Application of deep neural network (DNN) for experimental liquid-liquid equilibrium data of water + butyric acid + 5-methyl-2-hexanone ternary systems

dc.contributor.authorÖzmen, Atilla
dc.contributor.authorDilek, Özmen
dc.contributor.authorAykut, Türkmenoğlu
dc.contributor.authorAtilla, Özmen
dc.date.accessioned2021-07-16T19:32:57Z
dc.date.available2021-07-16T19:32:57Z
dc.date.issued2021
dc.description.abstractLLE data are important for simulation and design of extraction equipment. In this study, deep neural network (DNN) structure was proposed for modelling of the ternary liquid-liquid equilibrium (LLE). LLE data of (water + butyric acid + 5-methyl-2-hexanone) ternaries defined at three different temperatures of 298.2, 308.2, and 318.2 K and P = 101.3 kPa, were obtained experimentally and then correlated with nonrandom two-liquid (NRTL) and universal quasi-chemical (UNIQUAC) models. The performance of the proposed DNN model was compared with that of NRTL and UNIQUAC in terms of the root mean square errors (RMSE). RMSE values were obtained between 0.02-0.06 for NRTL and UNIQUAC, respectively. For DNN, the error values were obtained between 0.00005-0.01 for all temperatures. According to the calculated RMSE values, it was shown that proposed DNN structure can be better choice for the modelling of LLE system. Othmer-Tobias and Hand correlations were also used for the experimental tie-lines. Distribution coefficient and separation factors were calculated from the experimental data.en_US
dc.identifier.citation6
dc.identifier.doi10.1016/j.fluid.2021.113094en_US
dc.identifier.issn0378-3812en_US
dc.identifier.issn0378-3812
dc.identifier.scopus2-s2.0-85108297543en_US
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://hdl.handle.net/20.500.12469/4059
dc.identifier.volume544-545en_US
dc.identifier.wosWOS:000672431500006en_US
dc.identifier.wosqualityN/A
dc.institutionauthorÖzmen, Atillaen_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.relation.journalFluid Phase Equilibriaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject5-Methyl-2-hexanoneen_US
dc.subjectButyric aciden_US
dc.subjectDeep neural network (DNN)en_US
dc.subjectLiquid-liquid equilibrium (LLE)en_US
dc.subjectThermodynamic modelsen_US
dc.titleApplication of deep neural network (DNN) for experimental liquid-liquid equilibrium data of water + butyric acid + 5-methyl-2-hexanone ternary systemsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationcf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isAuthorOfPublication.latestForDiscoverycf8f9e05-3f89-4ab6-af78-d0937210fb77

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0378381221001564-main.pdf
Size:
1.71 MB
Format:
Adobe Portable Document Format
Description: