the cubic spatial lattice. The nematic phase completely intervenes between the spin-glass phase and the disordered phase. The Lyapunov exponents of the spin-glass chaos are calculated from n= 1 up to n= 12 and show odd-even oscillations with respect to n.
- «
- 1 (current)
- 2
- 3
- »