Bayesian Compressive Sensing for Ultra-Wideband Channel Estimation: Algorithm and Performance Analysis

dc.contributor.authorÖzgör, Mehmet
dc.contributor.authorErküçük, Serhat
dc.contributor.authorÇırpan, Hakan Ali
dc.date.accessioned2019-06-27T08:02:14Z
dc.date.available2019-06-27T08:02:14Z
dc.date.issued2015
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description.abstractDue to the sparse structure of ultra-wideband (UWB) channels compressive sensing (CS) is suitable for UWB channel estimation. Among various implementations of CS the inclusion of Bayesian framework has shown potential to improve signal recovery as statistical information related to signal parameters is considered. In this paper we study the channel estimation performance of Bayesian CS (BCS) for various UWB channel models and noise conditions. Specifically we investigate the effects of (i) sparse structure of standardized IEEE 802.15.4a channel models (ii) signal-to-noise ratio (SNR) regions and (iii) number of measurements on the BCS channel estimation performance and compare them to the results of -norm minimization based estimation which is widely used for sparse channel estimation. We also provide a lower bound on mean-square error (MSE) for the biased BCS estimator and compare it with the MSE performance of implemented BCS estimator. Moreover we study the computation efficiencies of BCS and -norm minimization in terms of computation time by making use of the big- notation. The study shows that BCS exhibits superior performance at higher SNR regions for adequate number of measurements and sparser channel models (e.g. CM-1 and CM-2). Based on the results of this study the BCS method or the -norm minimization method can be preferred over the other one for different system implementation conditions.en_US]
dc.identifier.citation3
dc.identifier.doi10.1007/s11235-014-9902-7en_US
dc.identifier.endpage427
dc.identifier.issn1018-4864en_US
dc.identifier.issn1572-9451en_US
dc.identifier.issn1018-4864
dc.identifier.issn1572-9451
dc.identifier.issue4
dc.identifier.scopus2-s2.0-84933278608en_US
dc.identifier.scopusqualityQ2
dc.identifier.startpage417en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12469/579
dc.identifier.urihttps://doi.org/10.1007/s11235-014-9902-7
dc.identifier.volume59en_US
dc.identifier.wosWOS:000356933400002en_US
dc.institutionauthorErküçük, Serhaten_US
dc.institutionauthorErküçük, Serhat
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.journalTelecommunication Systemsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBayesian compressive sensing (BCS)en_US
dc.subjectIEEE 802.15.4a channel modelsen_US
dc.subjectl(1)-norm minimizationen_US
dc.subjectMean-square error (MSE) lower bounden_US
dc.subjectUltra-wideband (UWB) channel estimationen_US
dc.titleBayesian Compressive Sensing for Ultra-Wideband Channel Estimation: Algorithm and Performance Analysisen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication440e977b-46c6-40d4-b970-99b1e357c998
relation.isAuthorOfPublication.latestForDiscovery440e977b-46c6-40d4-b970-99b1e357c998

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bayesian compressive sensing for ultra-wideband channel.pdf
Size:
907.63 KB
Format:
Adobe Portable Document Format
Description: