Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems
Loading...
Date
2016
Authors
Bozkuş, Zeki
Journal Title
Journal ISSN
Volume Title
Publisher
Hindawi Ltd
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models.
Description
Keywords
Turkish CoHE Thesis Center URL
Fields of Science
Citation
0
WoS Q
Q1
Scopus Q
N/A