Solution approaches for the bi-objective Skiving Stock Problem

dc.authorid Samanlioglu, Funda/0000-0003-3838-8824
dc.authorid KARACA, TOLGA KUDRET/0000-0001-5562-6367
dc.authorid Altay, Ayca/0000-0001-6066-5336
dc.authorwosid Samanlioglu, Funda/H-9126-2016
dc.contributor.author Samanlıoğlu, Funda
dc.contributor.author Samanlıoğlu, Funda
dc.contributor.author Altay, Ayca
dc.contributor.other Industrial Engineering
dc.date.accessioned 2023-10-19T15:12:13Z
dc.date.available 2023-10-19T15:12:13Z
dc.date.issued 2023
dc.department-temp [Karaca, Tolga Kudret] Topkapi Univ, Dept Comp Engn, TR-34087 Istanbul, Turkiye; [Samanlioglu, Funda] Kadir Has Univ, Dept Ind Engn, TR-34083 Istanbul, Turkiye; [Altay, Ayca] Rutgers State Univ, Dept Ind & Syst Engn, 96 Frelinghuysen Rd, Piscataway, NJ 08540 USA en_US
dc.description.abstract The Skiving Stock Problem (SSP) aims to determine an optimal plan for producing as many large objects as possible by combining small items. The skiving process may need different considerations depending on the production environment and the product characteristics. In this study, we address bi-objective 1D-SSP with two conflicting objectives. One common objective is to minimize the trim loss remaining after skiving, as removing the excess width is an extra procedure. When welding is an element of the skiving process, increasing the number of items for each product indicates compromised quality. Therefore, minimizing the number of small items for each product becomes a primary objective in such cases. To solve this bi-objective version of the NP-hard problem, we implement a Lexicographic Method (LM) in which the importance of the objectives imposes their preference orders. We propose two methodologies within the LM framework. The first methodology integrates Column Generation (CG) and Branch & Bound (B&B) to search for an exact solution. Given the excessive computational time an exact solver may require for tight or large-sized problems, we propose a heuristic method integrating the Dragonfly Algorithm (DA) and a Constructive Heuristic (CH). Real-world application results validate the exact solver and demonstrate comparable results for the heuristic solver in terms of solution quality and computational time. The efficiency of the solution methodologies for a preemptive multi-objective SSP aims to support decision-makers with make-or-buy decisions. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1016/j.cie.2023.109164 en_US
dc.identifier.issn 0360-8352
dc.identifier.issn 1879-0550
dc.identifier.issn 0360-8352
dc.identifier.issn 1879-0550
dc.identifier.scopus 2-s2.0-85152596053 en_US
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.cie.2023.109164
dc.identifier.uri https://hdl.handle.net/20.500.12469/5377
dc.identifier.volume 179 en_US
dc.identifier.wos WOS:000986945600001 en_US
dc.identifier.wosquality Q1
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher Pergamon-Elsevier Science Ltd en_US
dc.relation.ispartof Computers & Industrial Engineering en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 3
dc.subject Linear-Programming Approach En_Us
dc.subject Cutting-Stock En_Us
dc.subject Packing En_Us
dc.subject Optimization En_Us
dc.subject Instances En_Us
dc.subject Paper En_Us
dc.subject Model En_Us
dc.subject Linear-Programming Approach
dc.subject Cutting-Stock
dc.subject Skiving Stock Problem en_US
dc.subject Packing
dc.subject Lexicographic method en_US
dc.subject Optimization
dc.subject Bi-objective programming en_US
dc.subject Instances
dc.subject Column generation en_US
dc.subject Paper
dc.subject Integer programming en_US
dc.subject Model
dc.subject Dragonfly algorithm en_US
dc.title Solution approaches for the bi-objective Skiving Stock Problem en_US
dc.type Article en_US
dc.wos.citedbyCount 3
dspace.entity.type Publication
relation.isAuthorOfPublication 4e74c274-0592-4792-ac57-00061bd273aa
relation.isAuthorOfPublication.latestForDiscovery 4e74c274-0592-4792-ac57-00061bd273aa
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5377.pdf
Size:
1.63 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text