A Nano-Scale Design of Arithmetic and Logic Unit for Energy-Efficient Signal Processing Devices Based on a Quantum-Based Technology

dc.authorscopusid59708012900
dc.authorscopusid59125628000
dc.authorscopusid56373635300
dc.authorscopusid57202686649
dc.contributor.authorZohaib, M.
dc.contributor.authorNavimipour, N.J.
dc.contributor.authorAydemir, M.T.
dc.contributor.authorAhmadpour, S.-S.
dc.date.accessioned2025-05-15T18:41:14Z
dc.date.available2025-05-15T18:41:14Z
dc.date.issued2025
dc.departmentKadir Has Universityen_US
dc.department-temp[Zohaib M.] Department of Electrical and Electronics Engineering, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, 34083, Turkey; [Navimipour N.J.] Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey; [Aydemir M.T.] Department of Electrical and Electronics Engineering, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, 34083, Turkey; [Ahmadpour S.-S.] Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkeyen_US
dc.description.abstractSignal processing had a significant impact on the development of many elements of modern life, including telecommunications, education, healthcare, industry, and security. The semiconductor industry is the primary driver of signal processing innovation, producing ever-more sophisticated electronic devices and circuits in response to global demand. In addition, the central processing unit (CPU) is described as the “brain” of a computer or all electronic devices and signal processing. CPU is a critical electronic device that includes vital components such as memory, multiplier, adder, etc. Also, one of the essential components of the CPU is the arithmetic and logic unit (ALU), which executes the arithmetic and logical operations within all types of CPU operations, such as addition, multiplication, and subtraction. However, delay, occupied areas, and energy consumption are essential parameters in ALU circuits. Since the recent ALU designs experienced problems like high delay, high occupied area, and high energy consumption, implementing electronic circuits based on new technology can significantly boost the performance of entire signal processing devices, including microcontrollers, microprocessors, and printed devices, with high-speed and low occupied space. Quantum dot cellular automata (QCA) is an effective technology for implementing all electronic circuits and signal processing applications to solve these shortcomings. It is a transistor-less nanotechnology being explored as a successor to established technologies like CMOS and VLSI due to its ultra-low power dissipation, high device density, fast operating speed in THz, and reduced circuit complexity. This research proposes a ground-breaking ALU that upgrades electrical devices such as microcontrollers by applying cutting-edge QCA nanotechnology. The primary goal is to offer a novel ALU architecture that fully utilizes the potential of QCA nanotechnology. Using a new and efficient approach, the fundamental gates are skillfully utilized with a coplanar layout based on a single cell not rotated. Furthermore, this work presents an enhanced 1-bit and 2-bit arithmetic logic unit in quantum dot cellular automata. The recommended design includes logic, arithmetic operations, full adder (FA) design, and multiplexers. Using the powerful simulation tools QCADesigner, all proposed designs are evaluated and verified. The simulation outcomes indicates that the suggested ALU has 42.48 and 64.28% improvements concerning cell count and total occupied area in comparison to the best earlier single-layer and multi-layer designs. © The Author(s) 2025.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAKen_US
dc.identifier.doi10.1007/s10586-024-05073-3
dc.identifier.issn1386-7857
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-105003802659
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1007/s10586-024-05073-3
dc.identifier.urihttps://hdl.handle.net/20.500.12469/7350
dc.identifier.volume28en_US
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofCluster Computingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArithmetic And Logic Unit (Alu)en_US
dc.subjectElectronic Devicesen_US
dc.subjectQuantum Computingen_US
dc.subjectQuantum Dot Cellular Automata (Qca)en_US
dc.subjectSignal Processingen_US
dc.titleA Nano-Scale Design of Arithmetic and Logic Unit for Energy-Efficient Signal Processing Devices Based on a Quantum-Based Technologyen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files