Audience Tracking and Cheering Content Control in Sports Events

dc.contributor.author Yeşilyurt, Gözdenur
dc.contributor.author Dursun, Sefa
dc.contributor.author Kumas, Osman
dc.contributor.author Çakir, Nagehan
dc.contributor.author Arsan, Taner
dc.date.accessioned 2021-01-28T10:14:47Z
dc.date.available 2021-01-28T10:14:47Z
dc.date.issued 2020
dc.description.abstract Swearing cheers encountered in sports competitions do not comply with sports ethics and morals. Even if this kind of cheering is a group, the entire tribune block is penalized in accordance with the current rules. This method is not preventive and individual punishment should be used. The aim of this study is to determine the individuals who cheer with swearing content. In this study, the person detection is made with the multi-task cascaded convolutional neural network. Moreover, facial landmarks representing the facial regions and the regions related to them are determined as a result of this process. The mouth region is also determined by means of these important points removed, and finally the mouth is determined according to the equation. The face recognition is carried out because the person would be in a state of yelling if the mouth opening ratio exceeds the threshold value by determining the rate of opening. Landmarks extracted from the facial regions for the face recognition are transformed into feature vectors by FaceNet, and the model is created by classifying these vectors with classifiers to use in recognition process. When evaluated in terms of industry, face recognition and detection systems find a wide field of study. en_US
dc.identifier.doi 10.1109/ISMSIT50672.2020.9255312 en_US
dc.identifier.isbn 9781728190907
dc.identifier.scopus 2-s2.0-85097673659 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/3762
dc.identifier.uri https://doi.org/10.1109/ISMSIT50672.2020.9255312
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartof 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)
dc.rights info:eu-repo/semantics/embargoedAccess en_US
dc.subject Face detection en_US
dc.subject Face recognition en_US
dc.subject Mouth aspect ratio en_US
dc.subject Multi-task cascaded convolutional neural network en_US
dc.title Audience Tracking and Cheering Content Control in Sports Events en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Arsan, Taner en_US
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access embargoed access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 6
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 1
gdc.identifier.openalex W3104512774
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Face detection
gdc.oaire.keywords Face recognition
gdc.oaire.keywords Mouth aspect ratio
gdc.oaire.keywords Multi-task cascaded convolutional neural network
gdc.oaire.popularity 1.652743E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.13
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 0
gdc.relation.journal 4th International Symposium on Multidisciplinary Studies and Innovative Technologies
gdc.scopus.citedcount 0
gdc.virtual.author Arsan, Taner
relation.isAuthorOfPublication 7959ea6c-1b30-4fa0-9c40-6311259c0914
relation.isAuthorOfPublication.latestForDiscovery 7959ea6c-1b30-4fa0-9c40-6311259c0914
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files