Deep Learning Based Combining Rule for the Estimation of Vapor-Liquid Equilibrium

dc.contributor.author Bekri, Sezin
dc.contributor.author Ozmen, Dilek
dc.contributor.author Ozmen, Atilla
dc.contributor.other Electrical-Electronics Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2023-10-19T15:12:46Z
dc.date.available 2023-10-19T15:12:46Z
dc.date.issued 2023
dc.description.abstract Vapor-liquid equilibrium (VLE) data plays a vital role in the design, modeling and control of process equipment. In this study, to estimate the VLE data of binary systems, a deep neural network (DNN)-based combining rule was proposed based on the cross-term parameter (a(ij)) in the two-parameter Peng-Robinson cubic equation of state (PR-EoS) combined with the one-parameter classical van der Waals mixing and combining rule (1PVDW). Experimental VLE data of alternative binary refrigerant systems selected from the literature were calculated using both the PR + 1PVDW and the DNN-based model. Vapor phase mole fractions (y(i)) and equilibrium pressures (P) obtained from the proposed DNN-based and PR + 1PVDW models were compared in the terms of average percent deviations. For the DNN-based model, the vapor phase mole fractions give at least as good results as the models in the literature, and also it has been shown that a much better estimate of the equilibrium pressure (P) is obtained when compared with that of the literature. Results obtained using the proposed DNN-based model are presented with tables and graphs. For the equilibrium pressure, while the average percent deviation errors (Delta P/P%) calculated in the literature are less than 7.739, the errors obtained with the proposed DNN-based model are smaller than 3.455. And also, for vapor phase mole fractions, while the maximum error (Delta(y1)/(y1) %) in the literature is obtained as 6.142, the largest error calculated with DNN-based model is 3.545. It has been seen that the proposed DNN-based model makes more practical and less error-prone estimations than the methods in the literature. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/s43153-023-00377-0 en_US
dc.identifier.issn 0104-6632
dc.identifier.issn 1678-4383
dc.identifier.scopus 2-s2.0-85168655119 en_US
dc.identifier.uri https://doi.org/10.1007/s43153-023-00377-0
dc.identifier.uri https://hdl.handle.net/20.500.12469/5526
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher Springer Heidelberg en_US
dc.relation.ispartof Brazilian Journal of Chemical Engineering en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Equation-Of-State
dc.subject Binary Interaction Parameters
dc.subject Artificial Neural-Networks
dc.subject Peng-Robinson
dc.subject Equation-Of-State En_Us
dc.subject Phase-Equilibria
dc.subject Binary Interaction Parameters En_Us
dc.subject Artificial Neural-Networks En_Us
dc.subject Refrigerant Mixtures
dc.subject Peng-Robinson En_Us
dc.subject Pentafluoroethane R125
dc.subject Phase-Equilibria En_Us
dc.subject Refrigerant Mixtures En_Us
dc.subject Cubic Equations
dc.subject Pentafluoroethane R125 En_Us
dc.subject Mixing Rules
dc.subject Cubic Equations En_Us
dc.subject Vapor-liquid equilibrium (VLE) en_US
dc.subject Deep neural network (DNN) en_US
dc.subject Mixing Rules En_Us
dc.subject Peng-Robinson equation of state (PR-EoS) en_US
dc.subject Vle Data
dc.subject Van der Waals mixing and combining rule en_US
dc.subject Vle Data En_Us
dc.subject Refrigerant mixtures en_US
dc.title Deep Learning Based Combining Rule for the Estimation of Vapor-Liquid Equilibrium en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Özmen, Atilla
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.departmenttemp [Bekri, Sezin] Istanbul Univ Cerrahpasa, Dept Chem Engn, Istanbul, Turkiye; [Ozmen, Dilek] Yalova Univ, Dept Chem Engn, Yalova, Turkiye; [Ozmen, Atilla] Kadir Has Univ, Dept Elect & Elect Engn, Istanbul, Turkiye en_US
gdc.description.endpage 629
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 613
gdc.description.volume 41
gdc.identifier.openalex W4386141820
gdc.identifier.wos WOS:001063519200001 en_US
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6154747E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Cubic Equations
gdc.oaire.keywords Equation-Of-State
gdc.oaire.keywords Mixing Rules
gdc.oaire.keywords Artificial Neural-Networks
gdc.oaire.keywords Vapor-liquid equilibrium (VLE)
gdc.oaire.keywords Binary Interaction Parameters
gdc.oaire.keywords Deep neural network (DNN)
gdc.oaire.keywords Van der Waals mixing and combining rule
gdc.oaire.keywords Vle Data
gdc.oaire.keywords Pentafluoroethane R125
gdc.oaire.keywords Refrigerant mixtures
gdc.oaire.keywords Peng-Robinson
gdc.oaire.keywords Phase-Equilibria
gdc.oaire.keywords Refrigerant Mixtures
gdc.oaire.keywords Peng-Robinson equation of state (PR-EoS)
gdc.oaire.popularity 3.4607903E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.132
gdc.openalex.normalizedpercentile 0.37
gdc.opencitations.count 1
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 2
relation.isAuthorOfPublication cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isAuthorOfPublication.latestForDiscovery cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5526.pdf
Size:
2.07 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text