eXtended Hybridizable Discontinuous Galerkin (X-HDG) method for linear convection-diffusion equations on unfitted domains

dc.authoridGURKAN, Ceren/0000-0002-1240-5801
dc.authoridAhmad, Haroon/0000-0002-3986-8013
dc.authorscopusid58420418700
dc.authorscopusid56709522500
dc.authorwosidAhmad, Haroon/AAB-6312-2022
dc.contributor.authorGürkan, Ceren
dc.contributor.authorGurkan, Ceren
dc.date.accessioned2024-06-23T21:37:22Z
dc.date.available2024-06-23T21:37:22Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-temp[Ahmad, Haroon; Gurkan, Ceren] Kadir Has Univ, Dept Civil Engn, TR-34083 Istanbul, Turkiyeen_US
dc.descriptionGURKAN, Ceren/0000-0002-1240-5801; Ahmad, Haroon/0000-0002-3986-8013en_US
dc.description.abstractIn this work, we propose a novel strategy for the numerical solution of linear convection diffusion equation (CDE) over unfitted domains. In the proposed numerical scheme, strategies from high order Hybridized Discontinuous Galerkin method and eXtended Finite Element method are combined with the level set definition of the boundaries. The proposed scheme and hence, is named as eXtended Hybridizable Discontinuous Galerkin (XHDG) method. In this regard, the Hybridizable Discontinuous Galerkin (HDG) method is eXtended to the unfitted domains; i.e., the computational mesh does not need to fit to the domain boundary; instead, the boundary is defined by a level set function and cuts through the background mesh arbitrarily. The original unknown structure of HDG and its hybrid nature ensuring the local conservation of fluxes is kept, while developing a modified bilinear form for the elements cut by the boundary. At every cut element, an auxiliary nodal trace variable on the boundary is introduced, which is eliminated afterwards while imposing the boundary conditions. Both stationary and time dependent CDEs are studied over a range of flow regimes from diffusion to convection dominated; using high order (p <= 4) XHDG through benchmark numerical examples over arbitrary unfitted domains. Results proved that XHDG inherits optimal (p + 1) and super (p + 2) convergence properties of HDG while removing the fitting mesh restriction.en_US
dc.description.sponsorshipThe Scientific and Technological Research Council of Turkiye (TUBITAK); [121M947]en_US
dc.description.sponsorshipThis work is supported by The Scientific and Technological Research Council of Turkiye (TUBITAK) , Career Development Program (CAREER) , project no: 121M947.en_US
dc.identifier.citation0
dc.identifier.doi10.1016/j.jcp.2023.112666
dc.identifier.issn0021-9991
dc.identifier.issn1090-2716
dc.identifier.scopus2-s2.0-85178335623
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.jcp.2023.112666
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5716
dc.identifier.volume498en_US
dc.identifier.wosWOS:001129821900001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherAcademic Press inc Elsevier Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdvection-diffusionen_US
dc.subjectCuten_US
dc.subjectUnfitteden_US
dc.subjectHybridizable discontinuous Galerkin (HDG)en_US
dc.subjectHigh-orderen_US
dc.subjectLevel-seten_US
dc.titleeXtended Hybridizable Discontinuous Galerkin (X-HDG) method for linear convection-diffusion equations on unfitted domainsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication0e95cb67-6dd8-43e6-b6b0-990755ef2ed6
relation.isAuthorOfPublication.latestForDiscovery0e95cb67-6dd8-43e6-b6b0-990755ef2ed6

Files